首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The influence of light and darkness incubation on in vivo ethylene forming enzyme (EFE) activity in citrus ( Citrus sinensis L. Osbeck cv. Salustiana) mature leaf discs was studied. Leaf discs incubated in light produced higher amounts of ethylene than in darkness. Transfer of discs from light to the dark resulted in a marked inhibition of EFE activity, whereas transfer of discs from the dark to light enhanced ethylene forming activity considerably. Light did not affect 1-aminocyclopropane-l-carboxylie acid (ACC) uptake. Incubation in a CO2-eniiched atmosphere enhanced EFE activity both in light and in darkness, but light stimulation of EFE activity was apparently not affected by CO2. Effects of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU, inhibitor of photosynthetic electron flow) and KCN (inhibitor of cytochrome oxidase) were studied. DCMU at 0.2 m M inhibited EFE activity in light, whereas no effect was detected in the dark. On the other hand 1 m M KCN stimulated EFE activity in the light, and no significant effect was observed in the dark. CoCl2 at 1 m M inhibited ACC-dependent ethylene production, suggesting that ethylene production from ACC is mediated by EFE in citrus leaf discs both in light and in the dark. Cycloheximide also inhibited EFE activity in the light and no effects were detected in the dark. Therefore protein synthesis in light (perhaps EFE synthesis) could be required for the light stimulation of the in vivo EFE activity.  相似文献   

2.
Ethylene production and overall levels of free and conjugated 1-aminocyclopropane-1-carboxylic acid (ACC) were studied in parenchymatous tissues, excised from clmacteric apples ( Malus domestica Borkh. cv. Granny Smith) and infiltrated with an incubation medium containing 0, 1, 10 or 100 m M Ca2+, with or without exogenous ACC (2 m M ). Irrespective of whether exogenous ACC was applied or not, ethylene production was inhibited to the same extent (40%) by an apoplastic effect of 100 m M Ca2+. In the absence of external ACC, the inhibition was associated with an increase in total endogenous ACC and may be related to a reduction in the rate of the last step of ethylene pathway. This suggests that the ethylene-forming enzyme (EFE) is localized in the plasma membrane. Low Ca2+ concentrations (1 m M ) enhanced basal ethylene synthesis due to influx of Ca2+ into the cytosol, while overall concentrations of ACC in the tissue decreased. However, 1 m M Ca2+ did not stimulate ACC-dependent ethylene formation. Thus, Ca2+ influx may stimulate the translocation of endogenous ACC from synthesis or storage compartment (s) to reactive site(s) of the plasma membrane. The concentration of 10 m M Ca2+ had no effect on basal ethylene production and appears to represent a balance point between the stimulating and inhibiting effects of 1 and 100 m M Ca2+, respectively, Furthermore, the charge-times of exogenous ACC observed with 0, 1 and 10 m M Ca2+ suggest that EFE is located on the inner side of the plasma membrane.  相似文献   

3.
I considered the possibility that changes in fruit photosynthesis obscure the occurrence of the climacteric rise in respiration in tomato fruits attached to the plant. Internal CO2 and ethylene concentrations in tomatoes ( Lycopersicon esculentum Mill. cv. OH 7814) were analyzed after direct sampling through polyethylene tubes implanted in the external pericarp. Fruits which were shaded with aluminium foil contained up to 60 ml 1−1 CO2, until the internal ethylene concentration exceeded 1 μl l−1, when CO2 concentration declined to below 40 ml l−1; the CO2 concentration in fruits exposed to light only occasionally exceeded 40 ml 1−1. The internal CO2 concentration of detached fruits first declined and then increased along with ethylene concentration, as expected for the climacteric. Detached green fruits under continuous low photosynthetic photon flux density (100 μmol m−2 s−1) contained almost no internal CO2 and produced no CO2. Changes in photosynthesis and an associated CO2-generating system in green fruits are thought to obscure the climacteric rise in tomato fruits developing on the plant.  相似文献   

4.
Hypobaric conditions and treatments with ethylene and the ethylene analogue propylene were used to investigate effects of oxygen and elhylene on 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase activity and ethylene production of apples ( Malus sylveslris Mill. cv. Golden Delicious). Prcclimacteric apples were stored in air at 6.6 kPa (reduced pressure); 6.6 kPa ventilated with pure O2; 6.6 kPa ventilated with 2600 μl 1−1 C2H4; and in air at 101.3 kPa (atmospheric pressure) for 4 months at 4°C. No ACC synthase activity was detectable in apples stored at 6.6 kPa, whereas ACC synthase activity was induced in apples stored at 6.6 kPa and ventilated with either O2 or C2H4. In a further experiment, preclimacteric apples were stored for 14 days either in air at 20 kPa or at 20 kPa ventilated with pure O2. Both treatments were supplied with 58 500 μl 1−1 propylene from day 0 to day 9 or from day 9 to day 12. Ethylene production of apples treated with propylene from day 0 to day 9 increased earlier than ethylene production of untreated apples. Propylene treatment from day 9 to day 12 did not stimulate ethylene production. Ethylene and propylene induced and stimulated extractable ACC synthase activity and ACC formation of apples. Oxygen enhanced this effect. The results also suggest inhibition of in vivo ACC synthase activity by propylene.  相似文献   

5.
Activity and biochemical characteristic of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase from pear ( Pyrus communis cv. Blanquilla) was determined. The enzyme showed a low Km (57.5 μM) for ACC and was dependent on O2 (Km 0.44% in atmosphere). It had an absolute requirement for Fe2+, ascorbate and CO2 and was inhibited by α-aminoisobutyric acid (AIB: K1 4.2 m M ) and cobalt. ACC oxidase has an optimum pH of 6.7 and temperature maxima at 28 and 38°C and it is concluded that the activity of ACC oxidase from pear resembles authentic in vivo activity.  相似文献   

6.
Light inhibits while carbon dioxide enhances the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene in oat ( Avena sativa L. cv. Victory) leaf segments. The possibility that the light inhibition is mediated through changes of carbon dioxide has been investigated. The level of CO2 increases or decreases in the sealed incubation vial in darkness or in light, respectively, which can apparently account for the differences in ACC-dependent ethylene production between the dark and light treatments. However, although the evolution of ethylene from ACC in the dark is reduced upon depletion of CO2, the difference between light and dark is still very noticeable. Moreover, the production of the ethylene in CO2-free air in the dark was still higher than in the light, where the concentration of CO2 was 0.01%. It is proposed that the light effect on the conversion of ACC to ethylene is composed of two distinguishable components: one CO2-mediated and the other CO2-independent.  相似文献   

7.
The relative growth rate of pot-grown plants of Poa pratensis L. cv. Holt, origin 69s°N, was increased by 20–40% by photoperiod extension with low intensity incandescent light from 8 to 24 h at 9–21°C. The main increase occurred over the 14 to 18 h photoperiod range. The true photoperiodic nature of the response was demonstrated by the effectiveness of night interruption in stimulating growth. Fortnightly sprayings with gibberellic acid (GA3) (3 × 10-6 to 3 × 10-5 M ) mimicked all the effects of long days, whereas (2-chloroethyl)-trimethylammonium chloride (CCC) counteracted the effects of long days. Both growth substances exhibited pronounced interactions with photoperiod, GA3 being most effective in short days and CCC in long days. The growth stimulation, whether caused by long days or GA3, was exerted mainly through increases in individual and total leaf area. This was associated with a reduction in CO2, exchange rate and a parallel fall in specific leaf weight. Proportionally, however, the increase in leaf area was greater than the fall in CO2 exchange rate, resulting in a 38 to 118% increase in photosynthesis per leaf. No evidence was found of any direct and promotive effect of transition to long days on the CO2 exchange rate of already expanded leaves.  相似文献   

8.
In preclimacteric apple fruits ( Malus × domestica Borkh. cv. Golden Delicious) ethylene production is controlled by the rates of 1-aminocyclopropane-1-carboxylic acid (ACC) synthesis, and by its metabolism to ethylene by the ethylene-forming enzyme and to 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) by malonyl CoA-ACC transferase. The onset of the climacteric in ethylene production is associated with an increase in the activity of the ethylene-forming enzyme in the pulp and with a rise in the activity of ACC synthase. Malonyl transferase activity is very high in the skin of immature fruit, decreases sharply before the onset of the climacteric, and remains nearly constant thereafter. More than 40% of the ACC synthesized in the skin and around 5% in the flesh, are diverted to MACC at early climacteric. At the climacteric peak there are substantial gradients in ethylene production between different portions of the tissue, the inner cortical tissues producing up to twice as much as the external tissues. This increased production is associated with, and apparently due to, increased content of ACC synthase. Less than 1% of the synthesized ACC is diverted to MACC in the flesh of climacteric apples. In contrast, the skin contains high activity of malonyl transferase, and correspondingly high levels [1000 nmol (g dry weight)−1] of MACC.  相似文献   

9.
High temperature (45°C) inhibits seed germinition and seedling sunflower ( Helianthus annuus L. cv. Mirasol). Treatment of imbibed seeds at 45°C for more than 48 h induces a secondary dormancy, which is associated with progressive decrease of germination ability at optimal temperature (25°C) as well as with abnormal seedling growth. Ethylene (55μl l−1) and 2-chloroethylphosphonic acid (ethephon) (2.5 m M ) improve germination of thermodormant seeds at 25°C. but the abnormal growth of the seedlings remains. O2-enriched atmosphere and dry storage improve germination and normal seedling growth. The induction of thermodormancy in sunflower seeds seems associated with loss of their ability to convert 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. Possible effects of high temperature on membranes and ethylene forming enzyme (EFE) are discussed.  相似文献   

10.
The ability of ethylene to stimulate respiration and advance the onset of rapid ethylene production was investigated at different times during storage of 'Gloster 69' apples in 2 kPa O2 at 1.5–3.5°C. Ethylene stimulated respiration in apples at 15°C immediately after harvest; maximal rates were recorded at 10–1000 μl I−1 but attainment of these rates was delayed after low O2 storage until day 3 of treatment at 15°C. The onset of rapid ethylene production at 15°C occurred later in non-ethylene-treated apples after storage than after harvest. Ethylene production was induced in some apples during ethylene treatment for 3 or 6 days; in others it was induced about 20 days after treatment, but a proportion of the fruit showed no induction in the 45-day duration of experiments. An ethylene treatment at 10 μl I−1 led to a near maximal increase in the frequency of induction of ethylene production at all times. After storage apples were mainly induced during treatment or not induced, whereas after harvest induction after treatment was more frequent. The presence of 2000 μl l−1 norbornadiene during ethylene treatment inhibited the stimulation of respiration and the induction of ethylene production; this inhibition was only partly reversed by ethylene at 1000 μl l−1 the experiments suggest that receptors for ethylene were present at all stages but that response capacity changed during storage.  相似文献   

11.
The influence of chromium concentration on ethylene production in bean plants ( Phaseolus vulgaris L. cv. Contender) was investigated. A Cr ion-induced inhibition of ethylene synthesis from endogenous 1-aminocyclopropane-1-carboxylic acid (ACC) was observed within both leaf discs floated on 2 m M CrO2−4 or Cr3+ and leaf discs from plants cultured in nutrient solutions containing 10, 20 or 40 μ M CrO2−4. However, Cr ions supplied either to plants with the nutrient solution or to discs with the incubation medium rather increased the conversion of exogenous ACC to ethylene. Primary leaves of plants exposed to CrO2−4-containing nutrient solutions showed a statistically insignificant decrease of ACC-synthase activity. In the trifoliolate leaves of plants exposed to 10 μ M CrO2−4, in which a significant decrease of ethylene production from endogenous ACC was observed, a substantial increase of ACC synthase was found. These results indicate that Cr ion-induced inhibition of ethylene production is not due to a breakdown of membrane integrity, which is necessary for ethylene forming enzyme activity, but caused by metabolic alterations leading to decreased ACC availability. Chromium ions may act by inhibiting ACC synthase activity or by diverting a metabolic step prior to the ACC synthase catalyzed reaction.  相似文献   

12.
'Gloster 69' apples are unusual because they do not accumulate ethylene during storage at 2 kPa O2 at 1.5–3.5°C with continuous ethylene removal. Their ethylene physiology and the extent of various ripening processes in storage were investigated. Ethylene production and l-aminocyclopropane-l-carboxylic acid (ACC) remained low for up to 200 days, and both increased on transfer of fruit to 15°C. The increase in ACC could be stimulated by ethylene treatment of apples after storage. In spite of this evidence that fruit remained preclimacteric, some softening and production of soluble pectin and volatile esters occurred at 3.5°C. These processes were suppressed at 1.5°C, but chlorophyll, starch, malate and sucrose losses and increases in glucose and fructose occurred at both temperatures.  相似文献   

13.
Role of ethylene in de novo shoot morphogenesis from explants and plant growth of mustard ( Brassica juncea cv. India Mustard) in vitro was investigated, by culturing explants or plants in the presence of the ethylene inhibitors aminoethoxyvinylglycine (AVG) and AgNO3. The presence of 20 μ M AgNO3 or 5 μ M AVG in culture medium containing 5 μ M naphthaleneacetic acid and 10 μ M benzyladenine were equally effective in promoting shoot regeneration from leaf disc and petiole explants. However, AgNO3 greatly enhanced ethylene production which reached a maximum after 14 days, whereas ethylene levels in the presence of AVG remained low during 3 weeks of culture. The promotive effect of AVG on shoot regeneration was overcome by exogenous application of 25 μ M 2-chloroethylphosphonic acid (CEPA), but AgNO3-induced regeneration was less affected by CEPA. For whole plant culture, AVG did not affect plant growth, although it decreased ethylene production by 80% and both endogenous levels of 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC by 70–80%. In contrast, AgNO3 stimulated all 3 parameters of ethylene synthesis. Both AgNO3 and CEPA were inhibitory to plant growth, with more severe inhibition occuring in AgNO3. Leaf discs derived from plants grown with AVG or AgNO3 were highly regenerative on shoot regeneration medium without ethylene inhibitor, but the presence of AgNO3 in the medium was inhibitory to regeneration of those derived from plants grown with AgNO3.  相似文献   

14.
Biggs, M. S., Woodson, W. R. and Handa, A. K. 1988. Biochemical basis of high-temperature inhibition of ethylene biosynthesis in ripening tomato fruits. Physiol. Plant. 72: 572578
Incubation of fruits of tomato ( Lycopersicon esculentum Mill. cv. Rutgers) at 34°C or above resulted in a marked decrease in ripening-associated ethylene production. High temperature inhibition of ethylene biosynthesis was not associated with permanent tissue damage, since ethylene production recovered following transfer of fruits to a permissive temperature. Determination of pericarp enzyme activities involved in ethylene biosynthesis following transfer of fruits from 25°C to 35 or 40°C revealed that 1-aminocyclopropane-l-carboxylic acid (ACC) synthase (EC 4.4.1.14) activity declined rapidly while ethylene forming enzyme (EFE) activity declined slowly. Removal of high temperature stress resulted in more rapid recovery of ACC synthase activity relative to EFE activity. Levels of ACC in pericarp tissue reflected the activity of ACC synthase before, during, and after heat stress. Recovery of ethylene production following transfer of pericarp discs from high to permissive temperature was inhibited in the presence of cycloheximide, indicating the necessity for protein synthesis. Ethylene production by wounded tomato pericarp tissue was not as inhibited by high temperature as ripening-associated ethylene production by whole fruits.  相似文献   

15.
Soybean ( Glycine max cv. Clark) was grown at both ambient (ca 350 μmol mol−1) and elevated (ca 700 μmol mol−1) CO2 concentration at 5 growth temperatures (constant day/night temperatures of 20, 25, 30, 35 and 40°C) for 17–22 days after sowing to determine the interaction between temperature and CO2 concentration on photosynthesis (measured as A, the rate of CO2 assimilation per unit leaf area) at both the single leaf and whole plant level. Single leaves of soybean demonstrated increasingly greater stimulation of A at elevated CO2 as temperature increased from 25 to 35°C (i.e. optimal growth rates). At 40°C, primary leaves failed to develop and plants eventually died. In contrast, for both whole plant A and total biomass production, increasing temperature resulted in less stimulation by elevated CO2 concentration. For whole plants, increased CO2 stimulated leaf area more as growth temperature increased. Differences between the response of A to elevated CO2 for single leaves and whole plants may be related to increased self-shading experienced by whole plants at elevated CO2 as temperature increased. Results from the present study suggest that self-shading could limit the response of CO2 assimilation rate and the growth response of soybean plants if temperature and CO2 increase concurrently, and illustrate that light may be an important consideration in predicting the relative stimulation of photosynthesis by elevated CO2 at the whole plant level.  相似文献   

16.
ABSTRACT. Loxodes reached peak abundance close to the oxic-anoxic boundary (O2 5% atm) in two lakes, in test tube cultures, and in glass chambers with horizontal O2 gradients. Vertical profiles of CO2, pH, sulfide, and Fe2+ in a lake were not closely related to Loxodes abundance. In a laboratory experiment, Loxodes followed a retreating source of O2 and was repelled by a high pO2. This behavior was sustained when cells simultaneously swam up or down gradients of both CO2 and pH. Aggregation of cells was abolished by KCN (10-4-10-6 M). Sodium azide (10-1-10-4 M) had no effect and 2,4-DNP sharpened the aggregation. Rotenone, Antimycin A, and HOQNO had no obvious effect. Cytochrome oxidase is probably the oxygen receptor. Loxodes striatus contained low activities of superoxide dismutase and catalase. Extracellular production of superoxide (O-2) and hydrogen peroxide (H2O2) were probably not responsible for the exclusion of Loxodes from water with a high pO2. Continuous exposure of Loxodes to oxygen at normal atmospheric pressure at 10°C led to 50% mortality in 10 days. Cells left free to swim in an oxygen gradient doubled their number in the same period. Light exacerbated the toxic effects of O2. Behavioral responses to the dissolved oxygen tension probably controlled the spatial distribution of Loxodes.  相似文献   

17.
The effects of ethylene (C2H4), (2-chloroethyl)phosphonic acid (ethefon) and 1-aminocyclopropane-1-carboxylic acid (ACC) on senescence of isolated intact petals and of upper petal parts of carnation flowers ( Dianthus caryophyllus L. cv. White Sim) were investigated.
Isolated upper petal parts did not respond to treatment with ethefon or ACC. These tissues did, however, show severe wilting in intact petals that were treated with ethefon or ACC. When isolated upper petal parts were simultaneously treated with ACC and ethefon or ACC and ethylene, a marked synergistic effect on senescence was found. Treatment of isolated petals with radiolabeled ACC led to the accumulation of radiolabeled ACC and N-malonyl-ACC (MACC) in the upper parts. The formation of ethylene and the malonylation of ACC were inhibited by pretreatment of the flower with the inhibitor of ethylene action, silver thiosulphate (STS), which indicates that both were induced by endogenously produced ethylene. Treatment of isolated upper parts with ACC slightly increased their ethylene production. However, when these petal parts were simultaneously treated with ethylene and ACC, the conversion of ACC to ethylene was markedly stimulated.
The results indicate that, in intact petals, ethylene may be translocated from the basal to the upper part where it stimulates the activity of the ethylene-forming enzyme (EFE), thereby making the tissue receptive to ACC.
In addition, it was found that upon incubation of petal portions in radiolabeled ACC, both the petal tissue and the incubation solutions produced radiolabeled carbon dioxide. This was shown to be due to microorganisms that were able to metabolize the carbon atoms in the 2 and 3 position of ACC into carbon dioxide.  相似文献   

18.
We examined how anticipated changes in CO2 concentration and temperature interacted to alter plant growth, harvest characteristics and photosynthesis in two cold-adapted herbaceous perennials, alfalfa ( Medicago sativa L. cv. Arc) and orchard grass ( Dactylis glomerata L. cv. Potomac). Plants were grown at two CO2 concentrations (362 [ambient] and 717 [elevated] μmol mol−1 CO2) and four constant day/night temperatures of 15, 20, 25 and 30°C in controlled environmental chambers. Elevated CO2 significantly increased total plant biomass and protein over a wide range of temperatures in both species. Stimulation of photosynthetic rate, however, was eliminated at the highest growth temperature in M. sativa and relative stimulation of plant biomass and protein at high CO2 declined as temperature increased in both species. Lack of a synergistic effect between temperature and CO2 was unexpected since elevated CO2 reduces the amount of carbon lost via photorespiration and photorespiration increases with temperature. Differences between anticipated stimulatory effects of CO2 and temperature and whole plant single and leaf measurements are discussed. Data from this study suggest that stimulatory effects of atmospheric CO2 on growth and photosynthesis may decline with anticipated increases in global temperature, limiting the degree of carbon storage in these two perennial species.  相似文献   

19.
The rates of dry weight increase and respiration of fruits were measured throughout fruit ontogeny at 20, 25 and 30°C in cucumber ( Cucumis sativus L. cv. Corona). By maintaining one or five fruits per plant, which strongly affected fruit dry weight but not ontogeny, the effects of fruit size and ontogeny on respiration could be studied separately. The respiration rate per fruit followed a sigmoid curve during fruit ontogeny, while the specific respiration rate (respiration rate per unit dry weight) declined with time after anthesis. The specific respiration rate was almost linearly related to the relative growth rate. The specific respiratory costs for both growth and maintenance were highest in young fruits, but were not affected by fruit size. The average specific respiratory costs for growth and maintenance at 25°C were 3.3–3.9 mmol CO2 g−1 and 4.0 nmol CO2 g−1 s−1, respectively. An increase in temperature had no effect on the specific respiratory costs for growth, while the costs for maintenance increased with a Q10 of about 2. The costs for growth agreed reasonably well with theoretical estimates based on the chemical composition of the fruits but not with estimates based on only the carbon and ash content. The respiratory losses as a fraction of the total carbon requirement of a fruit changed during fruit ontogeny, but were independent of temperature and were similar for slow- and fast-growing fruits. The cumulative respiratory losses accounted for 13–15% of the total carbon requirement.  相似文献   

20.
The response of forest soil CO2 efflux to the elevation of two climatic factors, the atmospheric concentration of CO2 (↑CO2 of 700 μmol mol−1) and air temperature (↑ T with average annual increase of 5°C), and their combination (↑CO2+↑ T ) was investigated in a 4-year, full-factorial field experiment consisting of closed chambers built around 20-year-old Scots pines ( Pinus sylvestris L.) in the boreal zone of Finland. Mean soil CO2 efflux in May–October increased with elevated CO2 by 23–37%, with elevated temperature by 27–43%, and with the combined treatment by 35–59%. Temperature elevation was a significant factor in the combined 4-year efflux data, whereas the effect of elevated CO2 was not as evident. Elevated temperature had the most pronounced impact early and late in the season, while the influence of elevated CO2 alone was especially notable late in the season. Needle area was found to be a significant predictor of soil CO2 efflux, particularly in August, a month of high root growth, thus supporting the assumption of a close link between whole-tree physiology and soil CO2 emissions. The decrease in the temperature sensitivity of soil CO2 efflux observed in the elevated temperature treatments in the second year nevertheless suggests the existence of soil response mechanisms that may be independent of the assimilating component of the forest ecosystem. In conclusion, elevated atmospheric CO2 and air temperature consistently increased forest soil CO2 efflux over the 4-year period, their combined effect being additive, with no apparent interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号