首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
Mutational alteration of the BLM5 gene of the model eukaryote, Saccharomyces cerevisiae, confers extreme hypersensitivities to lethal effects of ionizing radiation, anticancer bleomycins and structurally-related phleomycins. Additional properties conferred by the blm5-1 mutation in haploid and diploid strains were investigated for the current report. Only one copy of blm5-1 together with the normal BLM5 allele was sufficient to produce mitotic and meiotic defects in diploids, and greatly increase killing by bleomycin beyond wild type levels. Mitotic growth rates of blm5-1/blm5-1 homozygous mutant strains were slower than wild type or BLM5/blm5-1 heterozygous strains at 30 degrees C, and growth was nearly completely inhibited at 37 degrees C. Meiosis was inhibited at 30 degrees C and 37 degrees C in mutant homozygotes, and at 37 degrees C in BLM5/blm5-1 heterozygotes, while meiosis occurred at equivalent frequencies in wild type strains at both temperatures. Surprisingly, mutant strains were found to associate extremely low quantities of [S-methyl-3H]bleomycin A2, in contrast to normal strains that associated quite high amounts. However, the fractions of the total associated radioactivities that were released from normal and blm5-1 cells were equivalent. These results suggested that the extremely high killing suffered by blm5-1 mutant strains in response to bleomycin treatments results from something other than increased intracellular drug concentrations.  相似文献   

3.
Inactivation of the structural gene for the RecQ family member, BLM in human, Sgs1 in budding yeast, or Rqh1 in fission yeast leads to inappropriate recombination, chromosome abnormalities, and disturbed replication fork progression. Studies with yeasts have demonstrated that auxiliary gene functions can contribute in overlapping ways with Sgs1 or Rqh1 to circumvent or overcome lesions in DNA caused by certain genotoxic agents. In the combined absence of these functions, recombination-mediated processes lead to severe loss of fitness. Here we performed a genetic study to determine the role of the Ustilago maydis Blm homolog in DNA repair and in alleviating replication stress. We characterized the single mutant as well as double mutants additionally deleted of genes encoding Srs2, Fbh1, Mus81, or Exo1. Unlike yeasts, neither the blm srs2, blm exo1, nor blm mus81 double mutant exhibited extreme loss of fitness. Inactivation of Brh2, the BRCA2 homolog, suppressed toxicity to hydroxyurea caused by loss of Blm function. However, differential suppression by Brh2 derivatives lacking the canonical DNA-binding region suggests that the particular domain structure comprising this DNA-binding region may be instrumental in promoting the observed hydroxyurea toxicity.  相似文献   

4.
Anticancer bleomycins and structurally-related analogs are oxidative agents that mimic ionizing radiation in many of their cellular effects. The current study was designed to better understand this class of radiomimetic and oxidative drugs, and how cells defend against them to become resistant. Based on some of the properties conferred by the blm5-1 mutation of Saccharomyces cerevisiae, a multi-step cloning strategy was developed to search for genes that protect cells against oxidative damage and lethal effects of bleomycin treatments. The strategy employed blm5-1 mutant strains to search for genes that rescued the drug hypersensitivities conferred by the mutation, and utilized the inability of homozygous blm5-1 mutant diploid strains to grow at elevated temperatures. This approach identified the VPS3, VPS8 and PEP7 genes that function in vesicular trafficking between the endosome and the yeast vacuole via the carboxypeptidase Y (CpY) pathway. Mutant blm5-1 strains possess several phenotypic characteristics consistent with CpY mutants, including reduced mitotic growth rates and sporulative abilities. However, blm5-1 strains were not found to be defective in the transport of CpY into the vacuole. We suggest that the ability of the VPS3, VPS8 and PEP7 genes to rescue lethal effects of oxidative damage resulted from the overexpression of these genes.  相似文献   

5.
Bloom syndrome (BS) is more common in the Ashkenazi Jewish than in any other population. Approximately 1 in 110 Ashkenazi Jews carries blm, the BS mutation. The locus mutated in BS, BLM, maps to chromosome subband 15q26.1, tightly linked to the proto-oncogene FES. We have investigated the basis for the increased frequency of blm in the Ashkenazim by genotyping polymorphic microsatellite loci tightly linked to BLM in affected and unaffected individuals from Ashkenazi Jewish and non-Ashkenazi populations. A striking association of the C3 allele at FES with blm (delta = .422; p = 5.52 x 10(-7)) and of the 145-bp and 147-bp alleles at D15S127 with blm (delta = .392 and delta = .483, respectively; p = 2.8 x 10(-5) and p = 5.4 x 10(-7), respectively) was detected in Ashkenazi Jews with BS. This linkage disequilibrium constitutes strong support for a founder-effect hypothesis: the chromosome in the hypothetical founder who carried blm also carried the C3 allele at FES and either the 145-bp or the 147-bp allele at D15S127.  相似文献   

6.
The eukaryotic 20 S proteasome is formed by dimerization of two precursor complexes containing the maturation factor Ump1. Beta7/Pre4 is the only one of the 14 subunits forming the 20 S proteasome that is absent from these precursor complexes in Saccharomyces cerevisiae. Increased expression of Pre4 leads to a reduction in the level of precursor complex, indicating that Pre4 incorporation into these complexes is rate-limiting for their dimerization. When we purified these precursor complexes, we observed co-purification of Blm10, a large protein known to attach to the alpha ring surface of proteasomes. In contrast to single mutants lacking either Blm10 or the C-terminal extension of Pre4, a mutant lacking both grew extremely poorly, accumulated very high levels of precursor complexes, and was impaired in beta subunit maturation. The effect of blm10Delta on proteasome biogenesis is modest, apparently because the 19 S regulatory particle is capable of substituting for Blm10, as long as precursor complex dimers are stabilized by the Pre4 C terminus. We found that a mutation (sen3/rpn2) affecting the Rpn2 subunit inhibits attachment of the 19 S activator to the 20 S particle or its precursors. Although the sen3 mutation alone had no apparent effect on precursor complex dimerization and active site maturation, the sen3 blm10 double mutant was impaired in these processes. Together these data demonstrate that Blm10 and the 19 S activator have a partially redundant function in stabilizing nascent 20 S proteasomes and in promoting their activation.  相似文献   

7.
The conserved Blm10/PA200 activators bind to the proteasome core particle gate and facilitate turnover of peptides and unfolded proteins in vitro. We report here that Blm10 is required for the maintenance of functional mitochondria. BLM10 expression is induced 25-fold upon a switch from fermentation to oxidative metabolism. In the absence of BLM10, Saccharomyces cerevisiae cells exhibit a temperature-sensitive growth defect under oxidative growth conditions and produce colonies with dysfunctional mitochondria at high frequency. Loss of BLM10 leads to reduced respiratory capacity, increased mitochondrial oxidative damage, and reduced viability in the presence of oxidative stress or death stimuli. In the absence of BLM10, increased fragmentation of the mitochondrial network under oxidative stress is observed indicative of elevated activity of the mitochondrial fission machinery. The degradation of Dnm1, the main factor mediating mitochondrial fission, is impaired in the absence of BLM10 in vitro and in vivo. These data suggest that the mitochondrial functional and morphological changes observed are related to elevated Dnm1 levels. This hypothesis is supported by the finding that cells that constitutively overexpress DNM1 display the same mitochondrial defects as blm10Δ cells. The data are consistent with a model in which Blm10 proteasome-mediated turnover of Dnm1 is required for the maintenance of mitochondrial function and provides cytoprotection under conditions that induce increased mitochondrial damage and programmed cell death.  相似文献   

8.
RECQL1 and RECQL5 as well as BLM reportedly interact with TOP3alpha whose defect is lethal for the cell. Therefore in this study, we characterized recql5/recql1/blm triple mutants from DT40 cells to determine whether the triple mutants show a top3alpha disrupted cell-like phenotype. The triple mutants are viable. Moreover, both blm/recql1 and recql5/blm cells, and recql5/recql1/blm cells grew slightly slower than blm cells, that is, triple mutant cells grew almost the same rate as either of the double mutant cells. The blm cells showed sensitivity to methyl methanesulfonate (MMS) and ultraviolet light (UV), about a 10-fold increase in sister chromatid exchange (SCE), and about a 3-fold increase in damage-induced mitotic chiasma compared to wild-type cells. The triple mutants showed the same sensitivity to MMS or UV and the same frequency of damage-induced mitotic chiasma compared to those of blm cells, indicating that unlike BLM, RECQL1 and RECQL5 play a little role in the repair of or tolerance to DNA damages. However, recql5/blm cells showed higher frequency of SCE than blm cells, whereas the RECQL1 gene disruption had no effect on SCE in blm cells and even in recql5/blm cells.  相似文献   

9.
Functional interactions between BLM and XRCC3 in the cell   总被引:1,自引:0,他引:1       下载免费PDF全文
Bloom's syndrome (BS), which is caused by mutations in the BLM gene, is characterized by a predisposition to a wide variety of cancers. BS cells exhibit elevated frequencies of sister chromatid exchanges (SCEs), interchanges between homologous chromosomes (mitotic chiasmata), and sensitivity to several DNA-damaging agents. To address the mechanism that confers these phenotypes in BS cells, we characterize a series of double and triple mutants with mutations in BLM and in other genes involved in repair pathways. We found that XRCC3 activity generates substrates that cause the elevated SCE in blm cells and that BLM with DNA topoisomerase IIIalpha suppresses the formation of SCE. In addition, XRCC3 activity also generates the ultraviolet (UV)- and methyl methanesulfonate (MMS)-induced mitotic chiasmata. Moreover, disruption of XRCC3 suppresses MMS and UV sensitivity and the MMS- and UV-induced chromosomal aberrations of blm cells, indicating that BLM acts downstream of XRCC3.  相似文献   

10.
Direct selection for 12 mutations (blm) conferring hypersensitivities to lethal effects of bleomycins in Saccharomyces cerevisiae resulted in mutants exhibiting cross-hypersensitivity to ionizing radiation and hydrogen peroxide. Remaining mutations did not confer cross-hypersensitivity to radiation. All blm mutations were recessive, except codominant blm3-1, and were assigned to seven complementation groups.  相似文献   

11.
12.
Bloom's syndrome is a genetic disorder characterized by increased incidence of cancer and an immunodeficiency of unknown origin. The BLM gene mutated in Bloom's syndrome encodes a DNA helicase involved in the maintenance of genomic integrity. To explore the role of BLM in the immune system, we ablated murine Blm in the T-cell lineage. In the absence of Blm, thymocytes were severely reduced in numbers and displayed a developmental block at the beta-selection checkpoint that was partially p53 dependent. Blm-deficient thymocytes rearranged their T-cell receptor (TCR) beta genes normally yet failed to survive and proliferate in response to pre-TCR signaling. Furthermore, peripheral T cells were reduced in numbers, manifested defective homeostatic and TCR-induced proliferation, and produced extensive chromosomal damage. Finally, CD4(+) and CD8(+) T-cell responses were impaired upon antigen challenge. Thus, by ensuring genomic stability, Blm serves a vital role for development, maintenance, and function of T lymphocytes, suggesting a basis for the immune deficiency in Bloom's syndrome.  相似文献   

13.
14.
The lipoprotein I gene (oprI) of Pseudomonas aeruginosa PAO1 was cloned and sequenced. A high degree of homology was found between our cloned PAO1 gene sequence and two published oprI sequences. Specific oligonucleotides were designed to amplify the oprI gene by the polymerase chain reaction (PCR). The potential of either the complete gene sequence or the specific oligonucleotide primers as a tool for rapid strain identification was directly assessed against bacterial colonies by PCR or against purified genomic DNA by Southern blot analysis, using a number of representative strains within the Pseudomonadaceae. The oprI gene was found to be well conserved within RNA group I.  相似文献   

15.
16.
The cDNA of human mitochondrial aspartate aminotransferase (E.C.2.6.1.1.) was isolated from a human liver cDNA library using a rat mitochondrial aspartate aminotransferase cDNA as probe. The sequence of this cDNA gives a predicted aminoacid sequence for the human presequence and for the human mature protein exhibiting respectively 93% and 95% homology with rat sequences. A Northern blot of total RNA, isolated from various human tissues and hybridized with this cDNA, revealed a single 2.4 Kb RNA band. Mitochondrial aspartate aminotransferase RNA was clearly detected in human kidney, placenta, stomach and spleen as well as in both fetal and adult liver.  相似文献   

17.
Bloom's syndrome (BS) is a genetic disorder characterized cellularly by increases in sister chromatid exchanges (SCEs) and numbers of micronuclei. BS is caused by mutation in the BLM DNA helicase gene and involves a greatly enhanced risk of developing the range of malignancies seen in the general population. With a mouse model for the disease, we set out to determine the relationship between genomic instability and neoplasia. We used a novel two-step analysis to investigate a panel of eight cell lines developed from mammary tumors that appeared in Blm conditional knockout mice. First, the panel of cell lines was examined for instability. High numbers of SCEs were uniformly seen in members of the panel, and several lines produced chromosomal instability (CIN) manifested by high numbers of chromosomal structural aberrations (CAs) and chromosome missegregation events. Second, to see if Blm mutation was responsible for the CIN, time-dependent analysis was conducted on a tumor line harboring a functional floxed Blm allele. The floxed allele was deleted in vitro, and mutant as well as control subclones were cultured for 100 passages. By passage 100, six of nine mutant subclones had acquired high CIN. Nine mutant subclones produced 50-fold more CAs than did nine control subclones. Finally, chromosome loss preceded the appearance of CIN, suggesting that this loss provides a potential mechanism for the induction of instability in mutant subclones. Such aneuploidy or CIN is a universal feature of neoplasia but has an uncertain function in oncogenesis. Our results show that Blm gene mutation produces this instability, strengthening a role for CIN in the development of human cancer.  相似文献   

18.
A recombinant M13 clone (O42) containing a 65 b.p. cDNA fragment from human fetal liver mRNA coding for glyceraldehyde-3-phosphate dehydrogenase has been identified and it has been used to isolate from a full-length human adult liver cDNA library a recombinant clone, pG1, which has been subcloned in M13 phage and completely sequenced with the chain terminator method. Besides the coding region of 1008 b.p., the cDNA sequence includes 60 nucleotides at the 5'-end and 204 nucleotides at the 3'-end up to the polyA tail. Hybridization of pG1 to human liver total RNA shows only one band about the size of pG1 cDNA. A much stronger hybridization signal was observed using RNA derived from human hepatocarcinoma and kidney carcinoma cell lines. Sequence homology between clone 042 and the homologous region of clone pG1 is 86%. On the other hand, homology among the translated sequences and the known human muscle protein sequence ranges between 77 and 90%; these data demonstrate the existence of more than one gene coding for G3PD. Southern blot of human DNA, digested with several restriction enzymes, also indicate that several homologous sequences are present in the human genome.  相似文献   

19.
20.
PS-2基因的克隆及其在肝癌中的表达   总被引:3,自引:0,他引:3  
利用荧光差异显示技术比较了正常肝、肝硬化和肝癌组织 m RNA的表达 ,1 4个有差异的条带通过 Northern blot分析表明其中 9个为阳性 .令人感兴趣的是一个~ 5 0 0 bp的 c DNA片段 ,它在正常肝和肝硬化中低表达 ,在肝癌组织中高表达 .通过测序 ,发现该片段与 PS- 2 ( presenilin- 2 )基因有 94 %的同源性 .PS- 2基因的突变与早发性阿尔茨海默氏症有关 ,但在肝癌发生中的作用未明 .也许 PS- 2基因的上调涉及到肝癌发生的分子机理  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号