首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two closely linked lignin peroxidase (LPO)-encoding genes (lpo) from Phanerochaete chrysosporium were isolated. Nucleotide sequence studies indicated that the two genes are separated by 1.3 kb of flanking DNA and transcribed in opposite directions. Cloned P. chrysosporium lpo gene probes have been shown to hybridize to multiple sequences present in the DNAs of the white-rot fungi, Bjerkandera adusta, Coriolus versicolor and Fomes lignosus, but no hybridization was detected with DNA from Pleurotus ostreatus. Thus, lpo gene families appear to be common in a number of lignin-degrading basidiomycetes, some of which have not yet been shown to produce LPO proteins.  相似文献   

2.
3.
4.
Because there is some controversy concerning the ligninolytic enzymes produced by Pleurotus species, ethylene release from alpha-keto-gamma-thiomethylbutyric acid (KTBA), as described previously for Phanerochaete chrysosporium lignin peroxidase (LiP), was used to assess the oxidative power of Pleurotus eryngii cultures and extracellular proteins. Lignin model dimers were used to confirm the ligninolytic capabilities of enzymes isolated from liquid and solid-state fermentation (SSF) cultures. Three proteins that oxidized KTBA in the presence of veratryl alcohol and H2O2 were identified (two proteins were found in liquid cultures, and one protein was found in SSF cultures). These proteins are versatile peroxidases that act on Mn2+, as well as on simple phenols and veratryl alcohol. The two peroxidases obtained from the liquid culture were able to degrade a nonphenolic beta-O-4 dimer, yielding veratraldehyde, as well as a phenolic dimer which is not efficiently oxidized by P. chrysosporium peroxidases. The former reaction is characteristic of LiP. The third KTBA-oxidizing peroxidase oxidized only the phenolic dimer (in the presence of Mn2+). Finally, a fourth Mn2+-oxidizing peroxidase was identified in the SSF cultures on the basis of its ability to oxidize KTBA in the presence of Mn2+. This enzyme is related to the Mn-dependent peroxidase of P. chrysosporium because it did not exhibit activity with veratryl alcohol and Mn-independent activity with dimers. These results show that P. eryngii produces three types of peroxidases that have the ability to oxidize lignin but lacks a typical LiP. Similar enzymes (in terms of N-terminal sequence and catalytic properties) are produced by other Pleurotus species. Some structural aspects of P. eryngii peroxidases related to the catalytic properties are discussed.  相似文献   

5.
We report cloning and sequencing of gene ps1 encoding a versatile peroxidase combining catalytic properties of lignin peroxidase (LiP) and manganese peroxidase (MnP) isolated from lignocellulose cultures of the white-rot fungus Pleurotus eryngii. The gene contains 15 putative introns, and the deduced amino acid sequence consists of a 339-residue mature protein with a 31-residue signal peptide. Several putative response elements were identified in the promoter region. Amino acid residues involved in oxidation of Mn(2+) and aromatic substrates by direct electron transfer to heme and long-range electron transfer from superficial residues as predicted by analogy with Phanerochaete chrysosporium MnP and LiP, respectively. A dendrogram is presented illustrating sequence relationships between 29 fungal peroxidases.  相似文献   

6.
7.
8.
Biobleaching of manganese-less oxygen-delignified hardwood kraft pulp (E-OKP) by the white-rot fungi Phanerochaete sordida YK-624 and P. chrysosporium was examined in the solid-state fermentation system. P. sordida YK-624 possessed a higher brightening activity than P. chrysosporium, increasing pulp brightness by 13.4 points after seven days of treatment. In these fermentation systems, lignin peroxidase (LiP) activity was detected as the principle ligninolytic enzyme, and manganese peroxidase and laccase activities were scarcely detected over the course of treatment of E-OKP by either fungus. Moreover, a linear relationship between brightness increase and cumulative LiP activity was observed under all tested culture conditions with P. sordida YK-624 and P. chrysosporium. These results indicated that LiP is involved in the brightening of E-OKP by both white-rot fungi.  相似文献   

9.
4-Chlorophenol (4-CP) degradation was investigated by suspended and immobilized Phanerochaete chrysosporium conducted in static and agitated cultures. The best results were achieved when experiment was carried out in a rotating biological contactor instead of an Erlenmeyer flask, for both batch degradation and repeated batch degradation. The relative contribution of lignin peroxidase (LiP) versus manganese peroxidase (MnP) to the 4-CP degradation by P. chrysosporium was investigated. 4-CP degradation slightly increased and a high level of MnP (38 nKat ml(-1)) was produced when P. chrysosporium was grown at high Mnll concentration. High LiP production in the medium had no significant effect on 4-CP degradation. 4-CP degradation occurred when P. chrysosporium was grown in a medium that repressed LiP and MnP production. This result indicates that LiP and MnP are not directly involved in 4-CP degradation by P. chrysosporium.  相似文献   

10.
11.
Two major peroxidases are secreted by the fungus Pleurotus eryngii in lignocellulose cultures. One is similar to Phanerochaete chrysosporium manganese-dependent peroxidase. The second protein (PS1), although catalyzing the oxidation of Mn2+ to Mn3+ by H2O2, differs from the above enzymes by its manganese-independent activity enabling it to oxidize substituted phenols and synthetic dyes, as well as the lignin peroxidase (LiP) substrate veratryl alcohol. This is by a mechanism similar to that reported for LiP, as evidenced by p-dimethoxybenzene oxidation yielding benzoquinone. The apparent kinetic constants showed high activity on Mn2+, but methoxyhydroquinone was the natural substrate with the highest enzyme affinity (this and other phenolic substrates are not efficiently oxidized by the P. chrysosporium peroxidases). A three-dimensional model was built using crystal models from four fungal peroxidase as templates. The model suggests high structural affinity of this versatile peroxidase with LiP but shows a putative Mn2+ binding site near the internal heme propionate, involving Glu36, Glu40, and Asp181. A specific substrate interaction site for Mn2+ is supported by kinetic data showing noncompetitive inhibition with other peroxidase substrates. Moreover, residues reported as involved in LiP interaction with veratryl alcohol and other aromatic substrates are present in peroxidase PS1 such as His82 at the heme-channel opening, which is remarkably similar to that of P. chrysosporium LiP, and Trp170 at the protein surface. These residues could be involved in two different hypothetical long range electron transfer pathways from substrate (His82-Ala83-Asn84-His47-heme and Trp170-Leu171-heme) similar to those postulated for LiP.  相似文献   

12.
The glyceraldehyde-3-phosphate dehydrogenase (gpd) promoter was used to drive expression of lip2, the gene encoding lignin peroxidase (LiP) isozyme H8, in primary metabolic cultures of Phanerochaete chrysosporium. The expression vector, pUGL, also contained the Schizophyllum commune ura1 gene as a selectable marker. pUGL was used to transform a P. chrysosporium Ura11 auxotroph to prototrophy. Ura+ transformants were screened for peroxidase activity in liquid cultures containing high-carbon and high-nitrogen medium. Recombinant LiP (rLiP) was secreted in active form by the transformants after 4 days of growth, whereas endogenous lip genes were not expressed under these conditions. Approximately 2 mg of homogeneous rLiP/liter was obtained after purification. The molecular mass, pI, and optical absorption spectrum of rLiPH8 were essentially identical to those of the wild-type LiPh8 (wt LiPH8), indicating that heme insertion, folding, and secretion functioned normally in the transformant. Steady-state and transient-state kinetic properties for the oxidation of veratryl alcohol between wtLiPH8 and rLiPH8 were also identical.  相似文献   

13.
14.
Recently, Mn(II) has been shown to induce manganese peroxidases (MnPs) and repress lignin peroxidases (LiPs) in defined liquid cultures of several white rot organisms. The present work shows that laccase is also regulated by Mn(II). We therefore used Mn(II) to regulate production of LiP, MnP, and laccase activities while determining the effects of Mn(II) on mineralization of ring-labeled synthetic lignin. At a low Mn(II) level, Phanerochaete chrysosporium and Phlebia brevispora produced relatively high titers of LiPs but only low titers of MnPs. At a high Mn(II) level, MnP titers increased 12- to 20-fold, but LiPs were not detected in crude broths. P. brevispora formed much less LiP than P. chrysosporium, but it also produced laccase activity that increased more than sevenfold at the high Mn(II) level. The rates of synthetic lignin mineralization by these organisms were similar and were almost seven times higher at low than at high Mn(II). Increased synthetic lignin mineralization therefore correlated with increased LiP, not with increased MnP or laccase activities.  相似文献   

15.
Convective Interaction Media (CIM) monolithic columns were applied for the HPLC monitoring of Phanerochaete chrysosporium lignin peroxidase (LiP) isoforms during cultivation. The influence of the agitation mode (circular, elliptic) and rate (130 and 200 rpm), as well as the initial nitrogen concentration (1.6-6 mM) in the growth medium was investigated. Identical rotation rate but different agitation modes resulted in different LiP activities and isoenzyme compositions. On the other hand, at different agitation types and rates, similar LiP activities were obtained at different isoenzyme compositions. Although LiP H2 and LiP H6/H7 were predominant isoenzymes obtained at various cultivation conditions, relative isoenzyme amounts differ considerably when initial nitrogen concentration was changed between 1.6 and 5 mM.  相似文献   

16.
Abstract: The possible roles of oxalic acid, veratryl alcohol, and manganese were investigated in relation to lignin biodegradation by white-rot basidiomycetes. Oxalate inhibited both lignin peroxidase (LiP) and manganese-peroxidase (MnP). and was decarboxylated by the mediation of veratryl alcohol and Mn. Oxalate was shown to regulate the mineralization of lignin in the in vivo system of Phanerochaete chrysosporium . In the brown-rot wood decay process, oxalic acid may serve as an acid catalyst as well as an electron donor for the Fenton reaction, to breakdown cellulose and hemicellulose. Oxaloacetase and glyoxylate oxidase may play a key role in production of oxalic acid by white-rot and brown-rot basidiomycetes such as Phanerochaete chrysosporium, Coriolus versicolor and Tyromyces palustris . A possible role of oxalate metabolism is discussed in relation to the physiology of wood-rotting fungi.  相似文献   

17.
J L Popp  B Kalyanaraman  T K Kirk 《Biochemistry》1990,29(46):10475-10480
Veratryl alcohol (3,4-dimethoxybenzyl alcohol) appears to have multiple roles in lignin degradation by Phanerochaete chrysosporium. It is synthesized de novo by the fungus. It apparently induces expression of lignin peroxidase (LiP), and it protects LiP from inactivation by H2O2. In addition, veratryl alcohol has been shown to potentiate LiP oxidation of compounds that are not good LiP substrates. We have now observed the formation of Mn3+ in reaction mixtures containing LiP, Mn2+, veratryl alcohol, malonate buffer, H2O2, and O2. No Mn3+ was formed if veratryl alcohol or H2O2 was omitted. Mn3+ formation also showed an absolute requirement for oxygen, and oxygen consumption was observed in the reactions. This suggests involvement of active oxygen species. In experiments using oxalate (a metabolite of P. chrysosporium) instead of malonate, similar results were obtained. However, in this case, we detected (by ESR spin-trapping) the production of carbon dioxide anion radical (CO2.-) and perhydroxyl radical (.OOH) in reaction mixtures containing LiP, oxalate, veratryl alcohol, H2O2, and O2. Our data indicate the formation of oxalate radical, which decays to CO2 and CO2.-. The latter reacts with O2 to form O2.-, which then oxidizes Mn2+ to Mn3+. No radicals were detected in the absence of veratryl alcohol. These results indicate that LiP can indirectly oxidize Mn2+ and that veratryl alcohol is probably a radical mediator in this system.  相似文献   

18.
Two manganese-oxidizing peroxidases differing in glycosylation degree were purified from fermenter cultures of Bjerkandera sp. They were characterized and compared with the three manganese-oxidizing peroxidase isoenzymes obtained from the well-known ligninolytic fungus Phanerochaete chrysosporium. All the enzymes showed similar molecular masses but those from P. chrysosporium had less acidic isoelectric point. Moreover, the latter strictly required Mn2+ to oxidize phenolic substrates whereas the Bjerkandera peroxidases had both Mn-mediated and Mn-independent activity on phenolic and non-phenolic aromatic substrates. Taking into account these results, and those reported for Bjerkandera adusta and different Pleurotus species, we concluded that two different types of Mn(2+)-oxidizing peroxidases are secreted by ligninolytic fungi.  相似文献   

19.
Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum   总被引:2,自引:0,他引:2  
Ganoderma lucidum, a white rot basidiomycete widely distributed worldwide, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP). Laccase levels observed in high-nitrogen (HN; 24 mM N) shaken cultures were much greater than those seen in low-nitrogen (2.4 mM N), malt extract, or wood-grown cultures and those reported for most other white rot fungi to date. Laccase production was readily seen in cultures grown with pine or poplar (100-mesh-size ground wood) as the sole carbon and energy source. Cultures containing both pine and poplar showed 5- to 10-fold-higher levels of laccase than cultures containing pine or poplar alone. Since syringyl units are structural components important in poplar lignin and other hardwoods but much less so in pine lignin and other softwoods, pine cultures were supplemented with syringic acid, and this resulted in laccase levels comparable to those seen in pine-plus-poplar cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of concentrated extracellular culture fluid from HN cultures showed two laccase activity bands (M(r) of 40,000 and 66, 000), whereas isoelectric focusing revealed five major laccase activity bands with estimated pIs of 3.0, 4.25, 4.5, 4.8, and 5.1. Low levels of MnP activity ( approximately 100 U/liter) were detected in poplar-grown cultures but not in cultures grown with pine, with pine plus syringic acid, or in HN medium. No LiP activity was seen in any of the media tested; however, probing the genomic DNA with the LiP cDNA (CLG4) from the white rot fungus Phanerochaete chrysosporium showed distinct hybridization bands suggesting the presence of lip-like sequences in G. lucidum.  相似文献   

20.
The relative contributions of lignin peroxidase (LiP) and manganese peroxidase (MnP) to the decolorization of olive mill wastewaters (OMW) by Phanerochaete chrysosporium were investigated. A relatively low level (25%) of OMW decolorization was found with P. chrysosporium which was grown in a medium with a high Mn(II) concentration and in which a high level of MnP (0.65 (mu)M) was produced. In contrast, a high degree of OMW decolorization (more than 70%) was observed with P. chrysosporium which was grown in a medium with a low Mn(II) concentration but which resulted in a high level of LiP activity (0.3 (mu)M). In this culture medium, increasing the Mn(II) concentration resulted in decreased levels of OMW decolorization and LiP activity. Decolorization by reconstituted cultures of P. chrysosporium was found to be more enhanced by the addition of isolated LiP than by the addition of isolated MnP. The highest OMW decolorization levels were obtained at low initial chemical oxygen demands combined with high levels of extracellular LiP. These data, plus the positive effect of veratryl alcohol on OMW decolorization and LiP activity, indicate that culture conditions which yield high levels of LiP activity lead to high levels of OMW decolorization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号