首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
Repairing a double-strand break by homologous recombination requires binding of the strand exchange protein Rad51p to ssDNA, followed by synapsis with a homologous donor. Here we used chromatin immunoprecipitation to monitor the in vivo association of Saccharomyces cerevisiae Rad51p with both the cleaved MATa locus and the HML alpha donor. Localization of Rad51p to MAT precedes its association with HML, providing evidence of the time needed for the Rad51 filament to search the genome for a homologous sequence. Rad51p binding to ssDNA requires Rad52p. The absence of Rad55p delays Rad51p binding to ssDNA and prevents strand invasion and localization of Rad51p to HML alpha. Lack of Rad54p does not significantly impair Rad51p recruitment to MAT or its initial association with HML alpha; however, Rad54p is required at or before the initiation of DNA synthesis after synapsis has occurred at the 3' end of the invading strand.  相似文献   

2.
The genes of the Saccharomyces cerevisiae RAD52 epistasis group are required for the repair of ionizing radiation-induced DNA damage. Three of these genes, RAD51, RAD55, and RAD57, have been identified as putative RecA homologs. An important feature of RecA is its ability to bind and hydrolyze ATP. RAD55 and RAD57 contain putative nucleotide binding motifs, and the importance of these motifs was determined by constructing site-directed mutations of the conserved lysine residue within the Walker A-box. Changing the lysine residue to arginine or alanine resulted in a mutant phenotype in DNA repair and sporulation for Rad55 but not for Rad57. Protein-protein interactions among Rad51, Rad55, and Rad57 were tested for by the two-hybrid system. Rad55 was shown to interact with Rad51 and Rad57 but not with itself. Additionally, no interaction between Rad57 and Rad51 or between Rad57 and itself was detected. Consistent with the hypothesis that Rad55 and Rad57 may function within, or stabilize, a protein complex, we found that RAD51 expressed from a high-copy-number plasmid suppresses the DNA repair defect of strains carrying rad55 and rad57 mutations. These data, in conjunction with other reports, demonstrate the importance of protein-protein interactions in the process of DNA repair.  相似文献   

3.
4.
Homologous recombination is of major importance for the prevention of genomic instability during chromosome duplication and repair of DNA damage, especially double-strand breaks. Biochemical experiments have revealed that during the process of homologous recombination the RAD52 group proteins, including Rad51, Rad52 and Rad54, are involved in an essential step: formation of a joint molecule between the broken DNA and the intact repair template. Accessory proteins for this reaction include the Rad51 paralogs and BRCA2. The significance of homologous recombination for the cell is underscored by the evolutionary conservation of the Rad51, Rad52 and Rad54 proteins from yeast to humans. Upon treatment of cells with ionizing radiation, the RAD52 group proteins accumulate at the sites of DNA damage into so-called foci. For the yeast Saccharomyces cerevisiae, foci formation of Rad51 and Rad54 is abrogated in the absence of Rad52, while Rad51 foci formation does occur in the absence of the Rad51 paralog Rad55. By contrast, we show here that in mammalian cells, Rad52 is not required for foci formation of Rad51 and Rad54. Furthermore, radiation-induced foci formation of Rad51 and Rad54 is impaired in all Rad51 paralog and BRCA2 mutant cell lines tested, while Rad52 foci formation is not influenced by a mutation in any of these recombination proteins. Despite their evolutionary conservation and biochemical similarities, S. cerevisiae and mammalian Rad52 appear to differentially contribute to the DNA-damage response.  相似文献   

5.
Y. Tsukamoto  J. I. Kato    H. Ikeda 《Genetics》1996,142(2):383-391
To examine the mechanism of illegitimate recombination in Saccharomyces cerevisiae, we have developed a plasmid system for quantitative analysis of deletion formation. A can1 cyh2 cell carrying two negative selection markers, the CAN1 and CYH2 genes, on a YCp plasmid is sensitive to canavanine and cycloheximide, but the cell becomes resistant to both drugs when the plasmid has a deletion over the CAN1 and CYH2 genes. Structural analysis of the recombinant plasmids obtained from the resistant cells showed that the plasmids had deletions at various sites of the CAN1-CYH2 region and there were only short regions of homology (1-5 bp) at the recombination junctions. The results indicated that the deletion detected in this system were formed by illegitimate recombination. Study on the effect of several rad mutations showed that the recombination rate was reduced by 30-, 10-, 10-, and 10-fold in the rad52, rad50, mre11, and xrs2 mutants, respectively, while in the rad51, 54, 55, and 57 mutants, the rate was comparable to that in the wild-type strain. The rad52 mutation did not affect length of homology at junction sites of illegitimate recombination.  相似文献   

6.
The Schizosaccharomyces pombe rad31 and hus5 genes are required for the DNA damage response, as mutants defective in these genes are sensitive to DNA damaging agents, such as UV and ionising radiation and to the DNA synthesis inhibitor hydroxyurea (HU). Sequence analysis has suggested that rad31 and hus5 encode components of the Pmt3 (SUMO) modification process in S.pombe. We show here that the rad31 null and hus5.62 mutants display reduced levels of Pmt3 modification. We have initiated a search for proteins required for the DNA damage response, which may be modified by Pmt3 and have identified Rad22, the fission yeast homologue of the recombination protein Rad52. Purification of myc + His-tagged Rad22 protein from cells expressing HA-tagged Pmt3 identifies an 83 kDa species which cross-reacts with anti-HA antisera. We show here that Rad22 interacts with Rhp51 and Rpa70 (the fission yeast homologues of Rad51 and the large subunit of RPA, respectively), but that neither of these proteins appears to be responsible for the 83 kDa species. The 83 kDa species is observed when extracts are prepared under both native and denaturing conditions, and is also observed when myc + His-tagged Rad22 and Pmt3 are expressed at wild type levels, suggesting that Rad22 is modified by Pmt3 in vivo. We have established an S.pombe in vitro Pmt3 modification system and have shown that Rad22 and Rhp51 are modified in vitro, but that Rpa70 is not.  相似文献   

7.
Homologous recombination (HR) is critical for DNA double-strand break (DSB) repair and genome stabilization. In yeast, HR is catalyzed by the Rad51 strand transferase and its “mediators,” including the Rad52 single-strand DNA-annealing protein, two Rad51 paralogs (Rad55 and Rad57), and Rad54. A Rad51 homolog, Dmc1, is important for meiotic HR. In wild-type cells, most DSB repair results in gene conversion, a conservative HR outcome. Because Rad51 plays a central role in the homology search and strand invasion steps, DSBs either are not repaired or are repaired by nonconservative single-strand annealing or break-induced replication mechanisms in rad51Δ mutants. Although DSB repair by gene conversion in the absence of Rad51 has been reported for ectopic HR events (e.g., inverted repeats or between plasmids), Rad51 has been thought to be essential for DSB repair by conservative interchromosomal (allelic) gene conversion. Here, we demonstrate that DSBs stimulate gene conversion between homologous chromosomes (allelic conversion) by >30-fold in a rad51Δ mutant. We show that Rad51-independent allelic conversion and break-induced replication occur independently of Rad55, Rad57, and Dmc1 but require Rad52. Unlike DSB-induced events, spontaneous allelic conversion was detected in both rad51Δ and rad52Δ mutants, but not in a rad51Δ rad52Δ double mutant. The frequencies of crossovers associated with DSB-induced gene conversion were similar in the wild type and the rad51Δ mutant, but discontinuous conversion tracts were fivefold more frequent and tract lengths were more widely distributed in the rad51Δ mutant, indicating that heteroduplex DNA has an altered structure, or is processed differently, in the absence of Rad51.  相似文献   

8.
The repair of damaged DNA is coupled to the completion of DNA replication by several cell cycle checkpoint proteins, including, for example, in fission yeast Rad1Sp, Hus1Sp, Rad9Sp and Rad17Sp. We have found that these four proteins are conserved with protein sequences throughout eukaryotic evolution. Using computational techniques, including fold recognition, comparative modeling and generalized sequence profiles, we have made high confidence structure predictions for the each of the Rad1, Hus1 and Rad9 protein families (Rad17Sc, Mec3Sc and Ddc1Sc in budding yeast, respectively). Each of these families was found to share a common protein fold with that of PCNA, the sliding clamp protein that tethers DNA polymerase to its template. We used previously reported genetic and biochemical data for these proteins from yeast and human cells to predict a heterotrimeric PCNA-like ring structure for the functional Rad1/Rad9/Hus1 complex and to determine their exact order within it. In addition, for each individual protein family, contact regions with neighbors within the PCNA-like ring were identified. Based on a molecular model for Rad17Sp, we concluded that members of this family, similar to the subunits of the RFC clamp-loading complex, are capable of coupling ATP binding with conformational changes required to load a sliding clamp onto DNA. This model substantiates previous findings regarding the behavior of Rad17 family proteins upon DNA damage and within the RFC complex of clamp-loading proteins.  相似文献   

9.
Homologous recombination (HR) performs crucial functions including DNA repair, segregation of homologous chromosomes, propagation of genetic diversity, and maintenance of telomeres. HR is responsible for the repair of DNA double-strand breaks and DNA interstrand cross-links. The process of HR is initiated at the site of DNA breaks and gaps and involves a search for homologous sequences promoted by Rad51 and auxiliary proteins followed by the subsequent invasion of broken DNA ends into the homologous duplex DNA that then serves as a template for repair. The invasion produces a cross-stranded structure, known as the Holliday junction. Here, we describe the properties of Rad54, an important and versatile HR protein that is evolutionarily conserved in eukaryotes. Rad54 is a motor protein that translocates along dsDNA and performs several important functions in HR. The current review focuses on the recently identified Rad54 activities which contribute to the late phase of HR, especially the branch migration of Holliday junctions.  相似文献   

10.
The least understood components of the DNA damage checkpoint are the DNA damage sensors. Genetic studies of Schizosaccharomyces pombe identified six yeast genes, Rad3, Rad17, Rad9, Rad1, Hus1, and Rad26, which encode proteins thought to sense DNA damage and activate the checkpoint-signaling cascade. It has been suggested that Rad9, Rad1 and Hus1 make a heterotrimeric complex forming a PCNA-like structure. In order to carry out structural and biophysical studies of the complex and its associated proteins, the cDNAs encoding full length human Rad9, Rad1 and Hus1 were cloned together into the pET28a vector using a one-step ligation procedure. Here we report successful tri-cistronic cloning, overexpression and purification of this three-protein complex using a single hexa-histidine tag. The trimeric protein complex of Rad9, Rad1 and Hus1 was purified to near homogeneity, yielding approximately 10mg of protein from one liter of Escherichia coli culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号