首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Adipose tissue levels and human obesity are known to be associated with increased heat production. At the same time, subcutaneous adipose tissue provides an insulating layer that impedes heat loss. The energy implications of obesity and body thermoregulatory mechanisms remain relatively poorly understood. This study attempted to examine the potential relationship between body composition (subcutaneous and visceral fat) determined by bioimpedance as well as BMI (body mass index), and skin surface temperature distribution recorded at rest.One specific aim of this study was to draw a thermal map of body areas in obese women and compare this with women of normal body mass, and thus to identify body regions within which heat transfer is particularly impeded. As high fat content is a good insulator, it could reduce the body‘s ability to respond effectively to changes in environmental temperature, which would be problematic for thermal homeostasis. Our results showed that core temperature did not differ between obese and normal body mass participants, while skin temperature of most body surfaces was lower in obese subjects.The results of regression analysis showed that the mean body surface temperature (Tmean) decreased with increasing percentage of body fat (PBF) of the abdominal area. The opposite relationship was observed for the front area of the hand (simultaneous increase in Tmean and PBF). We also found a negative correlation between BMI and Tmean of the thigh areas, both the front and the back. From this it could be concluded that the mean body surface temperature is dependent on body fat.  相似文献   

2.
We analyzed temperature homeostasis in oxytocin-deficient (Oxt(-/-)) mice and found that Oxt(-/-) mice exhibited lower body temperatures than wild-type animals when they were exposed to cold. Oxt(-/-) mice also showed slightly more weight gain, but there were no obvious differences in the morphology of white and brown adipose tissues as between wild-type and Oxt(-/-) mice. In cold-exposed conditions, oxytocin neurons containing c-Fos immunoreactivity existed in the paraventricular nucleus of the hypothalamus. These results suggest that the central oxytocin neurons constitute part of the thermoregulatory system involved in maintaining body temperature in cold environments.  相似文献   

3.
Brown adipose tissue is an organ in mammals specialized for the generation of heat. The tissue plays an important role in thermoregulatory heat production (nonshivering thermogenesis), and in nutritional energetics (through the process of diet-induced thermogenesis). Much of the current interest in brown adipose tissue has been catalysed by the postulate (1970’s) that a reduced capacity for thermogenesis underlies the development of obesity. Heat is generated in brown fat by a controlled uncoupling of oxidative phosphorylation, a process regulated by a tissue-specific mitochondrial uncoupling protein,M r 32–33,000. The immunological identification of uncoupling protein is now used as a biochemical criterion for distinguishing brown fat from white adipose tissue. The gene coding for uncoupling protein has been cloned in several species, and a number of factors regulating the expression of the gene, as well as the amount and activity of the protein itself, have been documented. In addition to its direct role in heat production, brown adipose tissue has some notable general metabolic properties, such as in the conversion of thyroxine to triiodothyronine. An overview of the biology of brown adipose tissue is presented in this article, with an emphasis on some recent developments.  相似文献   

4.
This study develops a model to predict the thermophysiological response of the human body during shower bathing. Despite the needs for the quantitative evaluation of human body response during bathing for thermal comfort and safety, the complicated mechanisms of heat transfer at the skin surface, especially during shower bathing, have disturbed the development of adequate models. In this study, an initial modeling approach is proposed by developing a simple heat transfer model at the skin surface during shower bathing applied to Stolwijk’s human thermal model. The main feature of the model is the division of the skin surface into three parts: a dry part, a wet part without water flow, and a wet part with water flow. The area ratio of each part is decided by a simple formula developed from a geometrical approach based on the shape of the Stolwijk’s human thermal model. At the same time, the convective heat transfer coefficient between the skin and the flowing water is determined experimentally. The proposed model is validated by a comparison with the results of human subject experiments under controlled and free shower conditions. The model predicts the mean skin temperature during shower fairly well both for controlled and free shower bathing styles.  相似文献   

5.
Small mammals inhabiting temperate and arctic regions exhibit annual adaptive adjustments in physiology, anatomy, and behavior. No data on the physiology of Maximowicz’s voles (Microtus maximowiczii) are available at present. Here we examined the seasonal changes in body mass, food intake, thermogenic capacity, serum leptin and thyroid hormone levels in wild-captured individuals from Inner Mongolian grassland, China. We further examined the effects of photoperiod on these parameters. Energy intake, resting metabolic rate, nonshivering thermogenesis (NST), and serum tri-iodothyronine (T3) levels increased while serum leptin and body mass decreased in the cold seasons. Serum T3 levels were positively correlated with NST and uncoupling protein 1 (UCP1) contents in brown adipose tissue, and leptin levels were negatively correlated with energy intake and resting metabolic rate. Furthermore, laboratory data showed these changes could be induced by short photoperiod alone. Taken together, our results indicate that Maximowicz’s voles can increase thermogenic capacity and energy intake to cope with cold stress. Serum leptin seems to be involved in the regulation of energy intake and changes in T3 level may be important for the variations in NST and/or UCP1. Short photoperiod can serve as a seasonal cue for the winter acclimatization of energy balance in free-living Maximowicz’s voles.  相似文献   

6.
Summary Genetic and environmental components of adaptation to cold inMus musculus were assessed in a study of the effects of selective breeding for behavioral temperature regulation (indexed by high and low levels of nest-building), rearing mice from birth in the cold, and cold acclimation of adult animals, on thermoregulatory traits. Mice from the eleventh selected generation of a high-nesting line maintained higher resting metabolic rates and body temperatures, while at the same time consuming less food when compared with mice from the low-nesting line (Table 1). High-nesting mice were also more discriminating in their temperature preference when placed on a thermal gradient. Thus, common genetic loci must influence a variety of energy conservation measures important for survival in the cold, including insulative nest-building, metabolic efficiency, and optimum microhabitat selection.Rearing mice at 5°C from birth until 70 days of age resulted in permanent increases in nonshivering thermogenesis, weight of interscapular brown adipose tissue, and core body temperature when compared to mice raised at 22°C (Table 1). These greater heat production capacities were accompanied by consumption of more food. Cold acclimation of adults at 5°C for 3 weeks similarly increased measures of thermogenic capacity (nonshivering thermogenesis and interscapular brown adipose tissue) as well as food consumption, when compared to the effects of warm acclimation, but differed from the effects of cold-rearing in that while resting metabolic rates were elevated, no significant differences in body temperature were found (Table 1).Sex differences were also noted for most of the thermoregulatory measures, with the lighter females scoring higher on thermal preference, resting metabolic rate, nonshivering thermogenesis, brown fat, and food consumption.In general, these results suggest that a more precise partitioning of the genetic and environmental factors which influence thermoregulatory traits in mammals could eventually result in a better understanding of the differences which exist between acclimated and acclimatized animals.  相似文献   

7.
Presence of functional TLR2 and TLR4 on human adipocytes   总被引:2,自引:2,他引:0  
In addition to the well-known role of adipose tissue in energy metabolism, it has recently been demonstrated that this tissue can secrete a large array of molecules, including inflammatory cytokines. Furthermore, recent studies suggest that adipose cells can behave as immune cells. Therefore, the aim of this study was to determine the presence of the two most prominent ‘pattern recognition receptors’ for bacterial and fungal cell wall components, TLR2 and TLR4 on human adipose cells, as well as to assess their functionality. We demonstrated that TLR2 and TLR4 were expressed at relatively high levels (compared to a monocyte cell line) on the surface of human adipose cells. Stimulation of human adipocytes with lipopolysaccharide (LPS), or with lipoteichoic acid (LTA), two specific ligands of TLR4 and TLR2, respectively, induced a strong increase in TNFα production. The specificity of the response was demonstrated by the use of anti-TLR4 and anti-TLR2 blocking antibodies, which were able to decrease LPS- or LTA-induced TNFα secretion. Thus, it is clear that these receptors are functional in human adipocytes. This study adds weight to the argument that human fat tissue plays a potential role in innate immunity. Sandrine Bés-Houtmann, Régis Roche, Christian Lefebvre d’Hellencourt and Maya Cesari have contributed equally to this work.  相似文献   

8.
Two fatty acid binding proteins (FABPs) are expressed in adipose tissue, adipocyte lipid binding protein (ALBP) and keratinocyte lipid binding protein (KLBP). This study investigated FABP expression in visceral and subcutaneous human adipose tissue depots and associations with lipolytic differences between the depots and circulating insulin concentrations. ALBP and KLBP (protein and RNA) were quantified in subcutaneous and omental adipose tissue from obese individuals and expressed relative to actin. ALBP RNA and protein expression was significantly higher in subcutaneous compared to omental adipose tissue (both p < 0.05), whereas KLBP RNA and protein expression was no different between the two sites. There were significant inverse correlations between serum insulin concentrations and the ALBP/KLBP RNA ratio in both subcutaneous and omental adipose tissue (both p < 0.02). Basal rates of glycerol and fatty acid release measured in adipocytes isolated from subcutaneous and omental adipose tissue were significantly higher in the former (p 0.02). Therefore the relative ALBP/KLBP content of human adipose tissue is different in different adipose tissue depots and at the RNA level is related to the circulating insulin concentration, at least in obese subjects. The higher rates of basal lipolysis in adipocytes isolated from subcutaneous compared to omental adipose tissue might be related to the increased ALBP content of the former. Therefore adipose tissue FABPs are interesting candidates for investigation to further our understanding of the insulin resistance syndrome and regulation of lipolysis.  相似文献   

9.
Cellular population with characteristics of multipotent mesenchymal stromal cells (MMSCs) was isolated from subcutaneous adipose tissue frozen without any cryoprotectant at -70 degrees C. Under critical for the adipose tissue condition, the cells retained their viability in vitro and ability of adhesion to plastic. Cellular population was homogeneous and represented by small cells (d - 7 microm) with fibroblast-like morphology. Cells were positively stained with Abs for the Abs: CD29, CD44, CD49a, b, d, CD73, CD90, CD105, CD166, HLA ABC. Cells were negative for CD34, CD45--markers of hematopoietic cells, CD31--marker of endothelial cells, Stro-1, as well as for HLA DR, DP, DQ (flow cytometer analysis). Being induced to differentiate in vitro, the cells were able to differentiate into cells similar to cells of bone, adipose and cartilage tissue. Karyological assay of the cells isolated from human adipose tissue subjected to cold shock revealed diploid set of chromosomes, 46, XX, without aneuploidy and structural reconstructions of chromosomes. Thus, it has been established that, under extreme condition for the organism, the population of cells with a phenotype similar to miltipotent mesenchymal stromal cells is preserved in subcutaneous adipose tissue.  相似文献   

10.
The thermogenic capacity of brown adipose tissue in winter- and summer-acclimatized short-tailed field voles (Microtus agrestis) was investigated by examining changes in mass of brown adipose tissue, the ratio of white adipose tissue to brown adipose tissue, the concentration of the uncoupling protein (thermogenin) in whole depots (μg) and in mitochondrial mass (μg·mg-1) and the activity of cytochrome c oxidase in the depots (mmol·min-1). The concentration of thermogenin in winter-acclimatized voles (n=8), per brown adipose tissue depot and per mitochondrial mass, was significantly higher than in summer-acclimatized voles (n=6). There was no significant difference in the level of cytochrome c oxidase activity between these two groups. Four groups of winter-acclimatized voles (n=6 in each group) were exposed to 5°C for 10, 20, 50 and 100 days in a 14L:10D photoperiod. Body mass, brown adipose tissue mass, white adipose tissue mass and basal metabolic rate were significantly positively related to the length of time cold exposed up to 100 days. There was a significant inverse relationship between the ratio of white to brown adipose tissue mass and the duration of cold exposure. There was no significant relationship between thermogenin concentration, either per depot or in mitochondrial mass of brown adipose tissue, with the length of time cold exposed. The level of cytochrome c oxidase activity increased significantly from control levels to a maximum after 10 days in the cold but decreased from 10 days onwards. In winter-acclimatized M. agrestis, a 14L:10D photoperiod is not a sufficient stimulus to reduce thermogenic capacity during cold acclimation. Indeed, some changes in the indirect parameters reflecting thermogenesis, notably the increase in basal metabolic rate and the decrease in the ratio of white to brown adipose tissue mass, indicated that despite the long photophase the thermogenic capacity was slightly further enhanced during the cold acclimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号