首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 343 毫秒
1.
As part of continued efforts for the development of new tyrosinase inhibitors, (Z)-5-(substituted benzylidene)-2-iminothiazolidin-4-one derivatives (1a – 1l) were rationally synthesized and evaluated for their inhibitory potential in vitro. These compounds were designed and synthesized based on the structural attributes of a β-phenyl-α,β-unsaturated carbonyl scaffold template. Among these compounds, (Z)-5-(3-hydroxy-4-methoxybenzylidene)-2-iminothiazolidin-4-one (1e, MHY773) exhibited the greatest tyrosinase inhibition (IC50 = 2.87 μM and 8.06 μM for monophenolase and diphenolase), and outperformed the positive control, kojic acid (IC50 = 15.59 and 31.61 μM). The kinetic and docking studies demonstrated that MHY773 interacted with active site of tyrosinase. Moreover, a melanin quantification assay demonstrated that MHY773 attenuates α-melanocyte-stimulating hormone (α-MSH) and 3-isobutyl-1-methylxanthine (IBMX)-induced melanin contents in B16F10 melanoma cells. Taken together, these data suggest that MHY773 suppressed the melanin production via the inhibition of tyrosinase activity. MHY773 is a promising for the development of effective pharmacological and cosmetic agents for skin-whitening.  相似文献   

2.

Background

Excessive melanin production and accumulation are characteristics of a large number of skin diseases, including melasma, and post-inflammatory hyperpigmentation. During our on-going search for new agents with an inhibitory effect on tyrosinase, we synthesized a new type of tyrosinase inhibitor, 4-(thiazolidin-2-yl)benzene-1,2-diol (MHY-794), which directly inhibits mushroom tyrosinase.

Methods

The inhibitory effect of MHY-794 on tyrosinase activity and nitric oxide (NO) scavenging activity was evaluated in cell free system. Additional experiments were performed using B16F10 melanoma cells to demonstrate the effects of MHY-794 in vitro. HRM2 hairless mice were used to evaluate anti-melanogenic effects of MHY-794 in vivo.

Results

MHY-794 effectively inhibited mushroom tyrosinase activity in cell free system. In silico docking simulation also supported the inhibitory effects of MHY-794 on mushroom tyrosinase. MHY-794 also proved to be effective at scavenging nitric oxide (NO), which serves as an important modulator in the melanogenesis signaling pathway. In addition, MHY-794 effectively inhibited SNP (NO donor)-induced melanogenesis by directly inhibiting tyrosinase and diminishing NO-mediated melanogenesis signaling in B16 melanoma cells. The anti-melanogenic effects of MHY-794 were further confirmed in HRM2 hairless mice. Ultraviolet light (UV) significantly up-regulated NO-mediated melanogenesis signaling in HRM2 hairless mice, but MHY-794 effectively inhibited both melanogenesis and diminished UV-induced NO-signaling.

Conclusions

Our results indicate that MHY-794 is highly effective at inhibiting NO-mediated melanogenesis in vitro and in vivo by direct NO scavenging and directly inhibiting tyrosinase activity, and suggest that MHY-794 be considered a new developmental candidate for the treatment of hyper-pigmentation disorders.

General significance

MHY-794, which showed great efficacy on NO-mediated melanogenesis by direct NO scavenging as well as direct inhibition of tyrosinase catalytic activity, might be utilized for the development of a new candidate for treatment of the hyper-pigmentation disorders.  相似文献   

3.

Background

Mutations in LRRK2 are the most common genetic cause of Parkinson's disease (PD). Studies in the yeast Saccharomyces cerevisiae have provided valuable insights into the mechanisms of cellular dysfunction associated with the expression of faulty PD genes.

Methods

We developed a yeast model for full-length LRRK2 studies. We expressed wild-type (wt) LRRK2 and mutations and evaluated their role during oxidative stress conditions. The involvement of mitochondria was assessed by using rho-zero mutants and by evaluating reactive oxygen species (ROS) production and mitochondrial membrane potential by flow cytometry. The involvement of endocytosis was also studied by testing several endocytic mutants and by following the vacuolar delivery of the probe FM4-64.

Results

Expression of LRRK2 in yeast was associated to increased hydrogen peroxide resistance. This phenotype, which was dependent on mitochondrial function, was not observed for PD-mutants G2019S and R1441C or in the absence of the kinase activity and the WD40 repeat domain. Expression of the pathogenic mutants stimulated ROS production and increased mitochondrial membrane potential. For the PD-mutants, but not for wild-type LRRK2, endocytic defects were also observed. Additionally, several endocytic proteins were required for LRRK2-mediated protection against hydrogen peroxide.

Conclusions

Our results indicate that LRRK2 confers cellular protection during oxidative stress depending on mitochondrial function and endocytosis.

General significance

Both the loss of capacity of LRRK2 pathogenic mutants to protect against oxidative stress and their enhancement of dysfunction may be important for the development of PD during the aging process.  相似文献   

4.
5.

Background

Amyotrophic lateral sclerosis (ALS) is a disease caused by motor neuron degeneration. Recently, a novel SIGMAR1 gene variant (p.E102Q) was discovered in some familial ALS patients.

Methods

We address mechanisms underlying neurodegeneration caused by the mutation using Neuro2A cells overexpressing σ1RE102Q, a protein of a SIGMAR1 gene variant (p.E102Q) and evaluate potential amelioration by ATP production via methyl pyruvate (MP) treatment.

Results

σ1RE102Q overexpression promoted dissociation of the protein from the endoplasmic reticulum (ER) membrane and cytoplasmic aggregation, which in turn impaired mitochondrial ATP production and proteasome activity. Under ER stress conditions, overexpression of wild-type σ1R suppressed ER stress-induced mitochondrial injury, whereas σ1RE102Q overexpression aggravated mitochondrial damage and induced autophagic cell death. Moreover, σ1RE102Q-overexpressing cells showed aberrant extra-nuclear localization of the TAR DNA-binding protein (TDP-43), a condition exacerbated by ER stress. Treatment of cells with the mitochondrial Ca2 + transporter inhibitor Ru360 mimicked the effects of σ1RE102Q overexpression, indicating that aberrant σ1R-mediated mitochondrial Ca2 + transport likely underlies TDP-43 extra-nuclear localization, segregation in inclusion bodies, and ubiquitination. Finally, enhanced ATP production promoted by methyl pyruvate (MP) treatment rescued proteasome impairment and TDP-43 extra-nuclear localization caused by σ1RE102Q overexpression.

Conclusions

Our observations suggest that neurodegeneration seen in some forms of ALS are due in part to aberrant mitochondrial ATP production and proteasome activity as well as TDP-43 mislocalization resulting from the SIGMAR1 mutation.

General significance

ATP supplementation by MP represents a potential therapeutic strategy to treat ALS caused by SIGMAR1 mutation.  相似文献   

6.
7.

Background

F1FO ATP synthases catalyze the synthesis of ATP from ADP and inorganic phosphate driven by ion motive forces across the membrane. A number of ATP synthases have been characterized to date. The one from the hyperthermophilic bacterium Aquifex aeolicus presents unique features, i.e. a putative heterodimeric stalk. To complement previous work on the native form of this enzyme, we produced it heterologously in Escherichia coli.

Methods

We designed an artificial operon combining the nine genes of A. aeolicus ATP synthase, which are split into four clusters in the A. aeolicus genome. We expressed the genes and purified the enzyme complex by affinity and size-exclusion chromatography. We characterized the complex by native gel electrophoresis, Western blot, and mass spectrometry. We studied its activity by enzymatic assays and we visualized its structure by single-particle electron microscopy.

Results

We show that the heterologously produced complex has the same enzymatic activity and the same structure as the native ATP synthase complex extracted from A. aeolicus cells. We used our expression system to confirm that A. aeolicus ATP synthase possesses a heterodimeric peripheral stalk unique among non-photosynthetic bacterial F1FO ATP synthases.

Conclusions

Our system now allows performing previously impossible structural and functional studies on A. aeolicus F1FO ATP synthase.

General significance

More broadly, our work provides a valuable platform to characterize many other membrane protein complexes with complicated stoichiometry, i.e. other respiratory complexes, the nuclear pore complex, or transporter systems.  相似文献   

8.

Background

Peroxiredoxins have diverse functions in cellular defense-signaling pathways. 2-Cys-peroxiredoxins (2-Cys-Prx) reduce H2O2 and alkyl-hydroperoxide. This study describes the purification and characterization of a genuine 2-Cys-Prx from Vigna unguiculata (Vu-2-Cys-Prx).

Methods

Vu-2-Cys-Prx was purified from leaves by ammonium sulfate fractionation, chitin affinity and ion exchange chromatography.

Results

Vu-2-Cys-Prx reduces H2O2 using NADPH and DTT. Vu-2-Cys-Prx is a 44 kDa (SDS-PAGE)/46 kDa (exclusion chromatography) protein that appears as a 22 kDa molecule under reducing conditions, indicating that it is a homodimer linked intermolecularly by disulfide bonds and has a pI range of 4.56–4.72; its NH2-terminal sequence was similar to 2-Cys-Prx from Phaseolus vulgaris (96%) and Populus tricocarpa (96%). Analysis by ESI-Q-TOF MS/MS showed a molecular mass/pI of 28.622 kDa/5.18. Vu-2-Cys-Prx has 8% α-helix, 39% β-sheet, 22% of turns and 31% of unordered forms. Vu-2-Cys-Prx was heat stable, has optimal activity at pH 7.0, and prevented plasmid DNA degradation. Atomic force microscopy shows that Vu-2-Cys-Prx oligomerized in decamers which might be associated with its molecular chaperone activity that prevented denaturation of insulin and citrate synthase. Its cDNA analysis showed that the redox-active Cys52 residue and the amino acids Pro45, Thr49 and Arg128 are conserved as in other 2-Cys-Prx.

General significance

The biochemical and molecular features of Vu-2-Cys-Prx are similar to other members of 2-Cys-Prx family. To date, only one publication reported on the purification of native 2-Cys-Prx from leaves and the subsequent analysis by N-terminal Edman sequencing, which is crucial for construction of stromal recombinant 2-Cys-Prx proteins.  相似文献   

9.
Ha YM  Park YJ  Lee JY  Park D  Choi YJ  Lee EK  Kim JM  Kim JA  Park JY  Lee HJ  Moon HR  Chung HY 《Biochimie》2012,94(2):533-540
Herein we describe the design, synthesis and biological activities of 2-(substituted phenyl)thiazolidine-4-carboxylic acid derivatives as novel tyrosinase inhibitors. The target compounds 2a2j were designed and synthesized from the structural characteristics of N-phenylthiourea, tyrosinase inhibitor and tyrosine, and l-DOPA, the natural substrates of tyrosinase. Among them, (2R/S,4R)-2-(2,4-dimethoxyphenyl)thiazolidine-4-carboxylic acid (2g) caused the greatest inhibition 66.47% at 20 μM of l-DOPA oxidase activity of mushroom tyrosinase. Kinetic analysis of tyrosinase inhibition revealed that 2g is a competitive inhibitor. We predicted the tertiary structure of tyrosinase, and simulated the docking of mushroom tyrosinase with 2g. These results suggest that the binding affinity of 2g with tyrosinase is high. Also, 2g effectively inhibited tyrosinase activity and reduced melanin levels in B16 cells treated with α-MSH. These data strongly suggest that 2g can suppress the production of melanin via the inhibition of tyrosinase activity.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号