首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用固定滴灌(根区一侧固定供水)、控制性分根区交替滴灌(根区两侧交替供水)和常规滴灌(紧贴幼树基部供水)3种灌水方式和3种灌水定额(固定滴灌和交替滴灌均为10、20和30 mm,常规滴灌为20、30和40 mm),对比研究了控制性分根区交替滴灌对苹果幼树形态特征与根系水分传导的影响.结果表明: 交替滴灌的根区两侧土壤出现反复干湿交替过程,常规滴灌的根区两侧土壤含水率差异不显著.在灌水定额相同时,灌水侧的土壤含水率在3种灌水方式间差异不显著.与常规滴灌和固定滴灌相比,交替滴灌显著增加了苹果幼树的根冠比、壮苗指数和根系水分传导,在30 mm灌水定额处理下,交替滴灌的根冠比分别增加31.6%和47.1%,壮苗指数增加34.2%和53.6%,根系水分传导增加9.0%和11.0%.3种灌水方式下,根干质量和叶面积均与根系水分传导呈显著线性正相关.控制性分根区交替滴灌增强了苹果幼树根系水分传导的补偿效应,促进了根系对水分的吸收利用,有利于干物质向各个器官均衡分配,显著提高了根冠比和壮苗指数.  相似文献   

2.
Glutathione and phytochelatin contents in tomato plants exposed to cadmium   总被引:1,自引:0,他引:1  
The effect of cadmium on growth and contents of glutathione (GSH) and phytochelatins (PCs) were investigated in roots and leaves of tomato plants (Lycopersicon esculentum Mill. cv. 63/5 F1). The accumulation of Cd increased with external Cd concentrations and was considerably higher in roots than in leaves. Dry mass production decreased under Cd treatment especially in leaves. In both roots and leaves, exposure to Cd caused an appreciable decline in GSH contents and increase in PCs synthesis proportional to Cd concentrations in the growth medium. At the same Cd concentration, PCs production was higher in roots than in leaves. The implication of glutathione in PC synthesis was strongly suggested by the use of buthionine sulfoximine (BSO). The major fraction of Cd accumulated by tomato roots was in the form of a Cd-PCs complex.  相似文献   

3.
To support the key role of glutathione (GSH) in the mechanisms of tolerance and accumulation of arsenic in plants, this work examines the impact of several effectors of GSH synthesis or action in the response of maize (Zea mays L.) to arsenic. Maize was exposed in hydroponics to iso-toxic rates of 150 μM arsenate or 75 μM arsenite for 9 days and GSH effectors, flurazole (an herbicide safener), l-buthionine-sulfoximine (BSO, a known inhibitor of GSH biosynthesis), and dimercaptosuccinate (DMS) and dimercaptopropanesulfonate (DMPS) (two thiols able to displace GSH from arsenite-GSH complexes) were assayed. The main responses of plants to arsenic exposure consisted of a biomass reduction (fresh weight basis) of about 50%, an increase of non-protein thiol (NPTs) levels (especially in the GSH precursor γ-glutamylcysteine and the phytochelatins PC? and PC?) in roots, with little effect in shoots, and an accumulation of between 600 and 1000 ppm of As (dry weight basis) in roots with very little translocation to shoots. Growth inhibition caused by arsenic was partially or completely reversed in plants co-treated with flurazole and arsenate or arsenite, respectively, highly exacerbated in plants co-treated with BSO, and not modified in plants co-treated with DMS or DMPS. These responses correlated well with an increase of both NPTs levels in roots and glutathione transferase activity in roots and shoots due to flurazole treatment, the decrease of NPTs levels in roots caused by BSO and the lack of effect on NPT levels caused by both DMS and DMPS. Regarding to arsenic accumulation in roots, it was not modified by flurazole, highly reduced by BSO, and increased between 2.5- and 4.0-fold by DMS and DMPS. Therefore, tolerance and accumulation of arsenic by maize could be manipulated pharmacologically by chemical effectors of GSH.  相似文献   

4.

Background and aims

Rice (Oryza sativa) is a main source of human exposure to inorganic arsenic and mitigation measures are needed to decrease As accumulation in this staple crop. It has been shown that silicon decreases the accumulation of arsenite but, unexpectedly, increases the accumulation of dimethylarsinic acid (DMA) in rice grain. The aim of this study was to investigate why Si increases DMA accumulation.

Methods

Pot and incubation experiments were conducted to investigate how the addition of sparingly soluble silicate gel affected As speciation in the soil solution and the accumulation of different As species in rice tissues.

Results

Silicon addition significantly decreased the concentration of inorganic As (mainly arsenite) but increased the concentration of DMA in both the vegetative and reproductive tissues of rice. Silicon increased the concentration of DMA in the soil solution, whereas autoclaving soil decreased DMA concentration. Less DMA was adsorbed by the soil than arsenate and Si addition significantly inhibited DMA adsorption.

Conclusions

Silicon increased DMA accumulation and decreased arsenite accumulation in rice through different mechanisms. Silicic acid released from the silicate gel increased the availability of DMA for rice uptake by inhibiting DMA adsorption on the soil solid phase or by displacing adsorbed DMA. Although silicic acid also increased the concentration of inorganic As in the soil solution, this effect was much smaller than the inhibitory effect of Si on arsenite uptake by rice roots.  相似文献   

5.
? Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was investigated. ? Arsenic species were delivered through cut flag leaves during grain fill. Spatial unloading within grains was investigated using synchrotron X-ray fluorescence (SXRF) microtomography. Additionally, the effect of germanic acid (a silicic acid analog) on grain As accumulation in arsenite-treated panicles was examined. ? Dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were extremely efficiently retranslocated from flag leaves to rice grain; arsenate was poorly retranslocated, and was rapidly reduced to arsenite within flag leaves; arsenite displayed no retranslocation. Within grains, DMA rapidly dispersed while MMA and inorganic As remained close to the entry point. Germanic acid addition did not affect grain As in arsenite-treated panicles. Three-dimensional SXRF microtomography gave further information on arsenite localization in the ovular vascular trace (OVT) of rice grains. ? These results demonstrate that inorganic As is poorly remobilized, while organic species are readily remobilized, from leaves to grain. Stem translocation of inorganic As may not rely solely on silicic acid transporters.  相似文献   

6.
不同渗氧能力水稻品种对砷的耐性和积累   总被引:2,自引:0,他引:2  
水稻是目前世界上(尤其是东南亚)最主要的粮食作物之一,也是砷(As)通过食物链进入人体的主要途径。日益加剧的土壤砷污染,严重影响了稻米的产量和品质,进而威胁着人体健康。通过温室实验,研究CNT 87059-3、玉香油占和巴西陆稻3种不同渗氧能力的水稻品种在不同砷浓度处理下的生长情况和砷积累特征,结果表明:(1)渗氧能力强的玉香油占砷耐性指数最高,砷处理浓度为2 mg/L时耐性指数高达0.71,而CNT 87059-3的耐性指数为0.55,巴西陆稻仅有0.17;(2)随着砷处理浓度的升高,3种水稻品种的生物量呈现下降趋势,但渗氧能力强的玉香油占较其它两品种生物量的下降幅度小;(3)在不同砷浓度处理下水稻地下部分的砷含量有显著性差异(P0.001),且同种砷浓度处理下不同水稻品种的地下部分砷含量也存在显著性差异(P0.01),渗氧能力较强的水稻品种与渗氧能力较弱的品种相比能显著降低砷在根部(地下部分)的积累。水稻渗氧能力与其砷耐性和砷积累有显著相关性,渗氧能力越强,水稻的砷耐性越强,砷的积累量越少。因此,通过筛选渗氧能力强的水稻品种,有望降低污染农田水稻的砷含量和健康风险。  相似文献   

7.
8.
Phytochelatins (PCs) are naturally occurring peptides with high-binding capabilities for a wide range of heavy metals including arsenic (As). PCs are enzymatically synthesized by phytochelatin synthases and contain a (gamma-Glu-Cys)(n) moiety terminated by a Gly residue that makes them relatively proteolysis resistant. In this study, PCs were introduced by expressing Arabidopsis thaliana Phytochelatin Synthase (AtPCS) in the yeast Saccharomyces cerevisiae for enhanced As accumulation and removal. PCs production in yeast resulted in six times higher As accumulation as compared to the control strain under a wide range of As concentrations. For the high-arsenic concentration, PCs production led to a substantial decrease in levels of PC precursors such as glutathione (GSH) and gamma-glutamyl cysteine (gamma-EC). The levels of As(III) accumulation were found to be similar between AtPCS-expressing wild type strain and AtPCS-expressing acr3Delta strain lacking the arsenic efflux system, suggesting that the arsenic uptake may become limiting. This is further supported by the roughly 1:3 stoichiometric ratio between arsenic and PC2 (n = 2) level (comparing with a theoretical value of 1:2), indicating an excess availability of PCs inside the cells. However, at lower As(III) concentration, PC production became limiting and an additive effect on arsenic accumulation was observed for strain lacking the efflux system. More importantly, even resting cells expressing AtPCS pre-cultured in Zn(2+) enriched media showed PCs production and two times higher arsenic removal than the control strain. These results open up the possibility of using cells expressing AtPCS as an inexpensive sorbent for the removal of toxic arsenic.  相似文献   

9.
The influence of sulphur on the accumulation and metabolism of arsenic in rice was investigated. Rice seedlings were grown in nutrient solutions with low sulphate (1.8 μM SO42−) or high sulphate (0.7 mM SO42−) for 12 or 14 d, before being exposed to 10 μM arsenite or arsenate for 2 or 1 d, respectively. In the arsenite exposure treatment, low sulphate-pretreated rice accumulated less arsenite than high sulphate pretreated plants, but the arsenite concentrations in shoots of low sulphate pretreated rice were higher than those of high sulphate pretreated. In the arsenate exposure treatment, the low sulphate pre-treatments also resulted in less arsenite accumulation in rice roots. Sulphur deprivation in nutrient solution decreased the concentrations of non-protein thiols in rice roots exposed to either arsenite or arsenate. The low sulphate-pretreated plants had a higher arsenic transfer factor than the high sulphate-pretreated plants. The results suggest that rice sulphate nutrition plays an important role in regulating arsenic translocation from roots to shoots, possibly through the complexation of arsenite-phytochelatins.  相似文献   

10.
在盆栽土培条件下,研究了5种浓度(0、10、20、40、80 mg/kg土)的1,2,4-三氯苯(TCB)对两种基因型水稻品种宁粳1号(敏感基因型)和扬辐粳8号(耐性基因型)产量及灌浆期生理特性的影响。结果表明:TCB对两种基因型水稻产量和灌浆期生理特性的影响具有显著差异,随着TCB浓度的增加,宁粳1号的产量呈现递减趋势,而扬辐粳8号呈低浓度下产量增加高浓度下产量显著降低的趋势,在中高浓度TCB(40、80 mg/kg)处理时,宁粳1号每盆穗数,每穗粒数,结实率显著降低且降幅显著大于扬辐粳8号,两个基因型品种千粒重变化都不明显。宁粳1号株高、干物重受TCB抑制程度较明显,降幅显著大于扬辐粳8号。在低浓度TCB(20 mg/kg)处理时,宁粳1号根系活力、叶绿素含量、可溶性蛋白质含量显著降低,而扬辐粳8号有所提高。随着TCB浓度的增加,两个基因型品种叶片抗氧化酶SOD、POD、CAT活性均呈先升后降趋势,且在低浓度TCB(10 mg/kg、20mg/kg)处理时,扬辐粳8号抗氧化酶活性极显著高于宁粳1号,在高浓度TCB(80 mg/kg)TCB浓度胁迫下,宁粳1号抗氧化酶活性极显著低于对照,且降幅极显著大于扬辐粳8号,且MDA含量增幅较大,膜质过氧化程度高。总体而言,低浓度TCB对扬辐粳8号的产量和灌浆期株高、干物重、叶绿素含量、叶片蛋白质含量和抗氧化酶活性具有一定的促进作用,中高浓度TCB对宁粳1号的抑制作用显著大于扬辐粳8号,扬辐粳8号在不同浓度的TCB处理下较宁粳1号表现出较强的耐迫性和适应性。  相似文献   

11.
Joint effects of Cd and other heavy metals (Pb, Cu, Zn and As) on the growth and development of rice plants and the uptake of these heavy metals by rice were studied using the pot-culture method combined with chemical and statistical analyses. The results showed that the growth and development of rice plants were strongly influenced by the double-element combined pollution. There was an average decrease in the height of rice plants of 4.0–5.0 cm, and grain yield was decreased by 20.0–30.0%, compared with the control. The uptake of Cd by rice plants was promoted due to the interactions between Cd and the other heavy metals added to the soil. The Cd concentration in roots, stems/leaves and seeds increased 31.6–47.7, 16.7–61.5 and 19.6–78.6%, respectively. Due to interactions, uptake of Pb, Cu and Zn by roots and stems/leaves was inhibited, accumulation of Pb, Cu and Zn in seeds was increased, uptake of As by roots was promoted and uptake of As by stems/leaves was inhibited. In particular, the upward transporting ability of the heavy metals absorbed by rice plants was significantly increased.  相似文献   

12.
We investigated the responses of phytochelatins (PCs), glutathione (GSH) and other non-protein thiols in Cd hyperaccumulator Arabis paniculata after Cd exposure. Applying γ-glutamylcysteine synthetase (γ-ECS) inhibitor, l-buthionine-sulfoximine (BSO), the roles of PCs in Cd tolerance and Cd accumulation in A. paniculata were evaluated. Plants were exposed to four Cd concentrations (0, 50, 100 and 250 μM) for different times (2w or 3w) with and without BSO. Overall, Cd exposure had little impact on plant biomass after 2w or 3w of growth except at the highest Cd level. A. paniculata tolerated ≤100 μM Cd with up to 1127 mg kg?1 Cd in the shoots and 5624 mg kg?1 Cd in the roots after 3w of Cd exposure. Cd exposure induced formation of PCs and three unknown thiols in the roots, but none were detected in the shoots. BSO had no significant effect on Cd sensitivity in plants though it reduced Cd accumulation in the roots. In addition, the molar ratio of PCs:Cd, which ranged from 0.7 to 1.3 after exposing to 50–100 μM Cd without BSO in the roots, was close to the value expected for PC-mediated Cd sequestration in plants. Those data indicate that GSH and PCs did not contribute to Cd tolerance in the shoots and Cd transport from the root to shoot in A. paniculata, but they may play an important role in Cd accumulation and Cd complexation in the roots of A. paniculata.  相似文献   

13.
Liu Z Y  Chen G Z  Tian Y W 《农业工程》2008,28(7):3228-3235
By simulating the anaerobic conditions with agar nutrient solutions, effect of arsenic (As) on the growth and As uptake by hybrid, conventional and glutinous rice cultivars were studied. It showed insignificant effect of As on the root dry weights of three rice cultivars when treated by As of different concentrations. The shoot dry weights of hybrid and glutinous decreased with As concentrations increasing, while low concentrations of As (0.5 mg L?1) could enhance the growth of conventional rice. Generally, As concentrations in roots and shoots increased as As concentrations of treatment solutions increasing. The root system had strong ability to uptake and accumulate As. The root As concentrations ranged from 156 to 504 mg kg?1, representing 63.40%–81.90% of the total As concentrations in rice, which were much higher than shoot As concentrations. The fact that the glutinous rice had higher biomass, higher tolerance, and lower As concentrations in its roots and shoots than the other two rice cultivars proved that the glutinous rice was more applicable to As-polluted soils.  相似文献   

14.
Phytochelatins (PCs) are peptides that function in heavy-metal chelation and detoxification in plants and fungi. A recent study showed that PCs have the ability to undergo long-distance transport in a root-to-shoot direction in transgenic Arabidopsis (Arabidopsis thaliana). To determine whether long-distance transport of PCs can occur in the opposite direction, from shoots to roots, the wheat (Triticum aestivum) PC synthase (TaPCS1) gene was expressed under the control of a shoot-specific promoter (CAB2) in an Arabidopsis PC-deficient mutant, cad1-3 (CAB2TaPCS1/cad1-3). Analyses demonstrated that TaPCS1 is expressed only in shoots and that CAB2TaPCS1/cad1-3 lines complement the cadmium (Cd) and arsenic metal sensitivity of cad1-3 shoots. CAB2TaPCS1/cad1-3 plants exhibited higher Cd accumulation in roots and lower Cd accumulation in shoots compared to wild type. Fluorescence HPLC coupled to mass spectrometry analyses directly detected PC2 in the roots of CAB2:TaPCS1/cad1-3 but not in cad1-3 controls, suggesting that PC2 is transported over long distances in the shoot-to-root direction. In addition, wild-type shoot tissues were grafted onto PC synthase cad1-3 atpcs2-1 double loss-of-function mutant root tissues. An Arabidopsis grafting technique for mature plants was modified to obtain an 84% success rate, significantly greater than a previous rate of approximately 11%. Fluorescence HPLC-mass spectrometry showed the presence of PC2, PC3, and PC4 in the root tissue of grafts between wild-type shoots and cad1-3 atpcs2-1 double-mutant roots, demonstrating that PCs are transported over long distances from shoots to roots in Arabidopsis.  相似文献   

15.
Wu C  Ye Z  Li H  Wu S  Deng D  Zhu Y  Wong M 《Journal of experimental botany》2012,63(8):2961-2970
Hydroponic experiments were conducted to investigate the effect of radial oxygen loss (ROL) and external aeration on iron (Fe) plaque formation, and arsenic (As) accumulation and speciation in rice (Oryza sativa L.). The data showed that there were significant correlations between ROL and Fe concentrations in Fe plaque produced on different genotypes of rice. There were also significant differences in the amounts of Fe plaque formed between different genotypes in different positions of roots and under different aeration conditions (aerated, normal, and stagnant treatments). In aerated treatments, rice tended to have a higher Fe plaque formation than in a stagnant solution, with the greatest formation at the root tip decreasing with increasing distances away, in accordance with a trend of spatial ROL. Genotypes with higher rates of ROL induced higher degrees of Fe plaque formation. Plaques sequestered As on rice roots, with arsenate almost double that with arsenite, leading to decreased As accumulation in both roots and shoots. The major As species detected in roots and shoots was arsenite, ranging from 34 to 78% of the total As in the different treatments and genotypes. These results contribute to our understanding of genotypic differences in As uptake by rice and the mechanisms causing rice genotypes with higher ROL to show lower overall As accumulation.  相似文献   

16.
Arsenic (As) accumulation in rice grain poses a serious health risk to populations with high rice consumption. Extrusion of arsenite [As(III)] by ScAcr3p is the major arsenic detoxification mechanism in Saccharomyces cerevisiae. However, ScAcr3p homolog is absent in higher plants, including rice. In this study, ScACR3 was introduced into rice and expressed under the control of the Cauliflower mosaic virus (CaMV) 35S promoter. In the transgenic lines, As concentrations in shoots and roots were about 30% lower than in the wild type, while the As translocation factors were similar between transgenic lines and the wild type. The roots of transgenic plants exhibited significantly higher As efflux activities than those of the wild type. Within 24 h exposure to 10 μM arsenate [As(V)], roots of ScACR3-expressing plants extruded 80% of absorbed As(V) to the external solution as As(III), while roots of the wild type extruded 50% of absorbed As(V). Additionally, by exposing the As-containing rice plants to an As-lacking solution for 24 h, about 30% of the total As derived from pre-treatment was extruded to the external solution by ScACR3-expressing plants, while about 15% of As was extruded by wild-type plants. Importantly, ScACR3 expression significantly reduced As accumulation in rice straws and grains. When grown in flooded soil irrigated with As(III)-containing water, the As concentration in husk and brown rice of the transgenic lines was reduced by 30 and 20%, respectively, compared with the wild type. This study reports a potential strategy to reduce As accumulation in the food chain by expressing heterologous genes in crops.  相似文献   

17.
The presence of aluminum (Al) in acidic soils is a major abiotic stress limiting the production of cultivated plants. Cell membranes are the main targets of environmental stresses and there is growing evidence for the involvement of membrane lipids in plant adaptation. The aim of this study was to evaluate the mid-long effects of Al on membrane lipid content and composition in the roots and shoots of rice plants grown under hydroponic conditions. Four rice cultivars were compared: two acknowledged as Al-resistant (Koshihikari) and Al-sensitive (Kasalath), respectively, and two Vietnamese cultivars, OM6073 and OM1490. Al treatment inhibited root and shoot growth in the sensitive cultivars and the observed changes in root and shoot lipid and fatty acid composition revealed patterns associated with Al sensitivity: larger decreases in lipid content and decreases in fatty acid unsaturation. In the roots, phospholipids, and particularly phosphatidylcholine (PC), decreased dramatically in the susceptible cultivars whereas the amount of lipid classes remained unchanged in the tolerant ones. In the shoots, the glycolipids monogalactosyldiacylglycerol and digalactosyldiacylglycerol as well as PC were mostly affected by Al treatment in the susceptible varieties. mRNA accumulation corresponding to genes coding for galactolipid synthases, enzymes of the PC and phosphatidylethanolamine biosynthetic pathways and fatty acid desaturases correlated well with changes in lipid contents in roots and partly explained lipid changes in leaves. The results suggested that the capacity to maintain the proper functioning of some lipid biosynthetic activities and hence the stability of lipid composition may help the rice plant to withstand Al stress.  相似文献   

18.
Cadmium (Cd) is a nonessential heavy metal that can be harmful at low concentrations in organisms. Therefore, it is necessary to decrease Cd accumulation in the grains of wheats aimed for human consumption. In response to Cd, higher plants synthesize sulphur-rich peptides, phytochelatins (PCs). PC–heavy metal complexes have been reported to accumulate in the vacuole. Retention of Cd in the root cell vacuoles might influence the symplastic radial Cd transport to the xylem and further transport to the shoot, resulting in genotypic differences in grain Cd accumulation. We have studied PC accumulation in 12-day-old seedlings of two cultivars of spring bread wheat (Triticum aestivum), and two spring durum wheat cultivars (Triticum turgidum var. durum) with different degrees of Cd accumulation in the grains. Shoots and roots were analysed for dry weight, Cd and PC accumulation. There were no significant differences between the species or the varieties in the growth response to Cd, nor in the distributions of PC chain lengths or PC isoforms. At 1 μM external Cd, durum wheat had a higher total Cd uptake than bread wheat, however, the shoot-to-root Cd concentration ratio was higher in bread wheat. When comparing varieties within a species, the high grain Cd accumulators exhibited lower rates of root Cd accumulation, shoot Cd accumulation, and root PC accumulation, but higher shoot-to-root Cd concentration ratios. Intraspecific variation in grain Cd accumulation is apparently not only explained by differential Cd accumulation as such, but rather by a differential plant-internal Cd allocation pattern. However, the higher average grain Cd accumulation in the durum wheats, as compared to the bread wheats, is associated with a higher total Cd accumulation in the plant, rather than with differential plant-internal Cd allocation. The root-internal PC chain length distributions and PC–thiol-to-Cd molar ratios did not significantly differ between species or varieties, suggesting that differential grain Cd accumulation is not due to differential PC-based Cd sequestration in the roots.  相似文献   

19.
Arbuscular mycorrhizal fungi (AMF) appear to be highly associated with arsenic (As) uptake in host plants because arsenate (As(V)) and phosphorus (P) share the same transporter, whereby AMF can enhance P uptake. A short-term experiment was conducted for low- (0 to 0.05 mM As) and high-affinity (0 to 2.5 mM As) uptake systems, to investigate the AMF role on As uptake mechanism in plants, which may explain As uptake kinetics in upland rice cultivar: Zhonghan 221. When concentration of As ranged from 0 to 0.05 mM, Funneliformis geosporum (Fg) significantly decreased arsenite (As(III)) and monomethylarsonicacid (MMA) uptake when (p < 0.05) compared to non-mycorrhizal (NM) treatment, since the major route for (As(III)) in rice roots—rice silicon transporter Lsi1 would be influenced by Fg inoculation at high As concentrations. Fg can also reduce As(V) uptake significantly (p < 0.05) under both uptake systems relative to NM treatment, whereas, Funneliformis mosseae (Fm) increased As(V) and MMA uptake in rice roots, with MMA uptake rate generally lower than As(III) and As(V). Using suitable AMF species inoculation with rice, As uptake and accumulation in rice grains can be reduced and the risk to human health, once consumed, can be minimized.  相似文献   

20.
We expressed the AtMT2b gene under the 35 S cauliflower mosaic virus promoter in Nicotiana tabacum (Sr1), using leaf disc transformation. Arsenite tolerance and uptake, as well as arsenite-induced phytochelatin (PC) accumulation in roots were measured in transgenic lines, and compared to untransformed (‘wild type’) tobacco. Measured after 5 days of exposure, arsenite tolerance was slightly but significantly decreased in the transgenic lines compared to wild type. The highest AtMT2b expressing line exhibited a significantly decreased arsenic accumulation in roots, but an increased accumulation in shoots, while the total amount of arsenic taken up remained unchanged, suggesting that AtMT2b expression enhanced the arsenic root to shoot transport. The same transformant line also exhibited a decreased rate of phytochelatin accumulation in the roots, but the phytochelatin-SH to As molar ratio was higher than in wild type, suggesting that the lower arsenite tolerance in the transformant lines was not due to a potential shortage of cysteine for PC synthesis, imposed by expression of the transgene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号