首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combined release of species of generalist predators can enhance multiple pest control when the predators feed on different prey, but, in theory, predators may be excluded through predation on each other. This study evaluated the co-occurrence of the generalist predators Macrolophus pygmaeus Rambur and Orius laevigatus (Fieber) and their control of two pests in a sweet pepper crop. Both predators consume pollen and nectar in sweet pepper flowers, prey on thrips and aphids, and O. laevigatus is an intraguild predator of M. pygmaeus. Observations in a commercial sweet pepper crop in a greenhouse with low densities of pests showed that the two predator species coexisted for 8 months. Moreover, their distributions in flowers suggested that they were neither attracted to each other, nor avoided or excluded each other. A greenhouse experiment showed that the predators together clearly controlled thrips and aphids better than each of them separately. Thrips control was significantly better in the presence of O. laevigatus and aphid control was significantly better in the presence of M. pygmaeus. Hence, combined inoculative releases of M. pygmaeus and O. laevigatus seem to be a good solution for controlling both thrips and aphids in greenhouse-grown sweet pepper. The predators are able to persist in one crop for a sufficiently long period and they complement each other in the control of both pests. This study also provides further evidence that intraguild predation does not necessarily have negative effects on biological control.  相似文献   

2.
《Biological Control》2000,17(1):55-60
Nymphal development and survival of Macrolophus pygmaeus Rambur (Hemiptera: Miridae) on various host plants, in the presence and absence of various insect prey, and on bee pollen and pollen from Ecbalium elaterium L. (Cucurbitaceae) in various combinations were studied. The effect of temperature on the development and mortality of M. pygmaeus nymphs was also studied. Experiments were conducted in temperature cabinets maintained at 65 ± 5% RH, 16L:8D h photoperiod, and constant temperatures, depending on the experiment. Results demonstrated that M. pygmaeus can successfully complete its development on tomato, eggplant, cucumber, pepper, and green beans in the absence of insect prey. In the presence of insect prey, M. pygmaeus had the shortest period of nymphal development on eggplant with Trialeurodes vaporariorum (Westwood) followed by Myzus persicae (Sulzer), Macrosiphum euphorbiae (Thomas), Aphis gossypii Glover, and Tetranychus urticae Koch. Mortality of M. pygmaeus nymphs was relatively higher in the absence than in the presence of prey on various host plants but was not considered a factor restricting predator establishment. M. pygmaeus completed its development, even in the absence of prey, under a range of temperatures from 15 to 30°C on tomato, with optimum development at 30°C. Bee pollen and pollen from E. elaterium, when offered separately, were sufficient to support successful predator nymphal development and survival. Bee pollen contributed considerably to the development and survival of the nymphs when it was included in diets containing other food sources, like eggplant leaves and M. persicae.  相似文献   

3.
The impact of a predator on its prey may depend on the presence of other species in the community. In particular, if predators are attracted to areas containing one prey species, another prey species may suffer greater predation if it occurs in the same areas. If the predator is omnivorous, this may occur even if one prey species is an animal and the other is a plant. We investigated the role of local dandelion densities on the impact of the predator Coleomegilla maculata on pea aphids in alfalfa fields. At small spatial scales, increased dandelion densities were associated with high C. maculata densities, presumably because these omnivorous ladybird beetles aggregated to pollen resources. In turn, the high C. maculata densities were associated with low aphid densities, presumably because of increased predation. We used laboratory cages to simulate C. maculata foraging in two adjacent patches of alfalfa, one with dandelions and one without. As in the field, the laboratory experiment showed that C. maculata aggregated to alfalfa interspersed with dandelions, which resulted in increased predation on aphids on alfalfa. This study demonstrates that a pollen-producing plant can indirectly decrease nearby herbivore densities by attracting an omnivorous predator.  相似文献   

4.
5.
The omnivorous predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae) are important biological control agents of pests on tomato crops. In this study, potential intraguild predation (IGP) interactions between the two species were investigated on tomato. We examined: (a) the within plant distribution of both species in the field, (b) the within plant distribution of each predatory species when co-occurred at high densities on tomato caged plants, (c) their behavioral interactions when enclosed in experimental arenas and (d) the development young and old nymphs of M. pygmaeus when enclosed together with N. tenuis adults. Results revealed that the two predators showed a different distribution pattern on the plants, with N. tenuis exploiting mostly the upper part, whereas M. pygmaeus were mostly observed on the 5th to the 7th leaf from the top. However, when the predators co-occurred, N. tenuis or M. pygmaeus individuals were recorded with increased numbers on the lower or the higher part of the plant, respectively. In the presence of N. tenuis adult young nymphs of M. pygmaeus completed their development to the adult stage, when alternative prey (lepidopteran eggs) was present on the plant, however failed to reach adulthood in the absence of alternative prey. A high percentage of the dead nymphs found with their body fluids totally sucked indicating predation by N. tenuis. However, large 4th instar nymphs of M. pygmaeus were much less vulnerable to N. tenuis than younger. The behavior of N. tenuis was affected by the presence of M. pygmaeus, but at a rate similar to that when two individuals of N. tenuis were enclosed together. Contacts between the predators were recorded in a similar frequency in mono- and heterospecific treatments, whereas aggressive behavior was not observed. This study shows that intraguild interactions between M. pygmaeus and N. tenuis occur but are not intensive. The potential implications of the outcomes for biological control are discussed.  相似文献   

6.
《Biological Control》2011,56(3):159-165
The availability of plant resources to omnivorous arthropod predators may have a positive, negative or negligible effect on their population densities and predation rates, depending on the availability of prey. At high prey densities, flowering buckwheat has been shown to negatively impact populations of the brown lacewing, an omnivorous predator, due to the probable increase in parasitism rate of lacewing larvae by their primary parasitoid, Anacharis zealandica. However, little is known about the effect of buckwheat flowers on this insect community at low prey densities. We used field cages to assess the effects of nectar provision by flowering buckwheat on the population dynamics of the pea aphid, the brown lacewing and its parasitoid A. zealandica in an alfalfa field, under low aphid densities in the New Zealand summer. The insects were sampled every 2 weeks with a suction device, then counted and released on each sampling date from 15 January to 15 March 2007. Buckwheat significantly increased lacewing populations and significantly decreased aphid numbers by 70% and 39%, respectively. The buckwheat had its greatest effect at the end of summer (February/March) for both these species. It had no effect on A. zealandica abundance.  相似文献   

7.
This study examines the effects of changes in the prey frequency and abundance on prey selection among the four instars of Myzus persicae by the predator Macrolophus pygmaeus under laboratory conditions. The central hypothesis was that M. pygmaeus will become more selective as prey density increases. It was also observed that M. pygmaeus can occasionally abandon a prey item that had already been killed (non-consumptive prey mortality). It was assumed that the frequency of this behavior would increase with the prey size and prey density. For these purposes prey selection was evaluated by simultaneously presenting all instars of M. persicae to the predator in equal proportions and at increasing densities. M. pygmaeus showed a higher predation rate and a higher preference for smaller prey instars at all prey densities. However, if the predation rate by the predator is expressed in terms of biomass consumed, then biomass gain was higher when feeding on the larger instars of M. persicae. The prey selectivity was indicated by the total prey mortality (consumptive plus non-consumptive prey mortality) as well as by the non-consumptive prey mortality, was associated with relatively high prey densities, depending on the prey instar. Therefore, we argued that the predatory impact of M. pygmaeus on the various instars of the aphid depends not only on prey traits but also on their relative abundance in a patch. Observed decreases in biomass gain from larger prey were likely the result of high prey availability at densities before saturation, which might have caused confusion in the predator’s prey selection.  相似文献   

8.
Omnivores obtain resources from more than one trophic level, and choose their food based on quantity and quality of these resources. For example, omnivores may switch to feeding on plants when prey are scarce. Larvae of the western flower thrips Frankiniella occidentalis Pergande (Thysanoptera: Thripidae) are an example of omnivores that become predatory when the quality of their host plant is low. Western flower thrips larvae usually feed on leaf tissue and on plant pollen, but may also attack eggs of predatory mites, their natural enemies, and eggs of the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae), one of their competitors. Here, we present evidence that western flower thrips larvae prey on Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), another competitor for plant tissue. We tested this on two host plant species, cucumber (Cucumis sativa L.), considered a host plant of high quality for western flower thrips, and sweet pepper (Capsicum annuum L.), a relatively poor quality host. We found that western flower thrips killed and fed especially on whitefly crawlers and that the incidence of feeding did not depend on host-plant species. The developmental rate and oviposition rate of western flower thrips was higher on a diet of cucumber leaves with whitefly crawlers than on cucumber leaves without whitefly crawlers, suggesting that thrips do not just kill whiteflies to reduce competition, but utilize whitefly crawlers as food.  相似文献   

9.
Abstract The biological parameters of Macrolophus pygmaeus Rambur after prolonged rearing in the absence of plant materials were compared with those of conventionally plant‐reared predators. When eggs of Ephestia kuehniella Zeller were provided as food, developmental and reproductive fitness of M. pygmaeus reared for over 30 consecutive generations using artificial living and oviposition substrates was similar to that of predators kept on tobacco leaves. Plantless‐reared fifth instars of the predator also had similar predation rates on second instars of the tobacco aphid, Myzus persicae nicotianae Blackman, as their peers maintained on plant materials. In a further experiment, predation on aphid prey by fifth instar M. pygmaeus fed one of two egg yolk‐based artificial diets was compared with that of nymphs fed E. kuehniella eggs. Despite their lower body weights, predators produced on either artificial diet killed similar numbers of prey as their counterparts reared on lepidopteran eggs. Our study indicates that artificial rearing systems may be useful to further rationalize the production of this economically important biological control agent.  相似文献   

10.
Abstract:  The influence of three solanaceous plants (tomato, sweet pepper and eggplant) on the functional response of the predatory bug Picromerus bidens to densities of fourth-instar larvae of the beet armyworm Spodoptera exigua was assessed. Logistic regression indicated a type II functional response on all host plants. Over all prey densities, P. bidens killed significantly fewer fourth instars of S. exigua on tomato than on sweet pepper or eggplant (1.96 ± 0.17 vs. 4.37 ± 0.19 and 3.90 ± 0.15 larvae per predator per 24 h respectively). A higher theoretical maximum predation rate was estimated on sweet pepper (11.1 prey larvae per day) and eggplant (7.4) than on tomato (5.4). The mean number of prey killed per day by P. bidens females ranged from 0.78 at a density of one prey on tomato to 8.45 at a density of 24 prey on sweet pepper. The data indicated that the estimates of handling time ( T h) and attack rate ( a ) were highly affected by host plant. Based on asymptotic 95% confidence intervals, a lower attack coefficient was found on tomato (0.02 h−1) than on sweet pepper or eggplant (0.07 and 0.11 h−1 respectively). On the other hand, handling times were significantly longer on tomato (4.42 h) and eggplant (3.23 h) than on sweet pepper (2.15 h). This laboratory study suggests that plant characteristics influence the ability of P. bidens to respond to changes in prey density.  相似文献   

11.
Biological control in ornamental crops is challenging due to the wide diversity of crops and cultivars. In this study, we tested the hypothesis that trichome density on different host plants influences the behavior and performance of the predatory mite Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). Behavioural observations of this predator in the presence or absence of prey (western flower thrips, Frankliniella occidentalis Pergande) (Thysanoptera: Thripidae) were done on leaf squares of ornamental plant species differing in trichome density (rose, chrysanthemum and gerbera) and compared to a smooth surface (plastic). Tomato leaves were used to observe the influence of glandular trichomes. The performance of A. swirskii was assessed by measuring predation and oviposition rate. Behaviour of A. swirskii was influenced by plant species. Up to a certain density of trichomes, trichome number had a negative effect on walking speed. It was highest on plastic, followed by rose. No differences were found among chrysanthemum, gerbera and tomato. Walking speed was slightly higher on disks without prey. Proportion of time spent walking was the same on leaf disks of all plant species, with and without prey. No effect of glandular trichomes on tomato leaves was seen. Most thrips were killed and consumed on gerbera, and least on rose. Predation rates on chrysanthemum and plastic were intermediate. In contrast, no differences in oviposition rate were found among plant species. The results of this study indicate that trichome density can explain some of the variability in efficacy of A. swirskii on different crops. Release rates of A. swirskii may need to be adjusted depending on the crop in which it is used.  相似文献   

12.
Banker plants are intended to enhance biological control by sustaining populations of natural enemies. Banker plants do this by providing alternative sources of food for natural enemies, such as pollen for omnivorous predators, thus decreasing the likelihood of their starvation and emigration from a cropping system when pest populations are low or absent. A banker plant system consisting of the Black Pearl pepper, Capsicum annuum ‘Black Pearl’, and the omnivorous minute pirate bug, Orius insidiosus Say (Hemiptera: Anthocoridae) has recently been proposed to improve biological control of thrips. Therefore, we studied how pollen from the Black Pearl pepper plant affects O. insidiosus fitness and abundance through a series of laboratory and greenhouse experiments. We found that a mixed diet of pollen and thrips increased O. insidiosus female longevity, decreased nymphal development time, and yielded larger females compared to a diet of thrips alone. Furthermore, O. insidiosus abundance was greater on flowering pepper plants than non-flowering pepper plants. From these results, we suggest that pollen from Black Pearl pepper banker plants could increase adult O. insidiosus abundance for the purpose of biological control in two ways: (1) reduce starvation and increase longevity of O. insidiosus when prey is absent; (2) enhance O. insidiosus fitness and fecundity when prey is present by mixing plant and prey diets. These results encourage future studies with the Black Pearl pepper as a banker plant for improving biological control of thrips in commercial greenhouses.  相似文献   

13.
Zoophytophagous predators of the family Miridae (Heteroptera), which feed both on plant and prey, often maintain a close relationship with certain host plants. In this study, we aimed to select a suitable mirid predatory bug for aphid control in sweet pepper. Four species were compared: Macrolophus pygmaeus (Rambur), Dicyphus errans (Wolff), Dicyphus tamaninii Wagner and Deraeocoris pallens (Reuter). They were assessed on their establishment on sweet pepper plants with and without supplemental food (eggs of the flour moth Ephestia kuehniella Zeller and decapsulated cysts of the brine shrimp Artemia franciscana Kellogg) and on their effects on aphids with releases before and after aphid infestations. None of the predator species was able to control an established population of aphids on sweet pepper plants; however, the predators M. pygmaeus and D. tamaninii could successfully reduce aphid populations when released prior to an artificially introduced aphid infestation. The best results were achieved with M. pygmaeus in combination with a weekly application of supplemental food. Hence, our results demonstrate that the order and level of plant colonization by mirid predators and aphids determines how successful biological control is. Further studies are needed to evaluate the performance of mirid predatory bugs in sweet pepper crops in commercial greenhouses with multiple pests and natural enemies, in particular to understand how increased variation in food sources affects their feeding behaviour and preferences.  相似文献   

14.
Plant traits can mediate the strength of interactions between omnivorous predators and their prey through density effects and changes in the omnivores’ trophic behavior. In this study, we explored the established assumption that enhanced nutrient status in host plants strengthens the buffering effect of plant feeding for omnivorous predators, i.e., prevents rapid negative population growth during prey density decline and thereby increases and stabilizes omnivore population density. We analyzed 13 years of field data on population densities of a heteropteran omnivore on Salix cinerea stands, arranged along a measured leaf nitrogen gradient and found a 195 % increase in omnivore population density and a 63 % decrease in population variability with an increase in leaf nitrogen status from 26 to 40 mgN × g?1. We recreated the leaf nitrogen gradient in a greenhouse experiment and found, as expected, that increasing leaf nitrogen status enhanced omnivore performance but reduced per capita prey consumption. Feeding on high nitrogen status host plants can potentially decouple omnivore–prey population dynamics and allow omnivores to persist and function effectively at low prey densities to provide “background level” control of insect herbivores. This long-term effect is expected to outweigh the short-term effect on per capita prey consumption—resulting in a net increase in population predation rates with increasing leaf nitrogen status. Conservation biological control of insect pests that makes use of omnivore background control could, as a result, be manipulated via management of crop nitrogen status.  相似文献   

15.
Intraguild predation (IGP) among predatory species can influence many plant-arthropod associations. However, the relevance of IGP is poorly understood for truly omnivorous species such as those that can complete development on both animal and plant diets. Here we test the hypothesis that IGP among two omnivorous mirids is more common when extraguild food is either absent or not suitable. Laboratory experiments were performed in experimental cages in order to determine the effect of intraguild prey densities and diet availability on direction and intensity of IGP between Dicyphus tamaninii and Macrolophus caliginosus (Heteroptera: Miridae). Intraguild predation was symmetrical between the two mirid species in the absence of alternative food. Increasing densities of intraguild prey enhanced drastically the incidence of IGP. Intraguild predation was reduced when mirids were in the presence of green or red tomato fruits, but the presence of any other extraguild resources had no impact on IGP level. However, when given before the experiments, all resources with the exception of tomato leaves significantly reduced IGP. A second experiment was performed on live plants to compare the results of the previous trials with that obtained in a more natural setting. No IGP was observed when both mirid species were present on a plant. However, development of the intraguild prey (the more vulnerable stage) was hindered by the presence of the intraguild predator. The potential of such results is discussed from community ecology and biological control perspective.  相似文献   

16.
Herbivore feeding on host plants may induce defense responses of the plant which influence other herbivores and interacting species in the vicinity, such as natural enemies. The present work evaluated the impact of pre-infestation with the tobacco whitefly Bemisia tabaci cryptic species MEAM 1, on the predation ability of the ladybird Propylea japonica, to the green peach aphid Myzus persicae, on tomato plants. The results show that B. tabaci pre-infestation density, duration, and leaf position, can impact prey consumed by P. japonica under various aphid densities. The aphids consumed by P. japonica in each treatment were fit using the Holling type II functional response equation. The predatory efficiency (a/T h) of P. japonica was the highest in the treatment with 60 aphids and 48-h infestation directly on damaged leaves. The predatory efficiencies of P. japonica decreased with a reduction of pre-infestation density and duration. We also observed that pre-infestation on young and undamaged leaves increased predation by P. japonica.  相似文献   

17.
Abstract 1. Predatory arthropods lay their eggs such that their offspring have sufficient prey at their disposal and run a low risk of being eaten by conspecific and heterospecific predators, but what happens if the prey attacks eggs of the predator? 2. The egg distribution and time allocation of adult female predatory mites Iphiseius degenerans as affected by predation of their eggs by prey, the western flower thrips Frankliniella occidentalis, were studied on sweet pepper plants. The predatory mites attack the first instar of thrips but all active stages of thrips are capable of killing the eggs of the predator; however the predatory mite is used for biological control of thrips. 3. The majority of predatory mite eggs was laid on the underside of leaves in hair tufts (domatia). During the experiment, females spent increasing amounts of time in flowers where they fed on pollen and thrips larvae. The risk of predation on predator eggs by thrips was lower on leaves than in flowers where the majority of thrips resides. Moreover, predation risk was higher outside leaf domatia than inside. 4. This suggests that predators avoid ovipositing in places with abundant prey to prevent their eggs from being eaten by thrips.  相似文献   

18.
Dicyphus errans (Wolff) (Hemiptera: Miridae) is an omnivorous predator of several pests attacking tomato and other vegetable crops. The nymphal development of D. errans was studied in the presence of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs with or without a water source and in the presence of a leaf of cucumber, eggplant or tomato supplemented with variable food types (E. kuehniella eggs, Artemia sp. cysts, pollen or milk powder) or without the provision of any food. Water provision was found to be essential for the completion of nymphal development even when animal food was offered to predators. When nymphs foraged on leaves in the absence of any food type, development was significantly more favoured on eggplant and cucumber than on tomato. E. kuehniella eggs and Artemia sp. cysts enhanced development of D. errans in comparison to milk powder and pollen. Development and female weight were improved when the food types were offered to the nymphs on a plant leaf than when were provided together with only water. This study contributes to understanding the importance of water vs. plant feeding for the development of D. errans and reveals implications for its mass rearing and application in biological control.  相似文献   

19.
Omnivorous arthropods make dietary choices according to the environment in which they forage, mainly availability/quality of plant and/or prey resources. Such decisions and their subsequent impacts on life‐history traits may be affected by the availability of nutrients and water to plants, that is, through bottom‐up forces. By setting up arenas for feeding behavior observation as well as glasshouse cages for plant preference assessment, we studied effects of the presence of prey (Lepidoptera eggs) and nitrogen/water availability to host tomato plants on the foraging behavior and life‐history traits in the omnivorous predator Macrolophus pygmaeus (Heteroptera: Miridae). In the absence of prey, the predator fed equally on the plants treated with various levels of nitrogen and water. In the presence of prey, however, the feeding rate on plants decreased when the plant received low water input. The feeding rate on prey was positively correlated with feeding rate on plants; that is, prey feeding increased with plant feeding when the plants received high water input. Moreover, plants receiving high water input attracted more M. pygmaeus adults compared with those receiving low water input. For M. pygmaeus fitness, the presence of prey enhanced its fertility and longevity, but the longevity decreased when plants received low compared with high water input. In conclusion, the omnivorous predator may be obliged to feed on plants to obtain water, and plant water status may be a limiting factor for the foraging behavior and fitness of the omnivorous predator.  相似文献   

20.
Understanding the relationship between a predator and its prey requires consideration of the other food resources used by the predator. In the case of true omnivores, these include plant-provided foods such as leaf tissue and nectar. The presence of plant resources can increase or decrease predation depending on the degree to which they are complementary to, or substitutable for, the prey. This has implications for the role of omnivores in biological control and some groups, notably heteropteran bugs and phytoseiid mites, have been studied in this context. However, few experiments have considered the effects of plant resources both on prey consumption by individual omnivores (which have an immediate effect on the prey population) and on attributes such as longevity and fecundity which act over the longer term to affect predation at the population level. In this study, a model system comprising an omnivorous adult lacewing (Micromus tasmaniae), buckwheat flowers and aphid prey was used to investigate how floral resources affected per capita predation rate, longevity and fecundity of the lacewing. Flowers reduced prey consumption. In the absence of prey, longevity was higher for lacewings with flowers than those without. In an experiment where aphids were provided in abundance, lacewing fecundity was unaffected by flowers. However, when aphids were less abundant, providing flowers decreased the pre-oviposition period and increased the daily oviposition rate. The results demonstrate that floral resources can mediate omnivore–prey relationships and that, in the context of biological control, their effects may be either positive or negative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号