首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oilseed rape (Brassica napus) is a valuable crop, attacked by several insect pests, of which the pollen beetle (Meligethes aeneus) is one of the most widespread and important in Europe. The relative attractiveness for the pollen beetle of Brassica nigra, Eruca sativa and Raphanus sativus was compared with that of spring oilseed rape, to assess the potential of these plant species as trap crops for the pest. At early growth stages, B. nigra and R. sativus were more attractive to over-wintered adult pollen beetles than B. napus. At the bud and flowering stages, B. nigra was the most attractive while E. sativa was the least attractive. At flowering, B. nigra was more attractive for oviposition than the other species. Thus, of the species tested, B. nigra has the most potential as a prospective trap crop to protect spring oilseed rape before flowering when it is at its most vulnerable developmental phase, due to its faster development and its acceptability both for feeding and oviposition to overwintered pollen beetle adults. Raphanus sativus was accepted both for feeding and oviposition, but pollen beetle larvae failed to develop in its flowers; it therefore has the potential for use as a dead-end crop. At the end of the growing season, both E. sativa and R. sativus, as late-flowering species, attracted the new generation of pollen beetles and thereby have potential to extend the effectiveness of a trap-cropping system at this time.  相似文献   

2.
It is often suggested that weeds from the same family as the crop plant may increase insect pest damages by providing shelter and additional oviposition opportunities. We compared the relative attractiveness of Brassica rapa L., B. juncea L., Sinapis alba L. and B. napus L. (Capparales: Brassicaceae) to the pollen beetle and its hymenopteran parasitoids in field conditions. Our results revealed that none of the investigated plants increased the pest abundance on B. napus plants. On the contrary, B. juncea and S. alba lured beetles away from B. napus during its damage-susceptible stage. The parasitism rate of pollen beetle larvae was the highest on B. juncea plants, indicating that cruciferous weeds could improve the natural control of the pollen beetle by providing additional hosts for parasitoids. Therefore, close relatives of oilseed rape might be used to trap pollen beetle adults, but also to support populations of natural enemies that could decrease the number of beetles.  相似文献   

3.
Concerns about the negative effects of chemical control of oilseed rape (Brassica napus L.) pests on non-target species, human safety, and development of insecticide resistance, require alternative control strategies such as the use of trap crops and biocontrol to be developed. Psylliodes chrysocephala(L.) (Coleoptera: Chrysomelidae) (cabbage stem flea beetle) and Ceutorhynchus pallidactylus (Marsh.) (Coleoptera: Curculionidae) (cabbage stem weevil) are two major stem-mining pests of oilseed rape. This study investigated the phenology of these pests and their main parasitoids in the UK, the potential use of turnip rape (Brassica rapa L.) as a trap crop to reduce oilseed rape infestation, and the effects of insecticide treatment on pest incidence and larval parasitism. Water trap samples, plant dissections and pest larval dissections were done to determine: the incidence of adult pests and their parasitoids, the level of plant infestation by the pests and percentage larval parasitism, respectively. The turnip rape trap crop borders reduced P. chrysocephalabut not C. pallidactylus infestation of oilseed rape plots. Treatment of the trap crop with insecticide had little effect on either pest or parasitoid incidence in the oilseed rape. TersilochusmicrogasterSzép. andT. obscurator Aub. (Hymenoptera: Ichneumonidae) were the main larval parasitoids of P. chrysocephalaand C. pallidactylus, respectively. Tersilochus microgasteris reported for the first time in the UK. The implications for integrated pest management are discussed.  相似文献   

4.
To determine to what extent wild species related to crops might serve as refuges for insect pests and their natural enemies, we compared the performance of the aphid Myzus persicae and its endoparasitoid Diaeretiella rapae on one cultivar of Brassica napus and Brassica oleracea, two wild species Brassica nigra and Sinapis arvensis, and one cultivar of Solanum lycopersicum. These species differ in traits associated with plant defences that may have an impact on the herbivore and its parasitoid. In contrast to our initial hypothesis, aphid population growth rate was significantly smaller on B. napus than on the other Brassicaceae species. Similarly, the performance of the parasitoid was affected by the host plant on which the aphid was feeding. However, aphid and parasitoid performance was not correlated. Thus, in temporally changing landscapes, pests and natural enemies may utilize crops and wild-related host species with contrasting impacts on their fitness.  相似文献   

5.
There is increasing interest in the use of trap crops as components of integrated pest management (IPM) strategies. Understanding the mechanisms underlying host plant preferences of herbivorous pests can lead to improved effectiveness and reliability of the trap crop. We investigated the behavioural and chemical ecology underlying the success of turnip rape, Brassica rapa, trap crops in protecting oilseed rape, Brassica napus, from the pollen beetle, Meligethes aeneus, which feeds in the flowers and lays its eggs in the buds causing yield loss. Using a semi-field arena bioassay, plant growth stage was found to be a major factor in the preference of this pest for B. rapa over B. napus. Plants at early-flowering growth stages were preferred over plants in the bud stage, irrespective of species. No preference was found when both species were flowering. As B. rapa develops faster than B. napus in the field, this could explain part of the mechanism of its success as a trap crop. However, B. rapa was preferred over B. napus when both species were in the bud stage, indicating some inherent preferences for B. rapa. Responses of M. aeneus in olfactometer tests to the odours of B. napus and B. rapa at the bud and flowering growth stages, reflected those of the semi-field arena bioassay. These behavioural responses can be explained by volatile compounds associated with the flowering stage. Phenylacetaldehyde, indole and (E,E)-α-farnesene were found to be present in air entrainment samples of both plant species at the flowering growth stage, but only in those of B. rapa at the bud stage. The former two compounds were behaviourally-active in olfactometer tests. These compounds are likely to be involved in host location by M. aeneus, and, at least partially, responsible for the attractiveness of B. rapa and its success as a trap crop to protect B. napus from this pest.  相似文献   

6.
Potential for oilseed rape resistance in pollen beetle control   总被引:1,自引:0,他引:1  
Breeding for plant resistance to insect pests is a classic strategy in integrated management, but it has never been developed for use against European pests of oilseed rape (Brassica napus) (OSR), especially one of the most damaging ones, the pollen beetle (Meligethes aeneus). In this paper we look at the three strategies that could be employed to improve OSR resistance (based on transgenes, relatives of B. napus or OSR natural variation) and review our current knowledge as to how these strategies could be put into practice. We identify the drawbacks which are specific to the pollen beetle that could impede breeding programs for resistance, and propose an approach to circumvent them. Finally, we detail the steps of the interaction between OSR and the pollen beetle that could be targeted in order to improve plant resistance (host plant location, adult survival, adult feeding, egg production and oviposition, larval development) and discuss their efficiency and durability potential.  相似文献   

7.
In sustainable pest management, orientation of insect pests can be manipulated by utilizing the relative attractiveness of different host plants. Plants attractive for oviposition but not offering a suitable resource for the development of larvae are called dead-end trap crops. In this study, the number of eggs and larvae and larval survival of Meligethes aeneus (Fab.) in the buds of Brassica napus L., B. rapa L., B. nigra L., B. juncea L., Eruca sativa Mill., Raphanus sativus Pers. and Sinapis alba L. were compared in 2011 and 2012. Overall infestation rate of buds varied from 0 to 71 %; the least attractive plants were S. alba and E. sativa. Egg clutch size per bud was greater on B. nigra and lower on S. alba and E. sativa than on B. napus. Dead larvae were found only in E. sativa and R. sativus buds. Over the two study years, 19 % of larvae on E. sativa and 35 % on R. sativus were dead. In conclusion, M. aeneus preferred to oviposit on Brassica species rather than on cruciferous plants from the other genera. In addition, R. sativus has the features of dead-end trap crop because 35 % of the larvae failed to survive.  相似文献   

8.
1 Field studies were conducted in central Sweden to establish whether two host plants with high and low suitability for pollen beetles (Meligethes aeneus Fabr. [Coleoptera: Nitidulidae] and Meligethes viridescens Fabr.) affected the parasitoid Diospilus capito Nees [Hymenoptera: Braconidae]. 2 Samples of larvae were taken from fields with plots of white mustard, Sinapis alba L. and spring rape, Brassica napus L. in 1997 and 1998. Levels of parasitism and the survival and size of D. capito were measured to determine any influence of the host plant species. Survival and weights of pollen beetles from S. alba and B. napus were also measured. 3 Levels of parasitism between 8% and 29% were recorded. There was a significantly higher likelihood of being parasitized by D. capito for beetle larvae developing on S. alba than on B. napus. We argue that semiochemical or morphological properties of plant species could be responsible for differential parasitism by D. capito. 4 Neither survival of D. capito nor parasitoid size differed from hosts developing on S. alba or B. napus. Pollen beetle emergence was the same for both plant species, but beetles that developed on S. alba weighed less than those from B. napus. Results suggest that the partial resistance of S. alba to the pollen beetle will have no negative effects on the parasitoid D. capito.  相似文献   

9.
Oviposition of phytophagous insects is determined either by adaptive behaviours allowing evaluation and response to host plant quality and/or by nutritional constraints occurring during oogenesis. Besides differences found among host plant species, plant intraspecific diversity can also affect insect oviposition. However, to date few studies have extensively investigated the factors accounting for the effect of this intraspecific variation. We addressed this question using oilseed rape (Brassica napus) and the pollen beetle (Meligethes aeneus), a phytophagous insect that uses the same plants and plant organs both for feeding and laying eggs. Our objectives were to test for a genotypic effect of oilseed rape on pollen beetle oviposition and identify the origin of the possible intergenotypic differences. We tested three hypotheses: oviposition is directly linked to (1) the amount of food eaten; (2) the nutritional quality of the food eaten; (3) a preference of females for certain plant genotypes. Results showed intergenotypic differences in both the number and the size of eggs laid. The factor that best accounted for most of these differences was the amount of food eaten. Nutritional quality of the pollen was of minor importance and females exhibited no preference among genotypes. These results reveal the importance of adult feeding on subsequent oviposition in phytophagous insects, an often neglected factor which partly determines the amount of energy available for oogenesis. Taking into account this factor may be of crucial importance in studies conducted on synovogenic insect species feeding on the same plant on which they lay eggs.  相似文献   

10.
New control strategies for insect pests of arable agriculture are needed to reduce current dependence on synthetic insecticides, the use of which is unsustainable. We investigated the potential of a simple control strategy to protect spring‐sown oilseed rape, Brassica napus L. (Brassicaceae), from two major inflorescence pests: the pollen beetle, Meligethes aeneus (Fabricius) (Coleoptera: Nitidulidae), and the seed weevil, Ceutorhynchus assimilis (Paykull) (Coleoptera: Curculionidae), through exploitation of their host plant preferences. The strategy comprised, for the main crop, Starlight [an oilseed rape cultivar with relatively low proportions of alkenyl glucosinolates in the leaves (thereby releasing lower levels of attractive isothiocyanates than conventional cultivars)] and turnip rape, Brassica rapa (L.) (Brassicaceae), as a trap crop. We tested the system in laboratory, polytunnel semifield arena, and field experiments. The odours of Starlight were less attractive in olfactometer tests to both pests than those from a conventional cultivar, Canyon, and the plants were less heavily colonized in both polytunnel and field experiments. Turnip rape showed good potential as a trap crop for oilseed rape pests, particularly the pollen beetle as its odour was more attractive to both pests than that of oilseed rape. Polytunnel and field experiments showed the importance of relative growth stage in the system. As turnip rape flowers earlier than oilseed rape, beetles would be maintained on turnip rape past the damage‐susceptible growth stage of oilseed rape. The development of a pest control regime based on this strategy is discussed.  相似文献   

11.
Plant biodiversity is known to affect insect populations, both herbivores and their natural enemies, and as a consequence, habitat management through increased plant species composition and abundance can be exploited for sustainable pest management. In agroecosystems where crop monocultures are the routine production practice, plant biodiversity can be increased by maintaining small populations of weeds, with potential beneficial effects arising from concomitant increases in the abundance of predator and parasitoid populations. We manipulated weed populations in both species of canola, Brassica rapa L. and Brassica napus L., to investigate responses of adults of Aleochara bilineata Gyllenhal (Coleoptera: Staphylinidae), an important natural enemy of root maggots (Delia spp., Diptera: Anthomyiidae). Larval root maggots feed on canola taproots, disrupting the flow of water and nutrients within the plants, causing substantial yield reductions. Aleochara bilineata is a predator–parasitoid that attacks all root maggot pre-imaginal life stages. Activity density of A. bilineata increased as monocotyledonous weed biomass declined. Significant preferences between canola species were observed, with A. bilineata associated most frequently with B. rapa compared with B. napus. Our research suggests that improved management of root maggot infestations in canola through enhancement of populations of the A. bilineata predator–parasitoid could be accomplished by reducing weed infestations; however, such recommendations should consider other predators in the system and the role of weeds in reducing root maggot oviposition and damage.  相似文献   

12.
Plant quality is one of the main factors influencing the fitness of phytophagous insects. Plant quality can vary not only among genotypes of the same host plant species, but also relative to the insect sex or its life stage. In the present study, the performance of larvae and adults of the pollen beetle (Meligethes aeneus F., Coleoptera: Nitidulidae), a major insect pest of oilseed rape crops, is compared on six genotypes of oilseed rape (Brassica napus). All of the traits that are measured vary among genotypes, and comprise larval developmental duration, life span of unfed emerging adults and survival time of field‐sampled adults fed with pollen from the different genotypes. No correlation is found between insect performance and quantity of food available, showing that the quality of the food (i.e. pollen) is the fitness determinant for this insect species. Additionally, the performance of larvae and adults is also not correlated despite use of the same plant genotypes, suggesting that the determinants of pollen quality differ at least partially between both life stages. It is hypothesized that this may be a result of extensive differences in diet breadth between the life stages: larvae are specialists of brassicaceous plants, whereas adults are generalists. Finally, it is suggested that the manipulation of plant quality to increase pollen beetle development time may comprise a valuable strategy for favouring biological control by natural enemies of this pest; for example, as a result of extending the vulnerability window of larvae to attack by parasitoids.  相似文献   

13.
Botanical preparations, usually from non-host plants, can be used to manipulate the behaviour of insect pests and their natural enemies. In this study, the effects of extracts of Chrysanthemum morifolium, a non-host plant of the diamondback moth, Plutella xylostella (Linnaeus), on the olfactory and oviposition responses of this phytophagous insect and on levels of parasitism by its specialist parasitoid Cotesia plutellae (Kurdjumov) were examined, using Chinese cabbage Brassica campestris L. ssp. pekinensis as the test host plant. Olfactometer tests showed that volatiles of chrysanthemum extract-treated host plants were less attractive to P. xylostella females than those from untreated host plants; and in contrast, volatiles of the chrysanthemum extract-treated host plants were more attractive to females of its parasitoid C. plutellae than those from untreated host plants. Oviposition preference tests showed that P. xylostella females laid only a small proportion of their eggs on chrysanthemum extract-treated host plants, while ovipositing parasitoid females parasitized a much higher proportion of host larvae feeding on the treated host plants than on untreated host plants. These results suggest that certain non-host plant compounds, when applied onto a host plant, may render the plant less attractive to a phytophagous insect but more attractive to its parasitoids. Application of such non-host plant compounds can be explored to develop push-pull systems to reduce oviposition by a pest insect and at the same time enhance parasitism by its parasitoids in crops.  相似文献   

14.
The light brown apple moth, Epiphyas postvittana is a key pest of wine grapes in Australia. Two parasitoids, Dolichogenidea tasmanica and Therophilus unimaculatus, attack the larval stage of this pest. D. tasmanica is dominant in vineyards, whereas T. unimaculatus is mainly active in native vegetation. We sought to understand why they differ in their use of habitats. Plants are a major component of habitats of parasitoids, and herbivore-infested plants influence parasitoid foraging efficiency by their architecture and emission of volatile chemicals. We investigated how different plant species infested by E. postvittana could affect the foraging success of the two parasitoid species in both laboratory and field experiments. Four common host-plant species were selected for this study. In paired-choice experiments to determine the innate foraging preferences for plants, both parasitoid species showed differences in innate search preferences among plant species. The plant preference of D. tasmanica was altered by oviposition experience with hosts that were feeding on other plant species. In a behavioral assay, the two parasitoid species allocated their times engaged in various types of behavior differently when foraging on different plant species. For both parasitoids, parasitism on Hardenbergia violacea was the highest of the four plant species. Significantly more larvae dropped from Myoporum insulare when attacked than from the other three host-plant species, which indicates that parasitism is also affected by interactions between plants and host insects. In vineyards, parasitism by D. tasmanica was significantly lower on M. insulare than on the other three host-plant species, but the parasitism rates were similar among the other three plant species. Our results indicate that plants play a role in the habitat preferences of these two parasitoid species by influencing their foraging behavior, and are likely to contribute to their distributions among habitats.  相似文献   

15.
Natural enemies of herbivores function in a multitrophic context, and their performance is directly or indirectly influenced by herbivores and their host plants. Very little is known about tritrophic interactions between host plants, pests and their parasitoids, particularly when the host plants are under any stress. Herbivores and their natural enemies’ response to plants under stress are diverse and variable. Therefore, in this study we investigated how diamondback moth, Plutella xylostella (L.), reared on water‐stressed host plants (Brassica napus L. and Sinapis alba L.) influenced the development of its larval parasitoid, Diadegma insulare (Cresson). No significant differences were observed in development of Pxylostella when reared on water‐stressed host plants. However, all results indicated that water stress had a strong effect on developmental parameters of D. insulare. Development of D. insulare was delayed when the parasitoid fed on P. xylostella, reared on stressed host plants. Egg to adult development of D. insulare was faster on non‐stressed B. napus than non‐stressed S. alba followed by stressed B. napus and S. alba. Female parasitoids were heavier on non‐stressed host plants than stressed counterparts. Furthermore, the parasitoid lived significantly longer on stressed B. napus. However, body size was not affected by water treatment. Most host plant parameters measured were significantly lower for water‐stressed than non‐stressed treatments. Results suggest that development of this important and effective P. xylostella parasitoid was influenced by both water stress and host plant species.  相似文献   

16.
Oviposition behaviour of Meligethes aeneus F. (Coleoptera: Nitidulidae) is characterised and quantified on four different plant species. Six behavioural components are identified: W—walking, WA—walking with abdomen on surface, R—resting, B—biting, AOH—placing abdomen over the bite hole and OVI—oviposition. Comparison of host acceptance behaviours on Brassica napus L., Brassica juncea (L.) Czern, Brassica nigra (L.) Koch and Sinapis alba L. showed that S. alba was accepted as a host only after a long exposure to the plant. Behaviour on the Brassica species was similar, however on B. nigra beetles spent a high proportion of time actually ovipositing. We conclude that important cues for oviposition are located both on the bud surface and inside the bud.  相似文献   

17.
Hymenopterous parasitoids of herbivorous insects can be useful biocontrol agents in integrated pest management strategies. However, the potential effects on these beneficials of new components in such strategies are often neglected. Essential oil of lavender, Lavendula angustifolia (Miller) (Lamiaceae), has recently been identified as a potential repellent in new control strategies being developed for the pollen beetle Meligethes aeneus (Fabricius) (Coleoptera: Nitidulidae), a major pest of oilseed rape, Brassica napus L. (Brassicaceae). We tested the electrophysiological and behavioural responses of two common parasitoids of M. aeneus: Phradis interstitialis (Thomson) and P. morionellus (Holmgren) (both Ichneumonidae) using coupled gas chromatography-electroantennodetection (GC-EAD) and olfactometry techniques. Both species elicited electrophysiological responses to lavender oil volatiles, including two compounds known to be repellent to M. aeneus. However, the parasitoids gave no significant responses to the odours of lavender oil in behavioural bioassays and there was no evidence to suggest that lavender-treated oilseed rape plants would reduce host habitat location by parasitoids of the target pest.  相似文献   

18.
Understanding how host‐plant characteristics affect behavioral and physiological responses of insect herbivores is of considerable importance in the development of resistant crop germplasm. Feeding, oviposition preference, larval development, and oviposition behavior of the cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (= Ceutorhynchus assimilis Payk.) (Coleoptera: Curculionidae), were investigated on eight Brassicaceae species that differed in their glucosinolate profiles. The least preferred host plants for feeding and oviposition were the Sinapis alba L. lines while the Brassica carinata L. line was most preferred. Larval development occurred most rapidly on Brassica rapa L. and slowest on S. alba. Larval weight was highest on B. napus L. and lowest on S. alba. Total glucosinolate levels did not influence C. obstrictus larval growth or development; however high levels of specific glucosinolates such as p‐hydroxybenzyl and 3‐butenyl glucosinolate were associated with increased developmental time or reduced weight. The time required for oviposition behavioral events was measured on different host‐plant species: B. rapa, B. napus, B. napus×S. alba, B. tournefortii Gouan., B. juncea (L.) Czern, B. carinata, B. nigra (L.) Koch., and S. alba. The early steps in the sequence were completed faster on more susceptible host plants (B. carinata, B. napus, and B. rapa) than on relatively resistant ones (B. tournefortii and B. juncea). Females explored pods of B. nigra and S. alba, but oviposition occurred only rarely on these species. There was no significant difference in the location on the pod on which oviposition occurred among the different plant species. Mean eggs laid per female weevil were highest on the B. napus×S. alba hybrid and lowest on B. nigra and S. alba.  相似文献   

19.
The blue willow beetle, Phratora vulgatissima, is considered to be the most damaging herbivorous pest in Salix short-rotation coppices throughout Europe. The braconid parasitoid Perilitus brevicollis is an important natural enemy of Phratora. As several different Salix species are used in coppices, I investigated the bottom-up (tritrophic) effects of Salix on the parasitoid. Three host plants were studied: the introduced fast-growing S. viminalis, which is highly susceptible to the beetle; S. dasyclados, which is introduced and moderately-resistant to the beetle; and the native slow-growing Salix cinerea, which is not currently used in coppices. The identity of the host-plant species had significant effects on parasitoid larval development time; parasitoids developed rapidly on the susceptible S. viminalis and slowly on the moderately resistant S. dasyclados. Increased development time resulted in reduced adult longevity. Host-plant species identity also affected larval survival; 57%, 64%, and 49% of the parasitoids successfully completed larval development in beetles fed S. viminalis, S. cinerea, and S. dasyclados, respectively. Parasitoid development was also correlated with the body size of their beetle host, but this effect was independent of the identity of the host-plant species. The results of this study suggest that the parasitoid has higher survival and growth rates when it parasitizes beetles feeding on the common coppice species S. viminalis, but the performance of the parasite is reduced when the beetle feeds on the moderately-resistant S. dasyclados. Conversely, the omnivorous biocontrol agents sometimes used in these systems appear to perform better on S. dasyclados compared to S. viminalis. The results of this study suggest that Perilitus parasitoids and omnivorous beetle predators may provide complementary protection to Salix and therefore be useful in coppice management.  相似文献   

20.
The oviposition and feeding preferences of the pollen beetle, Meligethes aeneus, were determined in choice and no-choice tests in field, semi-field and greenhouse trials. Plant species used were Brassica napus, B. campestris, B. juncea, B. nigra, B. carinata, Sinapis alba and Crambe abyssinica. With respect to number of eggs laid, S. alba and C. abyssinica were inferior to the other species. Pollen beetles laid fewer eggs on B. nigra than on the other Brassica spp. in no-choice tests, however this difference was partly due to fewer eggs laid per bud rather than fewer buds used for oviposition. Most eggs, for all plant species, were deposited in buds sized 2–3 mm. Feeding damage on all plant species was relatively similar. Pollen beetles seem to have a wider host range for feeding than for oviposition. There was good agreement in plant species ranking as oviposition hosts between the field, semi-field and greenhouse trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号