首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-frequency vibrations of DNA molecules.   总被引:1,自引:0,他引:1  
A model for calculating the low-frequency modes in DNA molecules is presented. The present model is associated with the 'breathing' of a DNA molecule as well as its complementary hydrogen bonds. The calculated results show excellent agreement with the observed low-frequency wavenumber (30 cm-1). Consequently, such an internal motion as reflected in the proposed model might be the origin of the observed low-frequency vibration in DNA molecules. This is helpful for investigating the relevant biological functions, which so far have been discussed by many scientists.  相似文献   

2.
Identification of low-frequency modes in protein molecules.   总被引:1,自引:0,他引:1       下载免费PDF全文
It is demonstrated that the observed low-frequency motions with wave numbers of 22 cm-1 and 25 cm-1 for insulin and lysozyme respectively originate from the accordion-like motions of the principal helices therein. The calculated results based on such a model are in good agreement with the observed values. During calculations the role of the internal microenvironment upon the low-frequency motion is naturally revealed, so as to elucidate as well why this kind of low-frequency motion is so sensitive to the conformations of proteins observed.  相似文献   

3.
Normal modes of vibration of DNA in the low-frequency region (10-300 cm-1 interval) have been identified from Raman spectra of crystals of B-DNA [d(CGCAAATTTGCG)], A-DNA [r(GCG)d(CGC) and d(CCCCGGGG)], and Z-DNA [d(CGCGCG) and d(CGCGTG)]. The lowest vibrational frequencies detected in the canonical DNA structures--at 18 +/- 2 cm-1 in the B-DNA crystal, near 24 +/- 2 cm-1 in A-DNA crystals, and near 30 +/- 2 cm-1 in Z-DNA crystals--are shown to correlate well with the degree of DNA hydration in the crystal structures, as well as with the level of hydration in calf thymus DNA fibers. These findings support the assignment [H. Urabe et al. (1985) J. Chem. Phys. 82, 531-535; C. Demarco et al. (1985) Biopolymers 24, 2035-2040] of the lowest frequency Raman band of each DNA to a helix mode, which is dependent primarily upon the degree of helix hydration, rather than upon the intrahelical conformation. The present results show also that B-, A-, C-, and Z-DNA structures can be distinguished from one another on the basis of their characteristic Raman intensity profiles in the region of 40-140 cm-1, even though all structures display two rather similar and complex bands centered within the intervals of 66-72 and 90-120 cm-1. The similarity of Raman frequencies for B-, A-, C-, and Z-DNA suggests that these modes originate from concerted motions of the bases (librations), which are not strongly dependent upon helix backbone geometry or handedness. Correlation of the Raman frequencies and intensities with the DNA base compositions suggests that the complex band near 90-120 cm-1 in all double-helix structures is due to in-plane librational motions of the bases, which involve stretching of the purine-pyrimidine hydrogen bonds. This would explain the centering of the band at higher frequencies in structures containing G.C pairs (greater than 100 cm-1) than in structures containing A.T pairs (less than 100 cm-1), consistent with the strengths of G.C and A.T hydrogen bonding.  相似文献   

4.
A Green's function approach is used in constructing a dynamic model of a semi-infinite length of the DNA homopolymer B poly(d) . poly(d). Considerable attention is focused on the hydrogen bond stretching close to the terminus. A melting (or breathing) coordinate (M) is defined as an average over the three linking hydrogen bond stretches in a unit cell. The thermal mean squared amplitude of (M) is enhanced at the chain end compared with the interior. Spectral branches at 69, 80 and 105 cm-1, as well as a local mode at 75 cm-1, are primary contributors to the enhancement. We suggest that this fact can affect the thermal melting of a DNA double helical homopolymer, enhancing the tendency to start from an end (if one is available). We show how certain infinite chain modes with small (M) amplitude can turn into breathing modes near the terminus, and suggest that the same phenomenon may occur near other specific base-pair sequences. There is also considerable attention paid to the low microwave region from approximately 0 to 1.75 cm-1. The thermally activated modes in this frequency region contribute approximately (0.02 A)2 to [M2(0)] at 40 K, approximately two orders of magnitude greater than for [M2(infinity)]. Most important however, is the existence of narrow resonant modes in this frequency region. Particularly pronounced resonances near 0.03 cm-1 and 0.08 cm-1 (approximately 0.9 and 2.4 GHz) amplify M2(0) at the terminus by about for orders of magnitude over the infinite chain value M2(infinity).  相似文献   

5.
S H Han  J F Madden  L M Siegel  T G Spiro 《Biochemistry》1989,28(13):5477-5485
The vibrations of the bound diatomic heme ligands CO, CN-, and NO are investigated by resonance Raman spectroscopy in various redox states of Escherichia coli sulfite reductase hemoprotein, and assignments are generated by use of isotopically labeled ligands. For the fully reduced CO complex (ferrous siroheme, reduced Fe4S4 cluster) at room temperature, nu CO is observed at 1904 cm-1, shifting to 1920 cm-1 upon oxidation of the cluster. The corresponding delta FeCO modes are identified at 574 and 566 cm-1, respectively, by virtue of the zigzag pattern of their isotopic shifts. In frozen solution, two species are observed for the cluster-oxidized state, with nu CO at 1910 and 1936 cm-1 and nu FeC at 532 and 504 cm-1, respectively; nu FeC for the fully reduced species is identified at 526 cm-1 in the frozen state. For the ferrous siroheme-NO complex (cluster oxidized), nu NO is identified at 1555 cm-1 in frozen solution and a low-frequency mode is identified at 558 cm-1; this stretching mode is significantly lower than that observed in Mb-NO. For the ferric siroheme cyanide complexes evidence of two ligand-bonding forms is observed, with modes at 451/390 and 451/352 cm-1; they are distinguished by a reversal of the isotopic shift patterns of the upper and lower modes and could arise from a linear and a bent Fe-C unit, respectively. For the ferrous siroheme cyanide complex isotope-sensitive modes observed at 495 and 452 cm-1 are assigned to the FeCN- bending and FeC stretching vibrations, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Chu HA  Gardner MT  O'Brien JP  Babcock GT 《Biochemistry》1999,38(14):4533-4541
The low-frequency (<1000 cm-1) region of the IR spectrum has the potential to provide detailed structural and mechanistic insight into the photosystem II/oxygen evolving complex (PSII/OEC). A cluster of four manganese ions forms the core of the OEC and diagnostic manganese-ligand and manganese-substrate modes are expected to occur in the 200-900 cm-1 range. However, water also absorbs IR strongly in this region, which has limited previous Fourier transform infrared (FTIR) spectroscopic studies of the OEC to higher frequencies (>1000 cm-1). We have overcome the technical obstacles that have blocked FTIR access to low-frequency substrate, cofactor, and protein vibrational modes by using partially dehydrated samples, appropriate window materials, a wide-range MCT detector, a novel band-pass filter, and a closely regulated temperature control system. With this design, we studied PSII/OEC samples that were prepared by brief illumination of O2 evolving and Tris-washed preparations at 200 K or by a single saturating laser flash applied to O2 evolving and inhibited samples at 250 K. These protocols allowed us to isolate low-frequency modes that are specific to the QA-/QA and S2/S1 states. The high-frequency FTIR spectra recorded for these samples and parallel EPR experiments confirmed the states accessed by the trapping procedures we used. In the S2/S1 spectrum, we detect positive bands at 631 and 602 cm-1 and negative bands at 850, 679, 664, and 650 cm-1 that are specifically associated with these two S states. The possible origins of these IR bands are discussed. For the low-frequency QA-/QA difference spectrum, several modes can be assigned to ring stretching and bending modes from the neutral and anion radical states of the quinone acceptor. These results provide insight into the PSII/OEC and demonstrate the utility of FTIR techniques in accessing low-frequency modes in proteins.  相似文献   

7.
R M Wartell  J T Harrell 《Biochemistry》1986,25(9):2664-2671
Raman spectra were obtained from four bacterial DNAs varying in GC content and four periodic DNA polymers in 0.1 M NaCl at 25 degrees C. A curve fitting procedure was employed to quantify and compare Raman band characteristics (peak location, height, and width) from 400 to 1600 cm-1. This procedure enabled us to determine the minimum number of Raman bands in regions with overlapping peaks. Quantitative comparison of the Raman bands of the eight DNAs provided several new results. All of the DNAs examined required bands near 809 (+/- 7) and 835 (+/- 5) cm-1 to accurately reproduce the experimental spectra. Since bands at these frequencies are associated with A-family and B-family conformations, respectively, this result indicates that all DNAs in solution have a mixture of conformations on the time scale of the Raman scattering process. Band characteristics in the 800-850-cm-1 region exhibited some dependence on CG content and base pair sequence. As previously noted by Thomas and Peticolas [Thomas, G. A., & Peticolas, W. L. (1983) J. Am. Chem. Soc. 105, 993], the poly[d(A)].poly[d(T)] spectra were qualitatively distinct in this region. The A-family band is clearly observed at 816 cm-1. The intensity of this band and that of the B-family band at 841 cm-1 were similar, however, to intensities in the natural DNA spectra. Three bands at 811, 823, and 841 cm-1 were required to reproduce the 800-850-cm-1 region of the poly[d(A-T)].poly[d(A-T)] spectra. This may indicate the presence of three backbone conformations in this DNA polymer. Analysis of intensity vs. GC content for 42 Raman bands confirmed previous assignments of base and backbone vibrations and provided additional information on a number of bands.  相似文献   

8.
We have obtained low frequency (less than 200 cm-1) Raman spectra of calf-thymus DNA and poly(rI).poly(rC) as a function of water content and counterion species and of d(GGTATACC)2 and d(CGCGAATTCGCG)2 crystals. We have found that the Raman scattering from water in the first and second hydration shells does not contribute directly to the Raman spectra of DNA. We have determined the number of strong Raman active modes by comparing spectra for different sample orientations and polarizations and by obtaining fits to the spectra. We have found at least five Raman active modes in the spectra of A- and B-DNA. The frequencies of the modes above 40 cm-1 do not vary with counterion species, and there are only relatively small changes upon hydration. These modes are, therefore, almost completely internal. The mode near 34 cm-1 in A-DNA is mostly internal, whereas the mode near 25 cm-1 is dominated by interhelical interactions. The observed intensity changes upon dehydration were found to be due to the decrease in interhelical distance. Polymer length appears to play a role in the lowest frequency modes.  相似文献   

9.
J F Madden  S H Han  L M Siegel  T G Spiro 《Biochemistry》1989,28(13):5471-5477
Resonance Raman (RR) spectra from the hemoprotein subunit of Escherichia coli sulfite reductase (SiR-HP) are examined in the low-frequency (200-500 cm-1) region where Fe-S stretching modes are expected. In spectra obtained with excitation in the siroheme Soret or Q bands, this region is dominated by siroheme modes. Modes assignable to the Fe4S4 cluster are selectively enhanced, however, with excitation at 488.0 or 457.9 nm. The assignments are confirmed by observation of the expected frequency shifts in SiR-HP extracted from E. coli grown on 34S-labeled sulfate. The mode frequencies and isotopic shifts resemble those seen in RR spectra of other Fe4S4 proteins and analogues, but the breathing mode of the cluster at 342 cm-1 is higher than that observed in the other species. Spectra of various ligand complexes of SiR-HP reveal only slight sensitivity of the cluster terminal ligand modes to the presence of exogenous heme ligands, at variance with a model of ligand binding in a bridged mode between heme and cluster. Close examination of RR spectra obtained with siroheme Soret-band excitation reveals additional 34S-sensitive features at 352 and 393 cm-1. These may be attributed to a bridging thiolate ligand.  相似文献   

10.
Resonance Raman (RR) spectra are reported for amino acid and amine adducts of pyridoxal 5'-phosphate (PLP) and 5'-deoxypyridoxal (5'-dPL) in aqueous solution. For the valine adducts, a detailed study has been carried out on solutions at pH and pD 5, 9, and 13, values at which the pyridine and imine protons are successively ionized, and on the adducts formed from 15N-valine, alpha-deuterovaline, and N-methyl-PLP. Good quality spectra were obtained, despite the strong fluorescence of pyridoxal Schiff bases, by adding KI as a quencher, and by exciting the molecules on the blue side of their absorption bands: 406.7 nm (cw Kr+ laser) for the pH 5 and 9 species (lambda max = 409 and 414 nm), and 354.7 nm (pulsed YAG laser, third harmonic) for the pH 13 species (lambda max = 360 nm). A prominent band at 1646 cm-1 is assigned to the imine C=N stretch via its 13 cm-1 15N shift. A 12 cm-1 down-shift of the band in D2O confirms that the Schiff base linkage is protonated at pH 9. Deprotonation at pH 13 shifts VC = N from 1646 to 1629 cm-1, values typical of conjugated Schiff bases. The strongest band in the spectrum, at 1338 cm-1, shifts to 1347 cm-1 upon pyridine protonation at pH 5, and is assigned to a ring mode with a large component of phenolate C-O stretch. A shoulder on its low-frequency side is assigned to the C4-C4' stretch. Large enhancements of these modes can be understood qualitatively in terms of the dominant resonance structures contributing to the ground and resonant excited states. A number of weaker bands are observed, and assigned to pyridine ring modes. These modes gain significantly in intensity, while the exocyclic modes diminish, when the spectra are excited at 266 nm (YAG laser, fourth harmonic) in resonance with ring-localized electronic transitions.  相似文献   

11.
Resonance Raman studies of lactoperoxidase   总被引:2,自引:0,他引:2  
Resonance Raman (RR) spectra obtained at three excitation wavelengths are reported for various ferric, ferrous, and ferryl derivatives of bovine lactoperoxidase. The RR spectra of the ferric derivatives show the full complement of the vinyl stretching and scissor modes indicating that the two vinyls in the protoporphyrin IX prosthetic group are present in unmodified forms. The cysteine thiol complex exhibits a RR spectrum identical to that of the native enzyme, an observation which strongly suggests a nonheme binding site for the thiol substrates. The different ferrous complexes of lactoperoxidase which result from heme reduction at slightly alkaline and acidic pH gave identical low-frequency RR spectra. Differences are observed, however, in the high-frequency region. Reduction in the presence of cyanide, however, yields two time-resolved complexes. Changes in the ligand field during the conversion to the final form of the cyanoferrous complex are proposed based on the changes observed in the low-frequency vibrational spectrum. Comparisons are made between the low-frequency RR spectra of the limiting form of the cyanoferrous and the nitric oxide lactoperoxidase complexes. The similarity between the RR spectra of these two complexes in the 150-500 cm-1 region supports the assignment of structures for these complexes where the six-coordinate heme iron is displaced from the heme plane and away from the proximal histidine ligand.  相似文献   

12.
Raman spectroscopic study of left-handed Z-RNA   总被引:3,自引:0,他引:3  
The solvent conditions that induce the formation of a left-handed Z form of poly[r(G-C)] have been extended to include 6.5 M NaBr at 35 degrees C and 3.8 M MgCl2 at room temperature. The analysis of the A----Z transition in RNA by circular dichroism (CD), 1H and 31P NMR, and Raman spectroscopy shows that two distinct forms of left-handed RNA exist. The ZR-RNA structure forms in high concentrations of NaBr and NaClO4 and exhibits a unique CD signature. ZD-RNA is found in concentrated MgCl2 and has a CD signature similar to the Z form of poly[d(G-C)]. The loss of Raman intensity of the 813-cm-1 A-form marker band in both the A----ZR-RNA and A----ZD-RNA transitions parallels the loss of intensity at 835 cm-1 in the B----Z transition of DNA. A guanine vibration that is sensitive to the glycosyl torsion angle shifts from 671 cm-1 in A-RNA to 641 cm-1 in both ZD- and ZR-RNA, similar to the B----Z transition in DNA in which this band shifts from 682 to 625 cm-1. Significant differences in the glycosyl angle and sugar pucker between Z-DNA and Z-RNA are suggested by the 16-cm-1 difference in the position of this band. The Raman evidence for structural difference between ZD- and ZR-RNA comes from two groups of bands: First, Raman intensities between 1180 and 1600 cm-1 of ZD-RNA differ from those for ZR-RNA, corroborating the CD evidence for differences in base-stacking geometry. Second, the phosphodiester stretching bands near 815 cm-1 provide evidence of differences in backbone geometry between ZD- and ZR-RNA.  相似文献   

13.
A Desbois  M Tegoni  M Gervais  M Lutz 《Biochemistry》1989,28(20):8011-8022
Resonance Raman spectra of Hansenula anomala L-lactate:cytochrome c oxidoreductase (or flavocytochrome b2), of its cytochrome b2 core, and of a bis(imidazole) iron-protoporphyrin complex were obtained at the Soret preresonance from the oxidized and reduced forms. Raman contributions from both the isoalloxazine ring of flavin mononucleotide (FMN) and the heme b2 were observed in the spectra of oxidized flavocytochrome b2. Raman diagrams showing frequency differences of selected FMN modes between aqueous and proteic environments were drawn for various flavoproteins. These diagrams were closely similar for flavocytochrome b2 and for flavodoxins. This showed that the FMN structure must be very similar in both types of proteins, despite their very different proteic pockets. However, the electron density at this macrocycle was found to be higher in flavocytochrome b2 than in these electron transferases. No significant difference was observed between the heme structures in flavocytochrome b2 and in cytochrome b2 core. The porphyrin center-N(pyrrole) distances in the oxidized and reduced heme b2 were estimated to be 1.990 and 2.022 A from frequencies of porphyrin skeletal modes, respectively. The frequency of the vinyl stretching mode of protoporphyrin was found to be very affected in resonance Raman spectra of flavocytochrome b2 and of cytochrome b2 core (1634-1636 cm-1) relative to those observed in the spectra of iron-protoporphyrin [bis(imidazole)] complexes (1620 cm-1). These specificities were interpreted as reflecting a near coplanarity of the vinyl groups of heme b2 with the pyrrole rings to which they are attached. The low-frequency regions of resonance Raman indicated that the iron atoms of the four hemes b2 are in the porphyrin plane whatever their oxidation state. The histidine-Fe-histidine symmetric stretching mode was located at 205 cm-1 in the spectra of flavocytochrome b2 and of cytochrome b2 core. It was insensitive to the iron oxidation state and indicated strong Fe-His bonds in both states.  相似文献   

14.
Resonance Raman excitation profiles have been measured for the bovine visual pigment rhodopsin using excitation wavelengths ranging from 457.9 to 647.1 nm. A complete Franck-Condon analysis of the absorption spectrum and resonance Raman excitation profiles has been performed using an excited-state, time-dependent wavepacket propagation technique. This has enabled us to determine the change in geometry upon electronic excitation of rhodopsin's 11-cis-retinal protonated Schiff base chromophore along 25 normal coordinates. Intense low-frequency Raman lines are observed at 98, 135, 249, 336, and 461 cm-1 whose intensities provide quantitative, mode-specific information about the excited-state torsional deformations that lead to isomerization. The dominant contribution to the width of the absorption band in rhodopsin results from Franck-Condon progressions in the 1,549 cm-1 ethylenic normal mode. The lack of vibronic structure in the absorption spectrum is shown to be caused by extensive progressions in low-frequency torsional modes and a large homogeneous linewidth (170 cm-1 half-width) together with thermal population of low-frequency modes and inhomogeneous site distribution effects. The resonance Raman cross-sections of rhodopsin are unusually weak because the excited-state wavepacket moves rapidly (approximately 35 fs) and permanently away from the Franck-Condon geometry along skeletal stretching and torsional coordinates.  相似文献   

15.
The spectrum of vibrations and normal model for the Mg piropheophorbide-histidine complex was calculated using the MNDO-PM3 (MOPAC) semiempirical quantum chemical method. The delocalization index and the distribution function were introduced to describe the shape of normal vibrations. The greatest part (approximately 65%) of the low-frequency vibrations (1-400 cm-1) was shown to delocalize over both the His and Mg piropheophorbide molecules. Leu, Met, and Asp were also studied as the fifth ligand to the Mg piropheophorbide molecule. It is concluded that the fifth amino acid ligand to porphyrin molecules causes marked geometrical distortions in porphyrin, and induces a new, compared to four coordinated pigment, spectrum of normal modes.  相似文献   

16.
The self-complementary oligonucleotides [r(CGC)d(CGC)]2 and [d(CCCCGGGG)]2 in single-crystal and solution forms have been investigated by Raman spectroscopy. Comparison of the Raman spectra with results of single-crystal X-ray diffraction and with data from polynucleotides permits the identification of a number of Raman frequencies diagnostic of the A-helix structure for GC sequences. The guanine ring frequency characteristic of C3'-endo pucker and anti base orientation is assigned at 668 +/- 2 cm-1 for both dG and rG residues of the DNA/RNA hybrid [r(GCG)d(CGC)]2. The A-helix backbone of crystalline [r(GCG)d(CGC)]2 is altered slightly in the aqueous structure, consistent with the conversion of at least two residues to the C2'-endo/anti conformation. For crystalline [d(CCCCGGGG)]2, the Raman and X-ray data indicate nucleosides of alternating 2'-endo-3'-endo pucker sandwiched between terminal and penultimate pairs of C3'-endo pucker. The A-A-B-A-B-A-A-A backbone of the crystalline octamer is converted completely to a B-DNA fragment in aqueous solution with Raman markers characteristic of C2'-endo/anti-G (682 +/- 2) and the B backbone (826 +/- 2 cm-1). In the case of poly(dG).poly(dC), considerable structural variability is detected. A 4% solution of the duplex is largely A DNA, but a 2% solution is predominantly B DNA. On the other hand, an oriented fiber drawn at 75% relative humidity reveals Raman markers characteristic of both A DNA and a modified B DNA, not unlike the [d-(CCCCGGGG)]2 crystal. A comparison of Raman and CD spectra of the aqueous [d(CCCCGGGG)]2 and poly(dG).poly(dC) structures suggests the need for caution in the interpretation of CD data from G clusters in DNA.  相似文献   

17.
The vibrational infrared absorption changes associated with the oxidation of cytochrome b559 (Cyt b559) have been characterized. In photosystem II (PS II) enriched membranes, low-potential (LP) and high-potential (HP) Cyt b559 were investigated by light-induced FTIR difference spectroscopy. The redox transition of isolated Cyt b559 is characterized by protein electrochemistry. On the basis of a model of the assembly of Cyt b559 with the two axial Fe ligands being histidine residues of two distinct polypeptides, each forming a transmembrane alpha-helix [Cramer, W.A., Theg, S.M., & Widger, W.R. (1986) Photosynth. Res. 10, 393-403], the bisimidazole and bismethylimidazole complexes of Fe protoporphyrin IX were electrochemically oxidized and reduced to detect the IR oxidation markers of the heme and its two axial ligands. Major bands at 1674/1553, 1535, and 1240 cm-1 are tentatively assigned to nu 37 (CaCm), nu 38-(CbCb) and delta (CmH) modes, respectively; other bands at 1626, 1613, 1455, 1415, and 1337 cm-1 are assigned to porphyrin skeletal and vinyl modes. Modes at 1103 and 1075/1066 cm-1 are assigned to the 4-methylimidazole and imidazole ligands, respectively. For the isolated Cyt b559, it is shown that both the heme (at 1556-1535, 1337, and 1239 cm-1), the histidine ligands at 1104 cm-1 and the protein (between 1600 and 1700 cm-1 and at 1545 cm-1) are affected by the charge stabilization. The excellent agreement between model compounds and isolated Cyt b559 reinforces the validity of the model of a heme iron coordinated to two histidine residues for Cyt b559. A differential signal at 1656/1641 cm-1 is assigned to peptide C = O mode(s). We speculate that this signal reflects the change in strength of a hydrogen bond formed between the histidine ligand(s) and the polypeptide backbone upon oxidoreduction of the cytochrome. In PS II membranes, the signals characteristic of Cyt b559 photooxidation are found at 1660/1652 and 1625 cm-1, for both the high- and low-potential forms. The differences observed in the amplitude of the 1660/1652-cm-1 band, at 1700 and 1530-1510 cm-1 in the light-induced FTIR difference spectra of Cyt b559 HP and LP, show that the mechanisms of heme oxidation in vivo imply different molecular processes for the two forms Cyt b559 HP and LP.  相似文献   

18.
A-DNA is a stable alternative right-handed double helix that is favored by certain sequences (e.g., (dG)n.(dC)n) or under low humidity conditions. Earlier A-DNA structures of several DNA oligonucleotides and RNA.DNA chimeras have revealed some conformational variation that may be the result of sequence-dependent effects or crystal packing forces. In this study, four crystal structures of three decamer oligonucleotides, d(ACCGGCCGGT), d(ACCCGCGGGT), and r(GC)d(GTATACGC) in two crystal forms (either the P6(1)22 or the P2(1)2(1)2(1) space group) have been analyzed at high resolution to provide the molecular basis of the structural difference in an experimentally consistent manner. The study reveals that molecules crystallized in the same space group have a more similar A-DNA conformation, whereas the same molecule crystallized in different space groups has different (local) conformations. This suggests that even though the local structure is influenced by the crystal packing environments, the DNA molecule adjusts to adopt an overall conformation close to canonical A-DNA. For example, the six independent CpG steps in these four structures have different base-base stacking patterns, with their helical twist angles (omega) ranging from 28 degrees to 37 degrees. Our study further reveals the structural impact of different counter-ions on the A-DNA conformers. [Co(NH3)6]3+ has three unique A-DNA binding modes. One binds at the major groove side of a GpG step at the O6/N7 sites of guanine bases via hydrogen bonds. The other two modes involve the binding of ions to phosphates, either bridging across the narrow major groove or binding between two intra-strand adjacent phosphates. Those interactions may explain the recent spectroscopic and NMR observations that [Co(NH3)6]3+ is effective in inducing the B- to A-DNA transition for DNA with (G)n sequence. Interestingly, Ba2+ binds to the same O6/N7 sites on guanine by direct coordinations.  相似文献   

19.
Resonance Raman (RR) spectra are reported for CO-bound cytochrome c peroxidase (CCP). At low pH, two forms are observed: form II, with nu Fe-C = 530 cm-1 and delta FeCO = 585 cm-1, and form I, with nu Fe-C = 495 cm-1 and no detectable delta FeCO. They appear to have coincident nu CO infrared bands, at 1922 cm-1. These low-pH forms, similar to those observed for horseradish peroxidase (HRP), are attributed to tilted, H-bonded CO and perpendicular CO, respectively. The frequencies differ between the two proteins, a weaker H bond to CO being indicated for CCP. As with HRP, the equilibrium between forms I and II is shifted toward the latter at increasing CO concentrations, suggesting that secondary binding of CO perturbs the distal residues. At high pH [8.4, tris(hydroxymethyl)aminomethane buffer] the form II fraction converts to another form, II', with nu FeC = 503 cm-1, delta FeCO = 575 cm-1, and nu CO = 1948 cm-1; a tilted, non-H-bonded geometry is suggested. If phosphate buffer is used, however, form II (H bonded) persists at pH 8.4. This result establishes a role for phosphate in stabilizing the H-bonded form of the enzyme; it is suggested that phosphate binds near the distal imidazole and substantially increases its pKa. The conformational state is also influenced by aging. Fresh protein contains purely high spin FeIII heme, as monitored by the high-frequency RR spectrum, and yields form II almost exclusively at elevated CO concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Fluorescence emission and triplet-minus-singlet (T-S) absorption difference spectra of the CP47 core antenna complex of photosystem II were measured as a function of temperature and compared to those of chlorophyll a in Triton X-100. Two spectral species were found in the chlorophyll T-S spectra of CP47, which may arise from a difference in ligation of the pigments or from an additional hydrogen bond, similar to what has been found for Chl molecules in a variety of solvents. The T-S spectra show that the lowest lying state in CP47 is at approximately 685 nm and gives rise to fluorescence at 690 nm at 4 K. The fluorescence quantum yield is 0.11 +/- 0.03 at 4 K, the chlorophyll triplet yield is 0.16 +/- 0.03. Carotenoid triplets are formed efficiently at 4 K through triplet transfer from chlorophyll with a yield of 0.15 +/- 0.02. The major decay channel of the lowest excited state in CP47 is internal conversion, with a quantum yield of about 0.58. Increase of the temperature results in a broadening and blue shift of the spectra due to the equilibration of the excitation over the antenna pigments. Upon increasing the temperature, a decrease of the fluorescence and triplet yields is observed to, at 270 K, a value of about 55% of the low temperature value. This decrease is significantly larger than of chlorophyll a in Triton X-100. Although the coupling to low-frequency phonon or vibration modes of the pigments is probably intermediate in CP47, the temperature dependence of the triplet and fluorescence quantum yield can be modeled using the energy gap law in the strong coupling limit of Englman and Jortner (1970. J. Mol. Phys. 18:145-164) for non-radiative decays. This yields for CP47 an average frequency of the promoting/accepting modes of 350 cm-1 with an activation energy of 650 cm-1 for internal conversion and activationless intersystem crossing to the triplet state through a promoting mode with a frequency of 180 cm-1. For chlorophyll a in Triton X-100 the average frequency of the promoting modes for non-radiative decay is very similar, but the activation energy (300 cm-1) is significantly smaller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号