首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
本实验通过探索胰岛素信号通路及其相关途径对茶足柄瘤蚜茧蜂蛹滞育的影响,从而方便寻找胰岛素替代物,为害虫防治提供新思路。利用RNA-Seq,对滞育组与非滞育组的茶足柄瘤蚜茧蜂进行转录组测序,结合生物信息学方法对转录组中胰岛素信号通路及其相关途径的差异表达基因进行了分析。与胰岛素信号通路相关差异表达基因共31个,重点分析的PI3K-Akt, FoxO, MAPK三条途径,差异表达基因分别为55, 21和28个。这些滞育关联基因呈现不同程度的上调或下调表达,发现Sos, FASN, TSC1, PRKAB等基因与茶足柄瘤蚜茧蜂滞育密切相关,共同影响茶足柄瘤蚜茧蜂的滞育。胰岛素信号通路及其相关途径对茶足柄瘤蚜茧蜂的滞育起着非常重要的作用,主要体现在影响虫体能量代谢、脂质积累、细胞增殖等方面。  相似文献   

9.
The regulation of porcine subcutaneous (SC) and intramuscular (IM) fat deposition significantly affects pork quality and the lean meat percentage of the carcass, respectively. The adipokine C1q/tumor necrosis factor-related protein 6 (CTRP6), plays a significant role in regulating animal fat deposition. The purpose of this study was to understand the effects of CTRP6 gene knockdown in IM and SC adipocytes by RNA-seq analysis. A total of 1830 and 2936 differentially expressed genes (DEGs) were identified in SC and IM adipocytes, respectively. 844 were down- and 2092 were upregulated in SC adipocytes, while 648 were down- and 1182 were upregulated in IM adipocytes. Furthermore, 1778 DEGs were detected only in SC adipocytes, 672 DEGs only in IM adipocytes, and 1158 DEGs in both types of adipocytes. GO analysis indicated that DEGs involved in adipocyte differentiation were significantly enriched in both SC and IM adipocytes following treatment with CTRP6-siRNA. Moreover, KEGG pathway enrichment analysis revealed differences of metabolic regulation between IM and SC adipocytes. With CTRP6-silencing, the signaling pathways related to Ras and arachidonic acid metabolism were significantly enriched in IM adipocytes, while four other signaling pathways, encompassing the TNF, MAPK, p53 and adipokine pathway were specifically enriched in SC adipocytes. Interestingly, the effect of CTRP6-siRNA treatment was attenuated by the specific Ras activator ML-097 in IM adipocytes, while the specific p53 activator SJ-172550 had the corresponding effect in SC adipocytes. Altogether, we suggest that CTRP6 may be a differential regulator of the development and metabolism of IM and SC adipose tissues.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号