首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mahonia bealei (Berberidaceae) is a frequently-used traditional Chinese medicinal plant with efficient anti-inflammatory ability. This plant is one of the sources of berberine, a new cholesterol-lowering drug with anti-diabetic activity. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of M. bealei. The complete cp genome of M. bealei is 164,792 bp in length, and has a typical structure with large (LSC 73,052 bp) and small (SSC 18,591 bp) single-copy regions separated by a pair of inverted repeats (IRs 36,501 bp) of large size. The Mahonia cp genome contains 111 unique genes and 39 genes are duplicated in the IR regions. The gene order and content of M. bealei are almost unarranged which is consistent with the hypothesis that large IRs stabilize cp genome and reduce gene loss-and-gain probabilities during evolutionary process. A large IR expansion of over 12 kb has occurred in M. bealei, 15 genes (rps19, rpl22, rps3, rpl16, rpl14, rps8, infA, rpl36, rps11, petD, petB, psbH, psbN, psbT and psbB) have expanded to have an additional copy in the IRs. The IR expansion rearrangement occurred via a double-strand DNA break and subsequence repair, which is different from the ordinary gene conversion mechanism. Repeat analysis identified 39 direct/inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Analysis also revealed 75 simple sequence repeat (SSR) loci and almost all are composed of A or T, contributing to a distinct bias in base composition. Comparison of protein-coding sequences with ESTs reveals 9 putative RNA edits and 5 of them resulted in non-synonymous modifications in rpoC1, rps2, rps19 and ycf1. Phylogenetic analysis using maximum parsimony (MP) and maximum likelihood (ML) was performed on a dataset composed of 65 protein-coding genes from 25 taxa, which yields an identical tree topology as previous plastid-based trees, and provides strong support for the sister relationship between Ranunculaceae and Berberidaceae. Molecular dating analyses suggest that Ranunculaceae and Berberidaceae diverged between 90 and 84 mya, which is congruent with the fossil records and with recent estimates of the divergence time of these two taxa.  相似文献   

2.
Radish (Raphanus sativus L.) is an edible root vegetable crop that is cultivated worldwide and whose genome has been sequenced. Here we report the complete nucleotide sequence of the radish cultivar WK10039 chloroplast (cp) genome, along with a de novo assembly strategy using whole genome shotgun sequence reads obtained by next generation sequencing. The radish cp genome is 153,368 bp in length and has a typical quadripartite structure, composed of a pair of inverted repeat regions (26,217 bp each), a large single copy region (83,170 bp), and a small single copy region (17,764 bp). The radish cp genome contains 87 predicted protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Sequence analysis revealed the presence of 91 simple sequence repeats (SSRs) in the radish cp genome.  相似文献   

3.
Oil palm (Elaeis guineensis Jacq.) is an economically important crop, which is grown for oil production. To better understand the molecular basis of oil palm chloroplasts, we characterized the complete chloroplast (cp) genome sequence obtained from 454 pyrosequencing. The oil palm cp genome is 156,973 bp in length consisting of a large single-copy region of?85,192 bp flanked on each side by inverted repeats of 27,071 bp with a small single-copy region of 17,639 bp joining the?repeats. The genome contains 112 unique genes: 79 protein-coding genes, 4 ribosomal RNA genes and 29 tRNA genes. By aligning the cp?genome sequence with oil palm cDNA sequences, we observed 18 non-silent and 10 silent RNA editing events among 19 cp protein-coding genes. Creation of an initiation codon by RNA editing in rpl2 has been reported in several monocots and was also found in the oil palm cp genome. Fifty common chloroplast protein-coding genes from 33 plant taxa were used to construct ML and MP?phylogenetic trees. Their topologies are similar and strongly support for the position of E. guineensis as the sister of closely related species Phoenix dactylifera in Arecaceae (palm families) of monocot subtrees.  相似文献   

4.
Oregano (Origanum vulgare L., Lamiaceae) is a medicinal and aromatic plant maybe best known for flavouring pizza. New applications e.g. as natural antioxidants for food are emerging due to the plants' high antibacterial and antioxidant activity. The complete chloroplast (cp) genome of Origanum vulgare (GenBank/EBML/DDBJ accession number: JX880022) consists of 151,935 bp and includes a pair of inverted repeats (IR) of 25,527 bp separated by one small and one large single copy region (SSC and LSC) of 17,745 and 83,136 bp, respectively.  相似文献   

5.
T Huotari  H Korpelainen 《Gene》2012,508(1):96-105
Elodea canadensis is an aquatic angiosperm native to North America. It has attracted great attention due to its invasive nature when transported to new areas in its non-native range. We have determined the complete nucleotide sequence of the chloroplast (cp) genome of Elodea. Taxonomically Elodea is a basal monocot, and only few monocot cp genomes representing early lineages of monocots have been sequenced so far. The genome is a circular double-stranded DNA molecule 156,700bp in length, and has a typical structure with large (LSC 86,194bp) and small (SSC 17,810bp) single-copy regions separated by a pair of inverted repeats (IRs 26,348bp each). The Elodea cp genome contains 113 unique genes and 16 duplicated genes in the IR regions. A comparative analysis showed that the gene order and organization of the Elodea cp genome is almost identical to that of Amborella trichopoda, a basal angiosperm. The structure of IRs in Elodea is unique among monocot species with the whole cp genome sequenced. In Elodea and another monocot Lemna minor the borders between IRs and LSC are located upstream of rps19 gene and downstream of trnH-GUG gene, while in most monocots, IR has extended to include both trnH and rps19 genes. A phylogenetic analysis conducted using Bayesian method, based on the DNA sequences of 81 chloroplast genes from 17 monocot taxa provided support for the placement of Elodea together with Lemna as a basal monocot and the next diverging lineage of monocots after Acorales. In comparison with other monocots, the Elodea cp genome has gone through only few rearrangements or gene losses. IR of Elodea has a unique structure among the monocot species studied so far as its structure is similar to that of a basal angiosperm Amborella. This result together with phylogenetic analyses supports the placement of Elodea as a basal monocot to the next diverging lineage of monocots after Acorales. So far, only few cp genomes representing early lineages of monocots have been sequenced and, therefore, this study provides valuable information about the course of evolution in divergence of monocot lineages.  相似文献   

6.
Praxelis (Eupatorium catarium Veldkamp) is a new hazardous invasive plant species that has caused serious economic losses and environmental damage in the Northern hemisphere tropical and subtropical regions. Although previous studies focused on detecting the biological characteristics of this plant to prevent its expansion, little effort has been made to understand the impact of Praxelis on the ecosystem in an evolutionary process. The genetic information of Praxelis is required for further phylogenetic identification and evolutionary studies. Here, we report the complete Praxelis chloroplast (cp) genome sequence. The Praxelis chloroplast genome is 151,410 bp in length including a small single-copy region (18,547 bp) and a large single-copy region (85,311 bp) separated by a pair of inverted repeats (IRs; 23,776 bp). The genome contains 85 unique and 18 duplicated genes in the IR region. The gene content and organization are similar to other Asteraceae tribe cp genomes. We also analyzed the whole cp genome sequence, repeat structure, codon usage, contraction of the IR and gene structure/organization features between native and invasive Asteraceae plants, in order to understand the evolution of organelle genomes between native and invasive Asteraceae. Comparative analysis identified the 14 markers containing greater than 2% parsimony-informative characters, indicating that they are potential informative markers for barcoding and phylogenetic analysis. Moreover, a sister relationship between Praxelis and seven other species in Asteraceae was found based on phylogenetic analysis of 28 protein-coding sequences. Complete cp genome information is useful for plant phylogenetic and evolutionary studies within this invasive species and also within the Asteraceae family.  相似文献   

7.
The sequence of the chloroplast genome, which is inherited maternally, contains useful information for many scientific fields such as plant systematics, biogeography and biotechnology because its characteristics are highly conserved among species. There is an increase in chloroplast genomes of angiosperms that have been sequenced in recent years. In this study, the nucleotide sequence of the chloroplast genome (cpDNA) of Veratrum patulum Loes. (Melanthiaceae, Liliales) was analyzed completely. The circular double-stranded DNA of 153,699 bp consists of two inverted repeat (IR) regions of 26,360 bp each, a large single copy of 83,372 bp, and a small single copy of 17,607 bp. This plastome contains 81 protein-coding genes, 30 distinct tRNA and four genes of rRNA. In addition, there are six hypothetical coding regions (ycf1, ycf2, ycf3, ycf4, ycf15 and ycf68) and two open reading frames (ORF42 and ORF56), which are also found in the chloroplast genomes of the other species. The gene orders and gene contents of the V. patulum plastid genome are similar to that of Smilax china, Lilium longiflorum and Alstroemeria aurea, members of the Smilacaceae, Liliaceae and Alstroemeriaceae (Liliales), respectively. However, the loss rps16 exon 2 in V. patulum results in the difference in the large single copy regions in comparison with other species. The base substitution rate is quite similar among genes of these species. Additionally, the base substitution rate of inverted repeat region was smaller than that of single copy regions in all observed species of Liliales. The IR regions were expanded to trnH_GUG in V. patulum, a part of rps19 in L. longiflorum and A. aurea, and whole sequence of rps19 in S. china. Furthermore, the IGS lengths of rbcL-accD-psaI region were variable among Liliales species, suggesting that this region might be a hotspot of indel events and the informative site for phylogenetic studies in Liliales. In general, the whole chloroplast genome of V. patulum, a potential medicinal plant, will contribute to research on the genetic applications of this genus.  相似文献   

8.
Mungbean is an economically important crop which is grown principally for its protein-rich dry seeds. However, genomic research of mungbean has lagged behind other species in the Fabaceae family. Here, we reported the complete chloroplast (cp) genome sequence of mungbean obtained by the 454 pyrosequencing technology. The mungbean cp genome is 151 271 bp in length which includes a pair of inverted repeats (IRs) of 26 474 bp separated by a small single-copy region of 17 427 bp and a large single-copy region of 80 896 bp. The genome contains 108 unique genes and 19 of these genes are duplicated in the IR. Of these, 75 are predicted protein-coding genes, 4 ribosomal RNA genes and 29 tRNA genes. Relative to other plant cp genomes, we observed two distinct rearrangements: a 50-kb inversion between accD/rps16 and rbcL/trnK-UUU, and a 78-kb rearrangement between trnH/rpl14 and rps19/rps8. We detected sequence length polymorphism in the cp homopolymeric regions at the intra- and inter-specific levels in the Vigna species. Phylogenetic analysis demonstrated a close relationship between Vigna and Phaseolus in the phaseolinae subtribe and provided a strong support for a monophyletic group of the eurosid I.  相似文献   

9.
Datura stramonium is a widely used poisonous plant with great medicinal and economic value. Its chloroplast (cp) genome is 155,871 bp in length with a typical quadripartite structure of the large (LSC, 86,302 bp) and small (SSC, 18,367 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,601 bp). The genome contains 113 unique genes, including 80 protein-coding genes, 29 tRNAs and four rRNAs. A total of 11 forward, 9 palindromic and 13 tandem repeats were detected in the D. stramonium cp genome. Most simple sequence repeats (SSR) are AT-rich and are less abundant in coding regions than in non-coding regions. Both SSRs and GC content were unevenly distributed in the entire cp genome. All preferred synonymous codons were found to use A/T ending codons. The difference in GC contents of entire genomes and of the three-codon positions suggests that the D. stramonium cp genome might possess different genomic organization, in part due to different mutational pressures. The five most divergent coding regions and four non-coding regions (trnH-psbA, rps4-trnS, ndhD-ccsA, and ndhI-ndhG) were identified using whole plastome alignment, which can be used to develop molecular markers for phylogenetics and barcoding studies within the Solanaceae. Phylogenetic analysis based on 68 protein-coding genes supported Datura as a sister to Solanum. This study provides valuable information for phylogenetic and cp genetic engineering studies of this poisonous and medicinal plant.  相似文献   

10.
为探究华重楼(Paris polyphylla var. chinensis)的叶绿体基因组特征,利用叶绿体系统发育基因组学方法,对华重楼与其它百合目植物的叶绿体全基因组进行了比较。结果表明,华重楼的叶绿体全基因组长158307 bp,由4个区组成,包括2个反向重复区(IRA和IRB,27473 bp)、1个小单拷贝区(SSC,18175 bp)和1个大单拷贝区(LSC,85187 bp)。其叶绿体基因组有115个基因,包括81个编码蛋白质基因、30个转运RNA基因和4 个核糖体RNA基因。11种百合目植物的叶绿体全基因组的基因组成和基因顺序相似。华重楼的cemA基因是假基因,其起始密码子后有多聚核苷酸poly(A)及CA双核苷酸重复序列,编码序列中出现多个终止密码子, 且与北重楼(Paris verticillata)的cemA编码序列中的终止密码子位置不同。因此,华重楼叶绿体基因组比较保守;cemA结构及假基因化现象可能具有重要的进化与系统发育信息,其编码序列中的终止密码子可以区分华重楼和北重楼。  相似文献   

11.
川柿(Diospyros sutchuensis)为极小种群和国家重点保护野生植物,分布范围狭窄,种群数量极少。目前,川柿基因组信息缺乏,在柿属(Diospyros)中的系统亲缘关系不明确。该研究通过Illumina平台对川柿叶绿体基因组进行测序,应用Getorganellev1.7.3.4和PGA软件对基因组进行组装和注释,使用DnaSP6.12.03软件进行多序列对比分析,并使用REPuter、Tandem Reapeats Finder和MISA软件进行重复序列分析,使用CodonW1.4和EasyCodemL软件分别进行密码子偏好性和选择压力分析。同时,基于4个不同的叶绿体基因组序列数据集,使用IQtree软件分析川柿与11个柿属物种的系统发育关系。结果表明:(1)川柿叶绿体基因组全长157 917 bp,包含1对26 111 bp的反向重复区、大单拷贝区(87 303 bp)和小单拷贝区(18 392 bp),GC碱基含量为37.4%。(2)川柿叶绿体基因组共注释到113个基因,包括79个蛋白编码基因、30个tRNA基因和4个rRNA基因; 共检测到49个长重复序列、27个串联重复序列和34个简单重复序列; 蛋白编码基因中高频密码子31个,多数密码子末位碱基为A或U,编码亮氨酸的密码子使用最多; 基因组编码区比非编码区更为保守,10个高变热点区域可作为潜在的分子标记; 蛋白编码基因中有8个基因(ndhBndhGndhIrbcLrpoBpetBpetDrps12)受到正选择压力。(3)系统发育分析显示,川柿与老鸦柿(D. rhombifolia)和乌柿(D. cathayensis)亲缘关系最为密切,它们与海南柿(D. hainanensis)共同形成一个单系分支。该研究结果既为川柿及柿属种质资源鉴定、遗传多样性保护以及种群恢复等提供了叶绿体基因组资源,也为阐明川柿的系统进化提供了重要的分子信息。  相似文献   

12.
Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids.  相似文献   

13.
Apple (Malus × domestica) is one of the most important temperate fruits. To better understand the molecular basis of this species, we characterized the complete chloroplast (cp) genome sequence downloaded from Genome Database for Rosaceae. The cp genome of apple is a circular molecule of 160068bp in length with a typical quadripartite structure of two inverted repeats (IRs) of 26352bp, separated by a small single copy region of 19180bp (SSC) and a large single copy region (LSC) of 88184bp. A total of 135 predicted genes (115 unique genes, and another 20 genes were duplicated in the IR) were identified, including 81 protein coding genes, four rRNA genes and 30 tRNA genes. Three genes of ycf15, ycf68 and infA contain several internal stop codons, which were interpreted as pseudogenes. The genome structure, gene order, GC content and codon usage of apple are similar to the typical angiosperm cp genomes. Thirty repeat regions (≥30bp) were detected, twenty one of which are tandem, six are forward and three are inverted repeats. Two hundred thirty seven simple sequence repeat (SSR) loci were revealed and most of them are composed of A or T, contributing to a distinct bias in base composition. Additionally, average 10000bp non coding region contains 24 SSR sites, while protein coding region contains five SSR sites, indicating an uneven distribution of SSRs. The complete cp genome sequence of apple reported in this paper will facilitate the future studies of its population genetics, phylogenetics and chloroplast genetic engineering.  相似文献   

14.
This current study presents, for the first time, the complete chloroplast genome of two Cleomaceae species: Dipterygium glaucum and Cleome chrysantha in order to evaluate the evolutionary relationship. The cp genome is 158,576 bp in length with 35.74% GC content in D. glaucum and 158,111 bp with 35.96% GC in C. chrysantha. Inverted repeats IR 26,209 bp, 26,251 bp each, LSC of 87,738 bp, 87,184 bp and SSC of 18,420 bp, 18,425 bp respectively. There are 136 genes in the genome, which includes 80 protein coding genes, 31 tRNA genes and four rRNA genes were observed in both chloroplast genomes. 117 genes are unique while the remaining 19 genes are duplicated in IR regions. The analysis of repeats shows that the cp genome includes all types of repeats with more frequent occurrences of palindromic; Also, this analysis indicates that the total number of simple sequence repeats (SSR) were 323 in D. glaucum, and 313 in C. chrysantha, of which the majority of the SSRs in these plastid genomes were mononucleotide repeats A/T which are located in the intergenic spacer. Moreover, the comparative analysis of the four cp sequences revealed four hotspot genes (atpF, rpoC2, rps19, and ycf1), these variable regions could be used as molecular makers for the species authentication as well as resources for inferring phylogenetic relationships of the species. All the relationships in the phylogenetic tree are with high support, this indicate that the complete chloroplast genome is a useful data for inferring phylogenetic relationship within the Cleomaceae and other families. The simple sequence repeats identified will be useful for identification, genetic diversity, and other evolutionary studies of the species. This study reported the first cp genome of the genus Dipterygium and Cleome. The finding of this study will be beneficial for biological disciplines such as evolutionary and genetic diversity studies of the species within the core Cleomaceae.  相似文献   

15.
藏波罗花(Incarvillea younghusbandii Sprague)是一种传统的补益类中药。其根作草药使用,用于滋补强壮,治产后少乳、久病虚弱、头晕、贫血等症。但目前关于藏波罗花分子遗传信息的研究很少。本研究基于高通量测序技术对藏波罗花叶绿体基因组进行测序、组装和注释,并对其序列特征、密码子偏好性、重复序列、系统发育和分化时间进行分析。结果表明,藏波罗花叶绿体基因组全长为159 323 bp,包含1个大单拷贝区(80 197 bp)、1个小单拷贝区(9 030 bp)和2个反向重复区(35 048 bp);共注释出120个基因,包括77个蛋白编码基因、8个rRNA基因和35个tRNA基因;密码子偏好性分析显示,AAA是藏波罗花叶绿体基因组中使用最频繁的密码子;从藏波罗花叶绿体基因组中共检测到42个简单重复序列(simple sequence repeats,SSR);系统发育分析表明,藏波罗花与密生波罗花(Incarvillea compacta)的亲缘关系最近,且在大概466万年前产生分化。本研究对藏波罗花相关资源的科学保护和开发具有重要的现实意义,也可以为后续角蒿属(Incarvillea)的物种鉴定、紫葳科(Bignoniaceae)的种群遗传多样性研究提供基本的遗传资源。  相似文献   

16.
赵渊祥  梁大曲  谢双琴  王好运  吴峰 《广西植物》2023,43(10):1921-1931
猴樟(Cinnamomum bodinieri)枝叶含有丰富的精油,是重要的园林绿化树种和经济树种,但目前有关猴樟基因组学的研究报道不多。为揭示猴樟叶绿体基因组特征及系统发育关系,该文基于高通量测序平台进行测序,从头组装了完整的猴樟叶绿体基因组,并对其基因组结构、基因构成及序列重复、密码子使用偏好性以及系统发育进行分析,结合樟亚科主要属物种叶绿体基因组数据构建系统发育树。结果表明:(1)猴樟叶绿体基因组全长152 727 bp,包括一对20 132 bp的反向重复(IRs)区、93 605 bp的大单拷贝(LSC)区和18 858 bp的小单拷贝(SSC)区,总GC含量为39.13%。(2)该基因组共编码127个基因,包括83个蛋白质编码基因(PCGs)、36个转运RNA基因(tRNAs)和8个核糖体RNA基因(rRNAs); 共鉴定出92个SSR位点,其中大部分是A/T组成的单核苷酸重复序列; 密码子适应指数(CAI)为0.166,有效密码子数(ENc)为54.68; 猴樟与近缘种的叶绿体基因组主要在IR区和2个SC区边界上存在一定的差异。(3)24种樟亚科植物的系统发育树显示,猴樟与樟树亲缘关系最近,同时支持了樟属-甜樟属分支(Cinnamomum-Ocotea Clade)、月桂属-新木姜子属分支(Laurus-Neolitsea Clade)、润楠属-鳄梨属分支(Machilus-Persea Clade)的建立。该研究丰富了猴樟遗传资源信息,进一步确定了樟亚科主要属的系统发育地位。  相似文献   

17.
Magnolia grandiflora is an important medicinal,ornamental and horticultural plant species.The chloroplast(cp) genome of M.grandiflora was sequenced using a 454 sequencing platform and the genome structure was compared with other related species.The complete cp genome of M.grandiflora was 159623 bp in length and contained a pair of inverted repeats(IR) of 26563 bp separated by large and small single copy(LSC,SSC) regions of 87757 and 18740 bp,respectively.A total of 129 genes were successfully annotated,18 of which included introns.The identity,number and GC content of M.grandiflora cp genes were similar to those of other Magnoliaceae species genomes.Analysis revealed 218 simple sequence repeat(SSR) loci,most composed of A or T,contributing to a bias in base composition.The types and abundances of repeat units in Magnoliaceae species were relatively conserved and these loci will be useful for developing M.grandiflora cp genome vectors.In addition,results indicated that the cp genome size in Magnoliaceae species and the position of the IR border were closely related to the length of the ycf1 gene.Phylogenetic analyses based on 66 shared genes from 30 species using maximum parsimony(MP) and maximum likelihood(ML) methods provided strong support for the phylogenetic position of Magnolia.The availability of the complete cp genome sequence of M.grandiflora provides valuable information for breeding of desirable varieties,cp genetic engineering,developing useful molecular markers and phylogenetic analyses in Magnoliaceae.  相似文献   

18.
Taxus chinensis var. mairei (Lemée et Lévl) Cheng et L.K. Fu is an evergreen tall tree ubiquitous to the southeastern region in China. The first chemical study on this species was published in 1987. Since then about 163 compounds including taxoids and non-taxane compounds were isolated from seeds, root, bark and leaves of this species. This review summarized the chemical investigation on T. chinensis var. mairei (Lemée et Lévl) Cheng et L.K. Fu in the past 20 years. T. chinensis var. mairei (Lemée et Lévl) Cheng et L.K. Fu was assigned as a variation of T. chinensis (Pilger) Rehd. in Flora of China. However, present chemotaxonomic data would suggest that these two plants might belong to two different chemotypes; further genetic investigation and comprehensive chemical studies on them are warranted to address this issue.  相似文献   

19.
An in-silico analysis of simple sequence repeats (SSRs) in 30 species of tobamoviruses was done. SSRs (mono to hexa) were present with variant frequency across species. Compound microsatellites, primarily of variant motifs accounted for up to 11.43% of the SSRs. Motif duplications were observed for A, T, AT, and ACA repeats. (AG)–(TC) was the most prevalent SSR-couple. SSRs were differentially localized in the coding region with ~ 54% on the 128 kDa protein while 20.37% was exclusive to 186 kDa protein. Characterization of such variations is important for elucidating the origin, sequence variations, and structure of these widely used, but incompletely understood sequences.  相似文献   

20.
Cerasus Campanulata is one of several species belonging to the Prunoideae focke, a subfamily of the flowering plant Rosaceae. We investigated the details of its chloroplast genome which may reveal its genus independent of morphological determination. Here, we determined the complete chloroplast (cp) genome sequence of C. campanulata and performed sequence analysis to reveal the presence of 18 forward repeats, 20 palindrome repeats, 2 complement repeats, 4 reverse repeats and 93 simple sequence repeats (SSRs). We additionally performed a comparative study of C. campanulata and seven other Prunoideae focke species. Then, maximum parsimony (MP) and maximum likelihood (ML) phylogenetic analyses were carried out in the little part of Rosaceae, respectively. The results strongly support a position of C. campanulata as a member of the Cerasus in the Rosaceae family. Moreover, the complete cp genome can be used for plant phylogenetic and evolutionary studies that will provide insight into the degree of gene conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号