首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Myocardial infarction (MI) was associated with insulin resistance, in which resistin acts as a critical mediator. We aimed to determine whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, can attenuate arrhythmias by regulating resistin-dependent nerve growth factor (NGF) expression in postinfarcted rats. Normoglycaemic male Wistar rats after ligating coronary artery were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after operation. Post-infarction was associated with increased myocardial noradrenaline [norepinephrine (NE)] levels and sympathetic hyperinnervation. Compared with vehicle, sympathetic innervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis of tyrosine hydroxylase, growth-associated factor 43 and neurofilament and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Furthermore, sitagliptin was associated with reduced resistin expression and increased Akt activity. Ex vivo studies showed that glucose-dependent insulinotropic polypeptide (GIP) infusion, but not glucagon-like peptide-1 (GLP-1), produced similar reduction in resistin levels to sitagliptin in postinfarcted rats. Furthermore, the attenuated effects of sitagliptin on NGF levels can be reversed by wortmannin (a phosphatidylinositol 3-kinase antagonist) and exogenous resistin infusion. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation in the non-diabetic infarcted rats. Sitagliptin attenuated resistin expression via the GIP-dependent pathway, which inhibited sympathetic innervation through a signalling pathway involving phosphatidylinositol 3-kinase (PI3K) and Akt protein.  相似文献   

2.
Recently, the dipeptidyl peptidase‐4 (DPP‐4) inhibitor sitagliptin, a major anti‐hyperglycaemic agent, has received substantial attention as a therapeutic target for cardiovascular diseases via enhancing the number of circulating endothelial progenitor cells (EPCs). However, the direct effects of sitagliptin on EPC function remain elusive. In this study, we evaluated the proangiogenic effects of sitagliptin on a diabetic hind limb ischaemia (HLI) model in vivo and on EPC culture in vitro. Treatment of db/db mice with sitagliptin (Januvia) after HLI surgery efficiently enhanced ischaemic angiogenesis and blood perfusion, which was accompanied by significant increases in circulating EPC numbers. EPCs derived from the bone marrow of normal mice were treated with high glucose to mimic diabetic hyperglycaemia. We found that high glucose treatment induced EPC apoptosis and tube formation impairment, which were significantly prevented by sitagliptin pretreatment. A mechanistic study found that high glucose treatment of EPCs induced dramatic increases in oxidative stress and apoptosis; pretreatment of EPCs with sitagliptin significantly attenuated high glucose‐induced apoptosis, tube formation impairment and oxidative stress. Furthermore, we found that sitagliptin restored the basal autophagy of EPCs that was impaired by high glucose via activating the AMP‐activated protein kinase/unc‐51‐like autophagy activating kinase 1 signalling pathway, although an autophagy inhibitor abolished the protective effects of sitagliptin on EPCs. Altogether, the results indicate that sitagliptin‐induced preservation of EPC angiogenic function results in an improvement of diabetic ischaemia angiogenesis and blood perfusion, which are most likely mediated by sitagliptin‐induced prevention of EPC apoptosis via augmenting autophagy.  相似文献   

3.
The ω‐3 fatty acids exert as an antioxidant via the G protein‐coupled receptor 120 (GPR120). Icosapent ethyl, a purified eicosapentaenoic acid, showed a marked reduction in sudden cardiac death. Connexin43 is sensitive to redox status. We assessed whether icosapent ethyl attenuates fatal arrhythmias after myocardial infarction, a status of high oxidative stress, through increased connexin43 expression and whether the GPR120 signalling is involved in the protection. Male Wistar rats after ligating coronary artery were assigned to either vehicle or icosapent ethyl for 4 weeks. The postinfarction period was associated with increased oxidative‐nitrosative stress. In concert, myocardial connexin43 levels revealed a significant decrease in vehicle‐treated infarcted rats compared with sham. These changes of oxidative‐nitrosative stress and connexin43 levels were blunted after icosapent ethyl administration. Provocative arrhythmias in the infarcted rats treated with icosapent ethyl were significantly improved than vehicle. Icosapent ethyl significantly increased GPR120 compared to vehicle after infarction. The effects of icosapent ethyl on superoxide and connexin43 were similar to GPR120 agonist GW9508. Besides, the effects of icosapent ethyl on oxidative‐nitrosative stress and connexin43 phosphorylation were abolished by administering AH‐7614, an inhibitor of GPR120. SIN‐1 abolished the Cx43 phosphorylation of icosapent ethyl without affecting GPR120 levels. Taken together, chronic use of icosapent ethyl after infarction is associated with up‐regulation of connexin43 phosphorylation through a GPR120‐dependent antioxidant pathway and thus plays a beneficial effect on arrhythmogenic response to programmed electrical stimulation.  相似文献   

4.
Bone marrow mesenchymal stem cells (BMSCs) emerge as a promising approach for treating heart diseases. However, the effects of BMSCs‐based therapy on cardiac electrophysiology disorders after myocardial infarction were largely unclear. This study was aimed to investigate whether BMSCs transplantation prevents cardiac arrhythmias and reverses potassium channels remodelling in post‐infarcted hearts. Myocardial infarction was established in male SD rats, and BMSCs were then intramyocardially transplanted into the infarcted hearts after 3 days. Cardiac electrophysiological properties in the border zone were evaluated by western blotting and whole‐cell patch clamp technique after 2 weeks. We found that BMSCs transplantation ameliorated the increased heart weight index and the impaired LV function. The survival of infarcted rats was also improved after BMSCs transplantation. Importantly, electrical stimulation‐induced arrhythmias were less observed in BMSCs‐transplanted infarcted rats compared with rats without BMSCs treatment. Furthermore, BMSCs transplantation effectively inhibited the prolongation of action potential duration and the reduction of transient and sustained outward potassium currents in ventricular myocytes in post‐infarcted rats. Consistently, BMSCs‐transplanted infarcted hearts exhibited the increased expression of KV4.2, KV4.3, KV1.5 and KV2.1 proteins when compared to infarcted hearts. Moreover, intracellular free calcium level, calcineurin and nuclear NFATc3 protein expression were shown to be increased in infarcted hearts, which was inhibited by BMSCs transplantation. Collectively, BMSCs transplantation prevented ventricular arrhythmias by reversing cardiac potassium channels remodelling in post‐infarcted hearts.  相似文献   

5.
Abstract: To clarify the effects of adenosine receptor subtypes (A1, A2, and A3) on hippocampal serotoninergic function, hippocampal extracellular serotonin (5-HT) levels were determined by in vivo microdialysis in freely moving rats under various conditions. Both adenosine and an adenosine A1 receptor agonist, 2-chloro-N6-cyclopentyladenosine, decreased extracellular 5-HT levels, whereas an adenosine A1 receptor antagonist, 8-cyclopentyl-1,3-dimethylxanthine (CPT), and caffeine increased these levels. A selective A2A receptor agonist (CGS-21680), an adenosine A2 receptor agonist (PD-125944), an adenosine A2 receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX), and an adenosine A3 receptor agonist, N6-2-(4-aminophenyl)ethyladenosine (APNEA), did not affect extracellular 5-HT levels. When the adenosine A1 receptor was blocked by CPT, the hippocampal extracellular 5-HT level was increased by adenosine, CGS-21680, and PD-125944, and decreased by caffeine, DMPX, and APNEA. When both adenosine A1 and A2 receptors were blocked by CPT and DMPX, the extracellular 5-HT level was decreased by adenosine, caffeine, and APNEA. The hippocampal extracellular 5-HT level was not affected by administration of APNEA alone, but was decreased by this agent when the adenosine A1 receptor was blocked, irrespective of whether the adenosine A2 receptor was functional. These inhibitory effects of adenosine, caffeine, and APNEA on extracellular 5-HT levels, during both adenosine A1 and A2 receptor blockade, were inhibited by selective 5-HT reuptake inhibitors. These results indicate that the stimulatory effects of the adenosine A2 receptor and the inhibitory effects of the A3 receptor on hippocampal extracellular 5-HT levels are masked by the inhibitory effects of the adenosine A1 receptor.  相似文献   

6.
Superoxide has been shown to play a major role in ventricular remodeling and arrhythmias after myocardial infarction. However, the source of increased myocardial superoxide production and the role of superoxide in sympathetic innervation remain to be further characterized. Male Wistar rats, after coronary artery ligation, were randomized to vehicle, allopurinol, or apocynin for 4weeks. To determine the role of peroxynitrite in sympathetic reinnervation, we also used 3-morpholinosydnonimine (a peroxynitrite generator). The postinfarction period was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine, xanthine oxidase activity, NADPH oxidase activity, and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Sympathetic hyperinnervation was blunted after administration of allopurinol. Arrhythmic scores in the allopurinol-treated infarcted rats were significantly lower than those in vehicle. For similar levels of ventricular remodeling, apocynin had no beneficial effects on oxidative stress, sympathetic hyperinnervation, or arrhythmia vulnerability. Allopurinol-treated hearts had significantly decreased nerve growth factor expression, which was substantially increased after coadministration of 3-morpholinosydnonimine. These results indicate that xanthine oxidase but not NADPH oxidase largely mediates superoxide production after myocardial infarction. Xanthine oxidase inhibition ameliorates sympathetic innervation and arrhythmias possibly via inhibition of the peroxynitrite-mediated nerve growth factor pathway.  相似文献   

7.
Cardiac remodeling was shown to be associated with reduced gap junction expression after myocardial infarction. A reduction in gap junctional proteins between myocytes may trigger ventricular arrhythmia. Therefore, we investigated whether N-acetylcysteine exerted antiarrhythmic effect by preserving connexin43 expression in postinfarcted rats, focusing on cAMP downstream molecules such as protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). Male Wistar rats after ligating coronary artery were randomized to either vehicle, or N-acetylcysteine for 4 weeks starting 24 hours after operation. Infarct size was similar between two groups. Compared with vehicle, cAMP levels were increased by N-acetylcysteine treatment after infarction. Myocardial connexin43 expression was significantly decreased in vehicle-treated infarcted rats compared with sham operated rats. Attenuated connexin43 expression and function were blunted after administering N-acetylcysteine, assessed by immunofluorescent analysis, dye coupling, Western blotting, and real-time quantitative RT-PCR of connexin43. Arrhythmic scores during programmed stimulation in the N-acetylcysteine-treated rats were significantly lower than those treated with vehicle. In an ex vivo study, enhanced connexin43 levels afforded by N-acetylcysteine were partially blocked by either H-89 (a PKA inhibitor) or brefeldin A (an Epac-signaling inhibitor) and completely blocked when H-89 and brefeldin A were given in combination. Addition of either the PKA specific activator N6Bz or Epac specific activator 8-CPT did not have additional increased connexin43 levels compared with rats treated with lithium chloride alone. These findings suggest that N-acetylcysteine protects ventricular arrhythmias by attenuating reduced connexin43 expression and function via both PKA- and Epac-dependent pathways, which converge through the inactivation of glycogen synthase kinase-3β.  相似文献   

8.
We have demonstrated that ATP‐sensitive potassium (KATP) channel agonists attenuated fibrosis; however, the mechanism remained unclear. Since RhoA has been identified as a mediator of cardiac fibrosis, we sought to determine whether the anti‐fibrotic effects of KATP channel agonists were mediated via regulating macrophage phenotype and fibroblast differentiation by a RhoA/RhoA‐kinase‐dependent pathway. Wistar male rats after induction of myocardial infarction were randomized to either vehicle, nicorandil, an antagonist of KATP channel glibenclamide, an antagonist of ROCK fasudil, or a combination of nicorandil and glibenclamide or fasudil and glibenclamide starting 24 hrs after infarction. There were similar infarct sizes among the infarcted groups. At day 3 after infarction, post‐infarction was associated with increased RhoA/ROCK activation, which can be inhibited by administering nicorandil. Nicorandil significantly increased myocardial IL‐10 levels and the percentage of regulatory M2 macrophages assessed by immunohistochemical staining, Western blot, and RT‐PCR compared with vehicle. An IL‐10 receptor antibody increased myofibroblast infiltration compared with nicorandil alone. At day 28 after infarction, nicorandil was associated with attenuated cardiac fibrosis. These effects of nicorandil were functionally translated in improved echocardiographically derived cardiac performance. Fasudil showed similarly increased expression of M2 macrophages as nicorandil. The beneficial effects of nicorandil on fibroblast differentiation were blocked by adding glibenclamide. However, glibenclamide cannot abolish the attenuated fibrosis of fasudil, implying that RhoA/RhoA‐kinase is a downstream effector of KATP channel activation. Nicorandil polarized macrophages into M2 phenotype by inhibiting RhoA/RhoA‐kinase pathway, which leads to attenuated myofibroblast‐induced cardiac fibrosis after myocardial infarction.  相似文献   

9.
Severely obese subjects with the metabolic syndrome (MS) have higher dipeptidyl peptidase‐4 (DPP4) expression in their visceral adipose tissue (VAT) compared to obese individuals without MS. We tested the hypothesis that methylation level of CpG sites in the DPP4 promoter CpG island in VAT was genotype‐dependent and associated with DPP4 mRNA abundance and MS‐related phenotypes. The VAT DNA was extracted in 92 severely obese premenopausal women undergoing biliopancreatic derivation for the treatment of obesity. Women were nondiabetic and none of them used medication to treat MS features. Cytosine methylation rates (%) of 102 CpG sites in the DPP4 CpG island were assessed by pyrosequencing of sodium bisulfite‐treated DNA. Methylation rates were >10% for CpG sites 94–102. Their mean methylation rate (%Meth94–102) was different between genotypes for DPP4 polymorphisms rs13015258 (P = 0.001), rs17848915 (P = 0.0004), and c.1926 G>A (P = 0.001). The %Meth94–102 correlated negatively with DPP4 mRNA abundance (r = ?0.25, P < 0.05) and positively with plasma high‐density lipoprotein (HDL) cholesterol concentrations (r = 0.22, P < 0.05), whereas DPP4 mRNA abundance correlated positively with plasma total‐/HDL‐cholesterol ratio (r = 0.25; P < 0.05). In the VAT of nondiabetic severely obese women, genotype‐dependent methylation levels of specific CpG sites in the DPP4 promoter CpG island were associated with DPP4 gene expression and variability in the plasma lipid profile. Higher DPP4 gene expression in VAT and its relationship with the plasma lipid profile may be explained by actually unknown DPP4 biological effect or, to another extent, may also be a marker of VAT inflammation known to be associated with metabolic disturbances.  相似文献   

10.
Diabetes mellitus is a serious worldwide metabolic disease, which is accompanied by hyperglycaemia and affects all organs and body system. Zinc (Zn) is a basic cofactor for many enzymes, which also plays an important role in stabilising the structure of insulin. Liver is the most important target organ after pancreas in diabetic complications. In this study, we aimed to investigate the protective role of Zn in liver damage in streptozotocin (STZ)‐induced diabetes mellitus. There are four experimental groups of female Swiss albino rats: group I: control; group II: control + ZnSO4; group III: STZ‐induced diabetic animals and group IV: STZ‐diabetic + ZnSO4. To induce diabetes, STZ was injected intraperitoneally (65 mg/kg). ZnSO4 (100 mg/kg) was given daily to groups II and IV by gavage for 60 days. At the end of the experiment, rats were killed under anaesthesia and liver tissues were collected. In the diabetic group, hexose, hexosamine, fucose, sialic acid levels, arginase, adenosine deaminase, tissue factor activities and protein carbonyl levels increased, whereas catalase, superoxide dismutase, glutathione‐S‐transferase, glutathione peroxidase, glutathione reductase and Na+/K+‐ATPase activities decreased. The administration of Zn to the diabetic group reversed all the negative effects/activities. According to these results, we can suggest that Zn has a protective role against STZ‐induced diabetic liver damage.  相似文献   

11.
《Endocrine practice》2011,17(5):691-698
ObjectiveTo compare sitagliptin and thiazolidinediones as third-line oral antihyperglycemic agents among ethnic minority patients with poorly controlled type 2 diabetes mellitus.MethodsIn an open-label, single-arm design, we treated type 2 diabetic patients who had suboptimal diabetes control on maximum tolerated dosages of metformin plus sulfonylureas with the addition of sitagliptin, 100 mg daily, and compared their responses with findings from a historical control group of similar patients treated with rosiglitazone, 8 mg daily, or pioglitazone, 45 mg daily, as their third-line oral agent. Patients were assessed bimonthly, and those who achieved hemoglobin A1c levels less than 7.5% at 4 months continued through 1 year of follow-up.Results:One hundred eight patients were treated with sitagliptin, and 104 patients constituted the historical control group treated with rosiglitazone or pioglitazone. At baseline, sitagliptinand thiazolidinedione-treated patients had identical hemoglobin A1c levels (mean ± SD) (9.4 ± 1.8% and 9.4 ± 1.9%, respectively) and similar known diabetes duration (6.7 ± 5.0 years and 7.6 ± 5.8 years, respectively). Hemoglobin A1c was reduced in both groups at 4 months (P < .001), but the reduction was greater with thiazolidinediones than with sitagliptin (-2.0 ± 1.7% vs -1.3 ± 1.8%; P = .006), as was the proportion of patients achieving a hemoglobin A1c level less than 7.5% (62% vs 46%; P = .026). Of all patients achieving a hemoglobin A1c level less than 7.5% at 4 months, the same proportions in each group sustained their hemoglobin A1c level less than 7.5% by 12 months (59% vs 58%). Sitagliptin was well tolerated.ConclusionsAmong ethnic minority patients with poorly controlled type 2 diabetes while taking maximum tolerated dosages of metformin and sulfonylureas, thirdline add-on therapy with a thiazolidinedione controlled hyperglycemia more effectively than sitagliptin after 4 months. (Endocr Pract. 2011;17:691-698)  相似文献   

12.
Progesterone is a neuroactive hormone with non‐genomic effects on GABAA receptors (GABAAR). Changes in the expression of GABAAR subunits are related to depressive‐like behaviors in rats. Moreover, sex differences and depressive behaviors have been associated with prefrontal brain asymmetry in rodents and humans. Thus, our objective was to investigate the effect of progesterone on the GABAAR α1 and γ2 subunits mRNA expression in the right and left prefrontal cortex of diestrus female and male rats exposed to the forced swimming test (FST). Male and female rats (n = 8/group) were randomly selected to receive a daily dose of progesterone (0·4 mg·kg–1) or vehicle, during two complete female estrous cycles (8–10 days). On the experiment day, male rats or diestrus female rats were euthanized 30 min after the FST. Our results showed that progesterone significantly increased the α1 subunit mRNA in both hemispheres of male and female rats. Moreover, there was an inverse correlation between depressive‐like behaviors and GABAAR α1 subunit mRNA expression in the right hemisphere in female rats. Progesterone decreased the GABAAR γ2 mRNA expression only in the left hemisphere of male rats. Therefore, we conclude that the GABAA system displays an asymmetric distribution according to sex and that progesterone, at lower doses, presents an antidepressant effect after increasing the GABAAR α1 subunit expression in the right prefrontal cortex of female rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
We have previously reported that dietary docosahexaenoic acid (DHA) improves and/or protects against impairment of cognition ability in amyloid beta1‐40 (Aβ1‐40)‐infused Alzheimer’s disease (AD)‐model rats. Here, after the administration of DHA to AD model rats for 12 weeks, the levels of Aβ1‐40, cholesterol and the composition of fatty acids were investigated in the Triton X100‐insoluble membrane fractions of their cerebral cortex. The effects of DHA on the in vitro formation and kinetics of fibrillation of Aβ1‐40 were also investigated by thioflavin T fluorescence spectroscopy, transmission electron microscopy and fluorescence microscopy. Dietary DHA significantly decreased the levels of Aβ1‐40, cholesterol and saturated fatty acids in the detergent insoluble membrane fractions of AD rats. The formation of Aβ fibrils was also attenuated by their incubation with DHA, as demonstrated by the decreased intensity of thioflavin T‐derived fluorescence and by electron micrography. DHA treatment also decreased the intensity of thioflavin fluorescence in preformed‐fibril Aβ peptides, demonstrating the anti‐amyloidogenic effects of DHA. We then investigated the effects of DHA on the levels of oligomeric amyloid that is generated during its in vitro transformation from monomers to fibrils, by an anti‐oligomer‐specific antibody and non‐reducing Tris‐Glycine gradient (4–20%) gel electrophoresis. DHA concentration‐dependently reduced the levels of oligomeric amyloid species, suggesting that dietary DHA‐induced suppression of in vivo1‐40 aggregation occurs through the inhibitory effect of DHA on oligomeric amyloid species.  相似文献   

14.
Effects of chronic treatment affecting heart rate on A1 adenosine receptor levels and their functions were studied. Treatment of rats with isoproterenol for 10 days accelerated heart rate and increased the level of adenosine receptors, in both the atria and ventricles. Negative dromotropic response of isolated heart to adenosine was enhanced in isoproterenol-treated rats. Similar results were obtained following treatment with atropine sulfate, or swimming training but not after treatment with thyroxine. On the other hand, treatment with amiodarone, which normally causes a decrease in heart rate, also increased the level of adenosine receptors in both atria and ventricles. The sensitivity of the isolated heart to the negative dromotropic and chronotropic effects of adenosine was not enhanced in the amiodarone treated rats. Similar results were obtained following treatment with propranolol, while treatment with PTU (6-n-propyl-2-thiouracil) increased adenosine sensitivity in the isolated heart. It was concluded that the levels of A1 adenosine receptors in the heart correspond to heart rate, and to cardiac efficiency. While an increase in heart rate was followed by up-regulation of A1 adenosine receptors, a decrease in heart rate caused a moderate elevation of these receptors.  相似文献   

15.
We have previously shown that acute increases in pulmonary blood flow (PBF) are limited by a compensatory increase in pulmonary vascular resistance (PVR) via an endothelin‐1 (ET‐1) dependent decrease in nitric oxide synthase (NOS) activity. The mechanisms underlying the reduction in NO signaling are unresolved. Thus, the purpose of this study was to elucidate mechanisms of this ET‐1–NO interaction. Pulmonary arterial endothelial cells were acutely exposed to shear stress in the presence or absence of tezosentan, a combined ETA/ETB receptor antagonist. Shear increased NOx, eNOS phospho‐Ser1177, and H2O2 and decreased catalase activity; tezosentan enhanced, while ET‐1 attenuated all of these changes. In addition, ET‐1 increased eNOS phospho‐Thr495 levels. In lambs, 4 h of increased PBF decreased H2O2, eNOS phospho‐Ser1177, and NOX levels, and increased eNOS phospho‐Thr495, phospho‐catalase, and catalase activity. These changes were reversed by tezosentan. PEG‐catalase reversed the positive effects of tezosentan on NO signaling. In all groups, opening the shunt resulted in a rapid increase in PBF by 30 min. In vehicle‐ and tezosentan/PEG‐catalase lambs, PBF did not change further over the 4 h study period. PVR fell by 30 min in vehicle‐ and tezosentan‐treated lambs, and by 60 min in tezosentan/PEG‐catalase‐treated lambs. In vehicle‐ and tezosentan/PEG‐catalase lambs, PVR did not change further over the 4 h study period. In tezosentan‐treated lambs, PBF continued to increase and LPVR to decrease over the 4 h study period. We conclude that acute increases in PBF are limited by an ET‐1 dependent decrease in NO production via alterations in catalase activity, H2O2 levels, and eNOS phosphorylation. J. Cell. Biochem. 114: 435–447, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The aim of the present study was to investigate the effect of curcumin (Cur) on the activity of ectonucleoside triphosphate diphosphohydrolase (CD39), 5'‐nucleotidase (CD73) and adenosine deaminase in platelets of cigarette smoke‐exposed rats. For that purpose, we subjected male Wistar rats to a treatment with Cur and cigarette smoke, once a day, 5 days each week, for 30 days. The rats were treated by gavage with Cur or corn oil and then exposed to cigarette smoke. The experimental procedures were divided into two sets of experiments. In the first, the animals were divided into four groups: vehicle (corn oil) or Cur 12·5, 25 or 50 mg·kg‐1. In the second, the animals were divided into five groups: vehicle (corn oil), smoke, or smoke and Cur 12·5, 25 or 50 mg·kg‐1. The results showed that treatment with Cur significantly prevented the increased adenosine triphosphate (ATP) (121%) and adenosine monophosphate (AMP) (159%) and the decreased adenosine diphosphate (ADP) (51%) hydrolysis observed in the cigarette smoke‐exposed rats Our results suggest that those purinergic enzyme alterations observed in the cigarette smoke‐exposed rats could be related to an excessive platelet aggregation and point toward the potential of Cur to modulate purinergic signalling and, consequently, regulate the thrombus formation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Clinical and experimental studies have established that gender is a factor in the development of ventricular hypertrophy. We investigated whether the attenuated hypertrophic effect of oestradiol was via activation of phosphatidylinositol 3‐kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) through non‐genomic action. Twenty‐four hours after coronary ligation, female Wistar rats were randomized into control, subcutaneous oestradiol treatment or a G‐protein coupled oestrogen receptor (GPER) agonist, G‐1 and treated for 4 weeks starting from 2 weeks after bilateral ovariectomy. Ventricular hypertrophy assessed by cardiomyocyte size after infarction was similarly attenuated by oestradiol or G‐1 in infarcted rats. The phosphorylation of Akt and eNOS was significantly decreased in infarcted rats and restored by oestradiol and G‐1, implying the GPER pathway in this process. Oestradiol‐induced Akt phosphorylation was not abrogated by G‐15 (a GPER blocker). Akt activation was not inhibited by actinomycin D. When a membrane‐impermeable oestrogen‐albumin construct was applied, similar responses in terms of eNOS activation to those of oestradiol were achieved. Furthermore, PPT, an ERα receptor agonist, activated the phosphorylation of Akt and eNOS. Thus, membrane ERα receptor played a role in mediating the phosphorylation of Akt and eNOS. The specific PI3K inhibitor, LY290042, completely abolished Akt activation and eNOS phosphorylation in infarcted hearts treated with either oestradiol or oestradiol + G‐15. These data support the conclusions that oestradiol improves ventricular remodelling by both GPER‐ and membrane‐bound ERα‐dependent mechanisms that converge into the PI3K/Akt/eNOS pathway, unveiling a novel mechanism by which oestradiol regulates pathological cardiomyocyte growth after infarction.  相似文献   

18.
We evaluated the preventive effect of caffeic acid (CA) on lysosomal enzymes in isoproterenol (ISO)‐treated myocardial infarcted rats. Male albino Wistar rats were pretreated with CA (15 mg/kg) daily for a period of 10 days. After the pretreatment period, ISO (100 mg/kg) was subcutaneously injected to rats twice at an interval of 24 h. The activity of serum creatine kinase‐MB and lactate dehydrogenase was increased significantly (P < 0.05) in ISO‐induced myocardial infarcted rats. The levels of plasma thiobarbituric acid reactive substances and lipid hydroperoxides were significantly (P < 0.05) increased, and the level of plasma‐reduced glutathione was significantly (P < 0.05) decreased in ISO‐induced myocardial infarcted rats. The activities of lysosomal enzymes (β‐glucuronidase, β‐N‐acetylglucosaminidase, β‐galactosidase, cathepsin‐B and cathepsin‐D) were increased significantly (P < 0.05) in the serum and heart of ISO‐induced myocardial infarcted rats. ISO induction also resulted in decreased stability of membranes, which was reflected by lowered activities of β‐glucuronidase and cathepsin‐D in different fractions except cytosol. Pretreatment with CA (15 mg/kg) to ISO‐treated rats significantly (P < 0.05) prevented the changes in the activities of cardiac marker enzymes, the levels of lipid peroxidation products, reduced glutathione and the activities of lysosomal enzymes in the serum, heart, and subcellular fractions. Oral treatment with CA (15 mg/kg) to normal control rats did not show any significant effect. Thus, the results of our study showed that CA prevented the lysosomal membrane damage against ISO‐induced myocardial infarction. The observed effects of CA are due to membrane‐stabilizing, antilipo peroxidative, and antioxidant effects. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:115–122, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20319  相似文献   

19.
Activation of hepatic stellate cells (HSCs) plays a crucial role in liver fibrogenesis. armepavine (Arm, C19H23O3N), an active compound from Nelumbo nucifera, has been shown to exert immunosuppressive effects on T lymphocytes and on lupus nephritic mice. The aim of this study was to investigate whether Arm could exert anti-hepatic fibrogenic effects in vitro and in vivo. A cell line of rat HSCs (HSC-T6) was stimulated with tumor necrosis factor-α (TNF-α) or lipopolysaccharide (LPS) to evaluate the inhibitory effects of Arm. An in vivo therapeutic study was conducted in bile duct-ligated (BDL) rats. BDL rats were given Arm (3 or 10 mg/kg) by gavage twice daily for 3 weeks starting from the onset of BDL. Liver sections were taken for fibrosis scoring, immuno-fluorescence staining and quantitative real-time mRNA measurements. In vitro, Arm (1-10 μM) concentration-dependently attenuated TNF-α- and LPS-stimulated α-SMA protein expression and AP-1 activation by HSC-T6 cells without adverse cytotoxicity. Arm also suppressed TNF-α-induced collagen collagen deposition, NFκB activation and MAPK (p38, ERK1/2, and JNK) phosphorylations. In vivo, Arm treatment significantly reduced plasma AST and ALT levels, hepatic α-SMA expression and collagen contents, and fibrosis scores of BDL rats as compared with vehicle treatment. Moreover, Arm attenuated the mRNA expression levels of col 1α2, TGF-β1, TIMP-1, ICAM-1, iNOS, and IL-6 genes, but up-regulated metallothionein genes. Our study results showed that Arm exerted both in vitro and in vivo antifibrotic effects in rats, possibly through anti-NF-κB activation pathways.  相似文献   

20.
We have investigated BM (bone marrow)‐derived MSCs (mesenchymal stem cells) for the treatment of liver injury. It was hypothesized that MSC‐mediated resolution of liver injury could occur through an antioxidative process. After being injected with CCl4 (carbon tetrachloride), mice were injected with syngenic BM‐derived MSCs or normal saline. Oxidative stress activity of the MSCs was determined by the analysis of ROS (reactive oxygen species) and SOD (superoxide dismutase) activity. In addition, cytoprotective genes of the liver tissue were assessed by real‐time PCR and ARE (antioxidant‐response element) reporter assay. Up‐regulated ROS of CCl4‐treated liver cells was attenuated by co‐culturing with MSCs. Suppression of SOD by adding an SOD inhibitor decreased the effect of MSCs on injured liver cells. MSCs significantly increased SOD activity and inhibited ROS production in the injured liver. The gene expression levels of Hmox‐1 (haem oxygenase‐1), BI‐1 (Bax inhibitor‐1), HGF (hepatocyte growth factor), GST (glutathione transferase) and Nrf2 (nuclear factor‐erythoid 2 p45 subunit‐related factor 20), attenuated by CCl4, were increased up to basal levels after MSC transplantation. In addition, MSCs induced an ARE, shown by luciferase activity, which represented a cytoprotective response in the injured liver. Evidence of a new cytoprotective effect is shown in which MSCs promote an antioxidant response and supports the potential of using MSC transplantation as an effective treatment modality for liver disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号