首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The human NK cell-mediated cytotoxicity reaction is sensitive to proteinase inhibitors with specificity for chymotrypsin-like enzymes inhibitable by 1-tosylamide 2-phenylethyl chloromethyl ketone (TPCK). Evidence is presented in support of previous data suggesting that this type of cytotoxicity is attributable to enzymes associated with the surface membrane of the NK cell. Activation of the cells with IFN-alpha results in increased cytolytic activity, the suppression of which requires an almost two- to threefold increase in the concentration of proteinase inhibitors. Treatment of NK cells with IFN-alpha results in increased surface binding of [3H]diisopropyl fluorophosphate ([ 3H]DFP). This effect is not inhibited by cycloheximide (50 micrograms/ml), suggesting translocation of preexisting enzymes to the surface membrane. TPCK can compete with [3H]-DFP for binding to the cell surface and can abrogate the increase in [3H]DFP binding observed after IFN-alpha stimulation of the cells. Treatment with IFN-gamma does not increase cell surface-associated proteolytic activity and stimulation with IL-2 results in much smaller increments. The sensitivity of cytotoxicity to proteinase inhibitors is confined to the initial 2-5 min of the reaction. This suggests that cell surface-associated proteinases play a role in the programming of NK cells for lysis, whereas subsequent events may be dependent on secreted enzyme moieties.  相似文献   

2.
K. Santarius  H. -D. Belitz 《Planta》1978,141(2):145-153
Several vegetative tissues of potato plants were screened for proteinase activity. Both endopeptidase and exopeptidase activities were investigated using gelatin and L-amino acid-4-nitroanilides (benzoyl-L-arginine-4-nitroanilide/BAPA, glutaryl-L-phenyl-alanine-4-nitroanilide/GLUPHEPA, alanine-4-nitro-anilide/APA, leucine-4-nitroanilide/LPA, and benzoyl-L-tyrosine-4-nitroanilide/BTPA) as substrates. Leaves and rootes were found to contain the highest levels of endopeptidase activity; lesser activities were detected in flower petals, sprouts, and tubers. Three different types of proteinases, L-BAPAase (serine proteinase), APAase (thiol proteinase), and BTPAase (sensitive to reducing agents), were characterized in various physical and chemical properties. Their temperature optima were determined to be 25° (L-BAPAase) and 40° (BTPAase, APAase) respectively; their pH optimum was between 8.6 and 9.0, their isoelectric points were between pH 4.25 and 6.0, and their molecular weight was estimated 70,000 (L-BAPAase, APAase) and between 150,000–250,000 (BTPAase). The trypsin-like activity against L-BAPA was inhibited by diisopropylfluorophosphate and by tosyllysine-chloromethyl ketone, but not by trypsin inhibitors from potato and legume.Abbreviations APA alanine-4-nitroanilide - BAPA benzoyl-L-arginine-4-nitroanilide - BTPA benzoyl-L-tyrosine-4-nitroanilide - DFP diisopropylfluorophosphate - DMF dimethyl formamide - EDTA ethylenedinitrilotetraacetic acid - GLUPHEPA glutaryl-L-phenylalanine-4-nitroanilide - LPA leucine-4-nitroanilide - PHMB p-hydroxy-mercuribenzoate - PI-I potato chymotrypsin inhibitor I - PPI potato proteinase leaf - PPr potato proteinase root - PPt potato proteinase tuber - PVP polyvinylpyrrolidone - TLCK tosyl-L-lysinechloromethyl ketone - TPCK tosyl-L-phenylalanyl chloromethane  相似文献   

3.
Although angiotensin II (Ang II)-forming enzymatic activity in the human left cardiac ventricle is minimally inhibited by angiotensin I (Ang I) converting enzyme inhibitors, over 75% of this activity is inhibited by serine proteinase inhibitors (Urata, H., Healy, B., Stewart, R. W., Bumpus, F. M., and Husain, A. (1990) Circ. Res. 66, 883-890). We now report the identification and characterization of the major Ang II-forming, neutral serine proteinase, from left ventricular tissues of the human heart. A 115,150-fold purification from human cardiac membranes yielded a purified protein with an Mr of 30,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Based upon its amino-terminal sequence, the major human cardiac Ang II-forming proteinase appears to be a novel member of the chymase subfamily of chymotrypsin-like serine proteinases. Human heart chymase was completely inhibited by the serine proteinase inhibitors, soybean trypsin inhibitor, phenylmethylsulfonyl fluoride, and chymostatin. It was partially inhibited by p-tosyl-L-phenylalanine chloromethyl ketone, but was not inhibited by p-tosyl-L-lysine chloromethyl ketone, and aprotinin. Also, human heart chymase was not inhibited by inhibitors of the other three classes of proteinases. Human heart chymase has a high specificity for the conversion of Ang I to Ang II and the Ang I-carboxyl-terminal dipeptide His-Leu (Km = 60 microM; Kcat = 11,900 min-1; Kcat/Km = 198 min-1 microM-1). Human heart chymase did not degrade several peptide hormones, including Ang II, bradykinin, and vasoactive intestinal peptide, nor did it form Ang II from angiotensinogen. The high substrate specificity of human heart chymase for Ang I distinguishes it from other Ang II-forming enzymes including Ang I converting enzyme, tonin, kallikrein, cathepsin G, and other known chymases.  相似文献   

4.
The breakdown of beta-casein (caseinolytic activity) by the bovine pituitary multicatalytic proteinase complex (MPC) is initiated by a fourth active site different from the previously described chymotrypsin-like activity (cleavage of Cbz-Gly-Gly-Leu-p-nitroanilide, where Cbz is benzyloxycarbonyl), trypsin-like activity (cleavage of Cbz-D-Ala-Leu-Arg-2-naphthylamide), and peptidylglutamyl peptide bond-hydrolyzing (PGP) activity (cleavage of Cbz-Leu-Leu-Glu-2-naphthylamide) (Yu, B., Pereira, M. E., and Wilk, S. (1991) J. Biol. Chem. 266, 17396-17400). 3,4-Dichloroisocoumarin, a serine proteinase inhibitor, stimulated the caseinolytic activity of bovine pituitary or lens MPC, 3-18-fold under conditions under which the other three catalytic activities were inactivated. Addition of hydroxylamine to the modified enzyme did not reverse the effects of the inhibitor. A form of the proteinase exhibiting only 2-4% of control chymotrypsin-like, trypsin-like, and PGP activities degraded beta-casein with no accumulation of intermediate peptides. 3,4-Dichloroisocoumarin, by reacting with the chymotrypsin-like, trypsin-like, and/or PGP-active sites, may promote a conformational change of MPC, rendering the caseinolytic active site accessible to the substrate. Once bound to the active site, beta-casein is rapidly degraded either by the caseinolytic component itself or by a cooperative interaction with catalytic centers that are not affected by the serine proteinase inhibitor. These results imply that the caseinolytic component does not belong to the class of serine proteinases. Other proteins tested were not degraded by the 3,4-dichloroisocoumarin-treated enzyme, suggesting that the conformation of beta-casein may be more adequate for degradation by the caseinolytic component.  相似文献   

5.
Enzymatic deglycosylation of the dendrotoxin-binding protein   总被引:1,自引:0,他引:1  
H Rehm 《FEBS letters》1989,247(1):28-30
The neuronal membrane protein which binds the K+-channel ligands dendrotoxin, mast cell degranulating peptide, and beta-bungarotoxin was purified from rat brain membranes. When analysed on 10% SDS gel electrophoresis, the purified protein contained two peptides: the toxin-binding subunit of apparent Mr 90,000 and another peptide of Mr 38,000. Neuraminidase treatment reduced the Mr of the toxin-binding subunit to 70,000. Glycopeptidase F gave a further reduction to Mr 65,000. In contrast, the peptide of Mr 38,000 showed no change in Mr upon treatment with neuraminidase and/or glycopeptidase F. It is concluded that the toxin-binding subunit of the dendrotoxin-binding protein, a presumptive K+ channel, is a sialated membrane protein with a peptide core of, at most, Mr 65,000.  相似文献   

6.
The relatively little-investigated entomopathogen Conidiobolus coronatus secretes several proteinases into culture broth. Using a combination of ion-exchange and size-exclusion chromatography, we purified to homogeneity a serine proteinase of Mr 30,000-32,000, as ascertained by SDS-PAGE. The purified enzyme showed subtilisin-like activity. It very effectively hydrolyzed N-Suc-Ala(2)-Pro-Phe-pNa with a Km-1.36 x 10(-4) M and Kcat-24 s(-1), and N-Suc-Ala(2)-Pro-Leu-pNa with Km-6.65 x 10(-4) M and Kcat-11 s(-1). The specificity index k(cat)/K(m) for the tested substrates was calculated to be 176,340 s(-1) M(-1) and 17,030 s(-1) M(-1), respectively. Using oxidized insulin B chain as a substrate, the purified proteinase exhibited specificity to aromatic and hydrophobic amino-acid residues, such as Phe, Leu, and Gly at the P1 position, splitting primarily the peptide bonds: Phe(1)-Val(2), Leu(15)-Tyr(16), and Gly(23)-Phe(24). The proteinase appeared to be sensitive to the specific synthetic inhibitors of the serine proteinases DFP (diisopropyl flourophosphate) and PMSF (phenyl-methylsulfonyl fluoride) as well as to some naturally occurring protein inhibitors of chymotrypsin. It is worth noting that the enzyme exhibited the highest sensitivity to inhibition by AMCI-1 (with an association constant of 3 x 10(10) M(-1)), an inhibitor of cathepsin G/chymotrypsin from the larval hemolymph of Apis mellifera, reinforcing the possibility of involvement of inhibitors from hemolymph in insect innate immunity. The substrate specificity and proteinase inhibitor effects indicate that the purified proteinase from the fermentation broth of Conidiobolus coronatus is a subtilisin-like serine proteinase.  相似文献   

7.
The intestinal brush-border membrane contains one or several membrane proteins that mediate fusion and/or aggregation of small unilamellar egg phosphatidylcholine vesicles. The fusion is accompanied by a partial loss of vesicle contents. Proteolytic treatment of the brush-border membrane with proteinase K abolishes the fusogenic property. This finding suggests that the fusogenic activity is associated with a membrane protein exposed on the external or luminal side of the brush-border membrane. Activation of intrinsic proteinases of the brush-border membrane liberates water-soluble proteins (supernate proteins). These proteins behave in an analogous way to intact brush-border membrane vesicles; they induce fusion of egg phosphatidylcholine vesicles and render the egg phosphatidylcholine bilayer permeable to ions and small molecules (Mr less than or equal to 5000). Furthermore, supernate proteins mediate phosphatidylcholine and cholesterol exchange between two populations of small, unilamellar phospholipid vesicles. Supernate proteins are fractionated on Sephadex G-75 SF yielding three protein peaks of apparent Mr greater than or equal to 70,000, Mr = 22,000 and Mr = 11,500. All three protein fractions show similar phosphatidylcholine-exchange activity, but they differ in their effects on the stability of egg phosphatidylcholine vesicles. The protein fraction with an apparent Mr greater than or equal to 70,000 has the highest fusogenic activity while the protein fraction of apparent Mr = 11,500 appears to be most effective in rendering the egg phosphatidylcholine bilayer permeable.  相似文献   

8.
Multicatalytic proteinase (MCP) was solubilized from human erythrocyte membrane with 0.1% Triton X-100 and purified to homogeneity using a combination of DEAE-cellulose, hydroxylapatite, and Ultrogel AcA34 chromatographies. This membranous MCP had similar properties to MCP purified in parallel from the cytosol. Both MCPs had a molecular mass of 570 kDa, were composed of apparently nine subunits of 22-36 kDa and had trypsin- and chymotrypsin-like activities. These activities were latent and required heating for the induction. However, slight differences were observed in the effects of reagents (DFP, monoiodoacetic acid, Mg2+, and Ca2+) between membranous and cytosolic MCP. The amount of MCP identified on membranes was estimated to be three-quarters or one-half of that found in the cytosol based on its trypsin- or chymotrypsin-like activity, respectively.  相似文献   

9.
1. A serine proteinase isolated from E. superba shows collagenolytic properties: it acts on collagens from Achilles tendon (type I and V) and reconstituted fibrils of calf skin collagen under conditions that do not denature the substrates. 2. At 25 degrees C and pH 7.5 the enzyme both splits the calf skin collagen in solution to the fragments TCA and TCB and catalyses the conversion of dimeric molecules to monomeric chains. 3. The enzyme exhibits strong chymotrypsin-like and lower trypsin-like activities. 4. All the enzyme activities are inhibited to the same degree by diisopropylfluorophosphate (DFP), phenylmethylsulphonyl fluoride (PMSF), N alpha-tosyl-L-lysine chloromethyl ketone (TLCK), soybean trypsin inhibitor (SBTI), chicken ovomucoid (CHOM), chymostatin and leupeptin. None of the activities is inhibited by chelating agents and L-cysteine. 5. pH-Optima of the proteinase in protein substrates hydrolysis (6.0-6.2) are lower than those of synthetic substrates cleavage (7.8-8.0 in the case of BzTyrOEt and 8.7-8.9 for BzArgOEt). 6. Four from nine cysteine residues present in the enzyme molecule possess free thiol-groups. Since the enzyme is inhibited by p-chloromercuribenzoate (pCMB), N-ethylmaleimide (NEM) and iodoacetic acid (IAA), the role of its thiol-groups has been discussed.  相似文献   

10.
Proteinase II, a high-molecular-mass proteinase previously identified in white croaker skeletal muscle, was purified to apparent homogeneity by DEAE-Sephacel, phenyl-Sepharose CL 4B, and Sephacryl S-300 chromatographies. Under denaturing conditions, the enzyme dissociated into a cluster of subunits with Mr ranging from 18,000 to 26,000 and a large subunit with a Mr 60,000. The proteinase was able to hydrolyze N-terminal-blocked 4-methyl-7-coumarylamide substrates having either an aromatic amino acid (chymotrypsin-like activity) or an arginine residue (trypsin-like activity) adjacent to the fluorogenic group. The trypsin-like activity of the enzyme was inhibited by fatty acids and sodium dodecyl sulfate, whereas the chymotrypsin-like activity was stimulated by those compounds but inhibited by nonionic and cationic detergents. Several thiol reagents inhibited both proteinase II activities. However, leupeptin and Cu2+ strongly inhibited its trypsin-like activity but only slightly affected its chymotrypsin-like activity. Dithiothreitol stimulated both activities, but at different extents and in different concentration ranges. These results suggest that the enzyme is multicatalytic, having at least two different active sites.  相似文献   

11.
Human blood monocytes in culture differentiate to macrophagelike cells within 1 week. Coinciding with this morphological transition the cells started releasing increasing amounts of the serine proteinase plasminogen activator (PA; Mr 56,000) of the urokinase (u-PA) type and the proteinase inhibitor alpha-2-macroglobulin (alpha 2M). Unlike the cell-associated PA activity, which was also readily detected in fresh monocytes, the activity secreted into the serum-free culture medium could be measured only after treatment of the samples with sodium dodecyl sulphate. Heat or acid treatment of the medium was not sufficient to reveal the PA activity, suggesting that, apart from alpha 2M, another PA-inhibiting substance was present in the culture medium. The inhibitor (Mr 65,000) was found to be synthesized by macrophages and specifically inhibited u-PA activity but not tissue-type PA (t-PA) or plasmin activity. Dexamethasone decreased the secretion of PA by differentiated macrophages without affecting the production of alpha 2M or the PA inhibitor. Dexamethasone also inhibited the morphological differentiation of the cells when added to the monocyte-phase cells.  相似文献   

12.
Brain myelin membrane preparations contain a metalloproteinase activity which degrades myelin basic protein (MBP). The activity was associated with lentil lectin-binding glycoproteins solubilized from myelin and could be detected in the presence of the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate (CHAPS). The metalloproteinase represented about 5% of this glycoprotein fraction and was isolated from it by chromatography on DEAE-Sephacel, CM-Sepharose, and Superose 6. The proteinase had an apparent relative molecular weight (Mr) of approximately 58,000 both by gel filtration and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Mr value was unaffected by the presence of reducing agents but was diminished to about 52,000 by treating the proteinase with endoglycosidase F. The purified proteinase cleaved many bonds in MBP but did not generate trichloroacetic acid-soluble products. Two major polypeptides, putatively MBP1-73 and MBP74-170, were prominent in digests of MBP by either the purified enzyme or myelin membranes. The proteinase was active between pH 7 and 9 and was inhibited by phenanthroline and dithiothreitol but not phosphoramidon or inhibitors of serine or cysteine proteinases. Histones, but not azocasein, also served as substrates for the proteinase. From its enzymic and molecular characteristics the myelin-derived metalloproteinase appears distinct from previously described enzymes.  相似文献   

13.
An extracellular proteinase secreted by the thermophilic bacteria Thermomonospora fusca YX (YX-proteinase) is a serine proteinase as shown by its inactivation by the site specific reagents, phenylmethanesulfonyl fluoride, dansyl fluoride, and carbobenzoxy-L-phenylalanine chloromethyl ketone. This conclusion is further supported by the effect of various proteinase inhibitors on its activity. The activity of the proteinase toward small synthetic ester substrates shows that the enzyme has a primary specificity for the aromatic and hydrophobic amino acids. The amino acid composition and NH2-terminal sequence, as well as its size, suggest that the enzyme is related to the chymotrypsin-like microbial proteinase, alpha-lytic protease from Myxobacter 495 and protease A and B from Streptomyces griseus.  相似文献   

14.
A chymotrypsin-like proteinase from the midgut of Tenebrio molitor larvae   总被引:2,自引:0,他引:2  
A chymotrypsin-like proteinase was isolated from the posterior midgut of larvae of the yellow mealworm, Tenebrio molitor, by ion-exchange and gel filtration chromatography. The enzyme, TmC1, was purified to homogeneity as determined by SDS-PAGE and postelectrophoretic activity detection. TmC1 had a molecular mass of 23.0 kDa, pI of 8.4, a pH optimum of 9.5, and the optimal temperature for activity was 51 degrees C. The proteinase displayed high stability at temperatures below 43 degrees C and in the pH range 6.5-11.2, which is inclusive of the pH of the posterior and middle midgut. The enzyme hydrolyzed long chymotrypsin peptide substrates SucAAPFpNA, SucAAPLpNA and GlpAALpNA and did not hydrolyze short chymotrypsin substrates. Kinetic parameters of the enzymatic reaction demonstrated that the best substrate was SucAAPFpNA, with k(cat app) 36.5 s(-1) and K(m) 1.59 mM. However, the enzyme had a lower K(m) for SucAAPLpNA, 0.5 mM. Phenylmethylsulfonyl fluoride (PMSF) was an effective inhibitor of TmC1, and the proteinase was not inhibited by either tosyl-l-phenylalanine chloromethyl ketone (TPCK) or N(alpha)-tosyl-l-lysine chloromethyl ketone (TLCK). However, the activity of TmC1 was reduced with sulfhydryl reagents. Several plant and insect proteinaceous proteinase inhibitors were active against the purified enzyme, the most effective being Kunitz soybean trypsin inhibitor (STI). The N-terminal sequence of the enzyme was IISGSAASKGQFPWQ, which was up to 67% similar to other insect chymotrypsin-like proteinases and 47% similar to mammalian chymotrypsin A. The amino acid composition of TmC1 differed significantly from previously isolated T. molitor enzymes.  相似文献   

15.
1. The specificity of cathepsin G, a neutral proteinase from human spleen, was examined by use of low-molecular-weight substrates. The enzyme was found to hydrolyse several synthetic substrates also hydrolysed by chymotrypsin, but with different kinetic constants. 2. Maximal activity against benzoyl-DL-phenylalanine 2-naphthol ester and azo-casein was in the range pH 7.5-8.0. 3. The sensitivity of cathepsin G to the action of potential inhibitors was determined, and compared with those of bovine chymotrypsin and subtilisin. Cathepsin G showed the characteristics of a serine proteinase, but was less affected by the chloromethyl ketone of tosylphenylalanine than was chymotrypsin. 4. A rabbit anti-(human cathepsin G) serum was raised, and precipitin lines formed in agarose gel were stained for activity of the enzyme. 5. Cathepsin G was shown to be immunologically identical with the chymotrypsin-like enzyme of the azurophil granules of the neutrophil granulocytes.  相似文献   

16.
A neutral proteinase, capable of degrading gelatin, has been found in both an active and a latent form in the medium from the culture of rat mesangial cells. The latent form had an Mr of 80,000-100,000 and could be activated with either 4-aminophenylmercuric acetate or prolonged incubation at neutral pH. The active form of the enzyme was extensively purified. The estimated Mr of the purified enzyme on gel filtration was approximately 200,000, indicating that the active enzyme formed aggregates. However, analysis by SDS/polyacrylamide-gel electrophoresis under reducing conditions showed two protein bands, with Mr 68,000 and 66,000. Both proteins were found to contain proteolytic activity when run on SDS/substrate gels. The enzyme was inhibited by EDTA and 1,10-phenanthroline, but not by inhibitors for cysteine, serine or aspartic proteinases. The enzyme did not digest fibronectin, bovine serum albumin, proteoglycan or interstitial collagen. The enzyme degraded pepsin-solubilized placental type V collagen at 31 degrees C, whereas similarly solubilized type IV collagen was only degraded at higher temperatures. In addition, the neutral proteinase degraded native soluble type IV collagen. It also had activity on insoluble type IV collagen of glomerular basement membrane. The above properties suggest that the mesangial neutral proteinase belongs to the gelatinase group of metalloproteinases and that it may play a role in the normal turnover of extracellular glomerular matrix.  相似文献   

17.
Plasma membranes isolated from normal thymocytes of hamster and rats were found to exhibit neutral protease activity toward 125I-labeled casein. The plasma membrane-associated proteases were completely inhibited by the serine protease inhibitors, diisopropyl fluorophosphate, phenylmethylsulfonyl fluoride and p-nitrophenyl-p-guanidinobenzoate, partially inhibited by soybean trypsin inhibitor and antipain, but were only weakly inhibited by L-1-tosylamino-2-phenylethyl chloromethyl ketone. The plasma membrane-associated proteases were also completely inhibited by ZnCl2 (75--100 mu M), but they were not affected by several other divalent cations. The plasma membrane fraction contained a plasminogen activator activity which was specifically localized in this fraction. The plasma membrane-associated plasminogen activator activity was inhibited by all of the inhibitors which inhibited plasma membrane-associated proteases except L-1-tosylamido-2-phenylethyl chloromethyl ketone. Labeling of plasma membrane-associated serine esterases with [3H] diisopropyl fluorophosphate followed by separation of the proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that this fraction contained a single major 3H-labeled protein of Mr 105 000. Both the plasminogen activator and the Mr 105 000 esterase were shown to be glycoproteins by affinity chromatography on lentil lectin-Sepharose. These results indicate that the plasminogen activator of thymocytes is a glycosylated serine protease with an active site-containing subunit of Mr 105 000 which is specifically localized in the plasma membrane.  相似文献   

18.
Porcine ovary was found to contain enzyme activities hydrolyzing peptide 4-methylcoumaryl-7-amide (MCA) substrates with a preference for Arg-MCA bond. The activities were shown to be present almost exclusively in the follicular fluid and to increase several times during follicular maturation. The enzyme responsible for these activities is thought to be a serine proteinase as judged from its strong inhibition by diisopropylfluorophosphate (DFP), leupeptin and antipain. The molecular weight of the native enzyme was electrophoretically estimated to be approximately 350,000, the result indicating that the enzyme is clearly distinct from plasmin (M(r) = 80,000) and collagenase (M(r) = 30,000-65,000), both of which are thought to be involved in ovulatory process. The substrate specificity of the partially purified enzyme was qualitatively different from that of plasmin. These results suggest that the enzyme is a novel type of serine proteinase.  相似文献   

19.
The proteolytic enzymes contained in the preparation from Streptomyces 771 have been separated by isoelectric focusing in the sucrose density gradient at pH 3-10. The following enzymes have been identified: three multiple forms of neutral metal proteinase (pI 5.1, 6.37, 7.8) each of which splits DNP-Gly-Gly decreases-Val-ArgOMe; elastase-like metal proteinase active with respect to RBB-elestin with pI 10.68; metal-dependent peptidases: leucin aminopeptidase active with respect to L-RBB-elastin with pI 10.68 metal-dependent peptidases: leucin aminopeptidase active with respect to L-leucin n-nitroanilide and L-leucin beta-naphtylamide with pI 7.65, 7.15, 6.67, 6.45, 5.7, 5.35, 5.22, 4.83; carboxy peptidase with pI 5.95, 6.37; serine metal-dependent subtilisin-like proteinase active with respect to 2-Ala-Ala-LeupNA, 2-Gly-Gly-LeupNA, 2-Ala-LeupNA; two multiple forms of serine trypsin-like proteinase active with respect to BAEE and BApNA with pI 4.35, 4.76; serine chymotrypsin-like proteinase with pI 8.68 active with respect to ATEE.  相似文献   

20.
Neutral proteinase was found in the leaves ofRicinus communie as assayed with α-casein and H-D-Val-Leu-Lys-pNA as substrates. The enzyme is maximally active at pH around 7.4. A selective adsorbent for serine proteinase was prepared by attaching aprotinin to aminoalkyl-porous glass. When partially purified leaf proteinase was passed through a column containing this adsorbent, the proteinase activity present was bound to the porous glass. The proteinase eluted at IM NaCl was inhibited by aprotinin, leupeptin, DFP, phenylmethylsulfonyl fluoride (PMSF) and serine proteinase inhibitor fromR, communis leaves, whereas pepstatin, EDTA, EGTA, and DTT had no effect on the enzyme. This inhibition profile suggests the leaf proteinase is a neutral proteinase, such as a serine proteinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号