首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is little doubt that the most important inorganic radicals involved in biological systems are those which are intermediates in the oxygen-water redox cycle, i.e. OH., O_2, and HO.2. Aspects of the structure and reactivities of these radicals are considered, together with methods of detection. In particular, the use of e.s.r. spectroscopy is outlined, including rapid-freeze and spin-trapping techniques. Attention is called to comparisons and contrasts between these radicals and corresponding sulphur-centered radicals, although these are not strictly "inorganic". The oxygen-centred radicals are usually generated in vivo by redox reactions, but they are also of importance in radiolytic processes because they are formed from water. Other radicals formed in this way whose structures and reactivities are considered include solvated electrons and hydrogen atoms.  相似文献   

2.
Peroxyl radicals of poly(U), poly(A), and single- and double-stranded DNA have been produced by photolysing H2O2 in oxygenated aqueous solution in presence of the substrates. The peroxyl radicals are formed by the reaction of OH radicals with the polynucleotides followed by addition of oxygen. The lifetime of the peroxyl radicals and the rate constant of their reactions with the thiols cysteamine, glutathione and dithiothreithol have been measured by time-resolved e.s.r. spectroscopy. The unusually long lifetimes range from 0.2 to 3.3 s. The activation energy for the decay for all four substrates is 10.3 +/- 1 kcal/mol (43 kJ mol-1). The reaction rate constants with the thiols range from k = 0.8 X 10(4) to 1.3 X 10(5) dm3 mol-1 s-1. The reactions of the thiols with the peroxyl radical of poly(U) are known to prevent strand break formation. This shows that the peroxyl radicals of poly(U) observed by e.s.r. are intermediates in the pathway leading to strand break formation.  相似文献   

3.
The reactions of hydroxyl radicals with 30 dipeptides and several larger peptides were studied in aqueous solutions. The OH radicals were generated by U.V. photolysis of H2O2. The short-lived peptide radicals were spin-trapped using t-nitrosobutane and identified by e.s.r. For dipeptides containing the amino terminal residues glycine, alanine and phenylalanine, abstraction of the hydrogen from the carbon adjacent to the peptide nitrogen was the major process leading to the spin-adducts. Such radicals will be referred to as backbone radicals. Dipeptides with a carbonyl terminal serine residue and also glycylglutamic acid form both backbone and side-chain radicals, with the latter being formed in larger quantities. For dipeptides, side-chain radicals were detected on either the carboxyl or amino terminal residues of both. The effect of pD on the e.s.r. sectrum of the spin-adducts of glycylglycine was studied and the pK of the carboxyl group of this radical was determined to be 2.5. For (Ala)3 and (Ala)n, with an average value of n = 1800, backbone and minor side-chain radicals were observed. For ribonucleases-S-peptide, containing 20 amino acid residues, both backbone and side-chain radicals were detected.  相似文献   

4.
Post-operative change in the mechanical loading of bone may trigger its (mechanically induced) adaptation and hamper the mechanical stability of prostheses. This is especially important in cementless components, where the final fixation is achieved by the bone itself. The aim of this study is, first, to gain insight into the bone remodelling process around a cementless glenoid component, and second, to compare the possible bone adaptation when the implant is assumed to be fully bonded (best case scenario) or completely loose (worst case scenario). 3D finite element models of a scapula with and without a cementless glenoid component were created. 3D geometry of the scapula, material properties, and several physiological loading conditions were acquired from or estimated for a specific cadaver. Update of the bone density after implantation was done according to a node-based bone remodelling scheme. Strain energy density for different loading conditions was evaluated, weighted according to their frequencies in activities of daily life and used as a mechanical stimulus for bone adaptation. The average bone density in the glenoid increased after implantation. However, local bone resorption was significant in some regions next to the bone-implant interface, regardless of the interface condition (bonded or loose). The amount of bone resorption was determined by the condition imposed to the interface, being slightly larger when the interface was loose. An ideal screw, e.g. in which material fatigue was not considered, was enough to keep the interface micromotions small and constant during the entire bone adaptation simulation.  相似文献   

5.
The present study was designed to measure directly, using e.p.r. spectroscopy, oxygen-derived free radicals in (post)-ischaemic or (post)-anoxic rat hearts. Rat hearts were rapidly freeze-clamped at 77 K under normoxic, anoxic, ischaemic or reperfusion conditions. The samples were measured at three different temperatures (13, 77 and 115 K) and at several microwave power levels, and were compared with isolated rat heart mitochondria. Samples were prepared both by grinding and as tissue cuts. The two preparation techniques gave identical e.p.r. results, which excludes the occurrence of grinding artifacts. No free radical signals linked to reperfusion injury were detected. Several electron transfer centres known in the mitochondrial respiratory chain were measured. The signals previously assigned to post-ischaemic reperfusion injury were found to originate from electron transfer centres of the respiratory chain, predominantly the iron-sulphur cluster S-1 in succinate dehydrogenase. The differences in signal intensity between normoxic, ischaemic and reperfused hearts were found to result from the different redox stages of these centres under the various conditions tested. These findings do not necessarily imply that oxygen-derived free radicals are not formed in cardiac tissue during (post)-ischaemic reperfusion. The constitutive background of paramagnetism from the respiratory chain, however, seriously hampers the direct detection of comparatively low concentrations of free radicals in cardiac tissue. It is therefore expedient to focus future experiments in this field on the use of spin-trapping agents.  相似文献   

6.
Samples of oriented DNA containing 30 per cent water were irradiated with neutrons at 77 K. The electron spin resonance (e.s.r.) spectra obtained from these irradiated DNA samples show that the formation of radicals is different when the incident neutrons are parallel or perpendicular to the DNA helix. When the incident neutrons are perpendicular to the DNA helix the e.s.r. spectra of thymine and guanine ionic radicals (T-., G+.) are observed. An additional e.s.r. spectrum corresponding to the hydrogen addition radical on thymine (TH.) is observed when the incident neutrons are parallel to DNA helix. The TH. radical appears to be formed by protonation of T-. .  相似文献   

7.
Lack of physical activity results in muscle atrophy and bone loss, which can be counteracted by mechanical loading. Similar molecular signaling pathways are involved in the adaptation of muscle and bone mass to mechanical loading. Whether anabolic and metabolic factors regulating muscle mass, i.e., insulin-like growth factor-I isoforms (IGF-I Ea), mechano growth factor (MGF), myostatin, vascular endothelial growth factor (VEGF), or hepatocyte growth factor (HGF), are also produced by osteocytes in bone in response to mechanical loading is largely unknown. Therefore, we investigated whether mechanical loading by pulsating fluid flow (PFF) modulates the mRNA and/or protein levels of muscle anabolic and metabolic factors in MLO-Y4 osteocytes. Unloaded MLO-Y4 osteocytes expressed mRNA of VEGF, HGF, IGF-I Ea, and MGF, but not myostatin. PFF increased mRNA levels of IGF-I Ea (2.1-fold) and MGF (2.0-fold) at a peak shear stress rate of 44Pa/s, but not at 22Pa/s. PFF at 22 Pa/s increased VEGF mRNA levels (1.8- to 2.5-fold) and VEGF protein release (2.0- to 2.9-fold). Inhibition of nitric oxide production decreased (2.0-fold) PFF-induced VEGF protein release. PFF at 22 Pa/s decreased HGF mRNA levels (1.5-fold) but increased HGF protein release (2.3-fold). PFF-induced HGF protein release was nitric oxide dependent. Our data show that mechanically loaded MLO-Y4 osteocytes differentially express anabolic and metabolic factors involved in the adaptive response of muscle to mechanical loading (i.e., IGF-I Ea, MGF, VEGF, and HGF). Similarly to muscle fibers, mechanical loading enhanced expression levels of these growth factors in MLO-Y4 osteocytes. Although in MLO-Y4 osteocytes expression levels of IGF-I Ea and MGF of myostatin were very low or absent, it is known that the activity of osteoblasts and osteoclasts is strongly affected by them. The abundant expression levels of these factors in muscle cells, in combination with low expression in MLO-Y4 osteocytes, provide a possibility that growth factors expressed in muscle could affect signaling in bone cells.  相似文献   

8.
Scaffolds for osteochondral tissue engineering should provide mechanical stability, while offering specific signals for chondral and bone regeneration with a completely interconnected porous network for cell migration, attachment, and proliferation. Composites of polymers and ceramics are often considered to satisfy these requirements. As such methods largely rely on interfacial bonding between the ceramic and polymer phase, they may often compromise the use of the interface as an instrument to direct cell fate. Alternatively, here, we have designed hybrid 3D scaffolds using a novel concept based on biomaterial assembly, thereby omitting the drawbacks of interfacial bonding. Rapid prototyped ceramic particles were integrated into the pores of polymeric 3D fiber-deposited (3DF) matrices and infused with demineralized bone matrix (DBM) to obtain constructs that display the mechanical robustness of ceramics and the flexibility of polymers, mimicking bone tissue properties. Ostechondral scaffolds were then fabricated by directly depositing a 3DF structure optimized for cartilage regeneration adjacent to the bone scaffold. Stem cell seeded scaffolds regenerated both cartilage and bone in vivo.  相似文献   

9.
An aerated aqueous solution of uridine-5'-monophosphate was gamma-irradiated with 2-methyl-2-nitrosopropane as a spin-trapping reagent. Liquid chromatography was applied to separate the stable nitroxide radicals in the irradiated solution. The radicals were detected by U.V. and e.s.r. spectrometry. The e.s.r. detection showed four peaks in the chromatogram. The orcinol method for detection of the residual sugar moieties was applied before and after reduction of the base to determine the existence of the 5,6-double bond for the molecules in each fraction. From the combined results of the e.s.r. and orcinol methods, the short-lived radicals which were trapped by 2-methyl-2-nitrosopropane were identified as radicals of N-1 and C-6 positions of the base moiety and t-butyl radical which was the radiolytic product of the trapping reagent.  相似文献   

10.
Studies of the temperature dependence of the areas under the e.s.r. absorption spectra of X-ray-induced free radicals in amino acids at various power levels and of power saturation at different temperatures are reported. They indicate that power saturation is responsible for the anomalous Curie--Weiss behaviour previously reported. The consequences of power saturation to the e.s.r. determination of radical yields are discussed. The effect of impurity e.s.r. signals in amino acids on quantitative e.s.r. determinations is also discussed.  相似文献   

11.
An improved and time reducing method is presented for the histological evaluation of bone containing polymethylmethacrylate (PMMA) bone cement. The undecalcified bone was embedded in epoxy resin and sections of 50-100 μm thickness were produced using a commercially available cutting grinding system. The sections were stained with Stevenel's blue and van Gieson picrofuchsin or a modified hematoxylin-eosin. PMMA bone cement was not dissolved and remained enabling examination in situ of an intact cement bone interface and tissue reaction without decalcification.  相似文献   

12.
The ability to evaluate fracture risk at an early time point is essential for improved prognostics as well as enhanced treatment in cases of bone loss such as from osteoporosis. Improving the diagnostic ability is inherent upon both high-resolution non-invasive imaging, and a thorough understanding of how the derived indices of structure and density relate to its true mechanical behavior. Using sheep femoral trabecular bone with a range of strength, the interrelationship of mechanical and microstructural parameters was analyzed using multi-directional mechanical testing and micro-computed tomography. Forty-five cubic trabecular bone samples were harvested from 23 adult female sheep, some of whom had received hind-limb vibratory stimuli over the course of 2 years with consequently enhanced mechanical properties. These samples were pooled into a low, medium, or high strength group for further analysis. The findings show that microCT indices that are structural in nature, e.g., structural model index (SMI) (r2=0.85, p<0.0001) is as good as more density oriented indices like bone volume/total volume (BV/TV) (r2=0.81, p<0.0001) in predicting the ultimate strength of a region of trabecular bone. Additionally, those indices more related to global changes in trabecular structure such as connectivity density (ConnD) or degree of anisotropy (DA) are less able to predict the mechanical properties of bone. Interrelationships of trabecular indices such as trabecular number (TbN), thickness (TbTh), and spacing (TbSp) provide clues as to how the trabecular bone will remodel to ultimately achieve differences in the apparent mechanical properties. For instance, the analysis showed that a loss of bone primarily affects the connectedness and overall number of trabeculae, while increased strength results in an increase of the overall thickness of trabeculae while not improving the connectedness. Certainly, the microCT indices studied are able to predict the bulk mechanical properties of a trabecular ROI well, leaving unaccounted only about 15-20% of its inherent variability. Diagnostically, this implies that future work on the early prediction of fracture risk should continue to explore the role of bone quality as the key factors or as an adjuvant to bone quantity (e.g., apparent density).  相似文献   

13.
A programme has been established to characterize the long-term behaviour of cancellous bone. Fresh bovine cancellous specimens of dimensions 10 x 10 x 10 mm3 and 10 x 40 x 3.6 mm3 were manufactured and used within the testing programme. Results published in the literature indicate that the long-term behaviour of cancellous bone is well described by a power law, which is a very similar response of typical polymers. So far, dynamic mechanical tests (DMA) in three-point bending, under frequencies between 0.01 and 100 Hz at room temperature, confirmed the published results in a qualitative way. Nevertheless, the measured dimensionless damping, tan delta, was slightly higher than the values reported in the literature for the compact bone. The relaxation curves were obtained from dynamic tests and confirmed that bone relaxation modulus can be described by a power law function of time. Tests under constant compression strain rate were performed at four different strain rates: 0.15/s, 0.015/s, 0.0015/s and 0.00015/s and strain rate dependent behaviour was observed. An average elastic bending modulus of 300 MPa was obtained.  相似文献   

14.
Living bone is considered as adaptive material to the mechanical functions, which continually undergoes change in its histological arrangement with respect to external prolonged loading. Such remodeling phenomena within bone depend on the degree of stimuli caused by the mechanical loading being experienced, and therefore, are specific to the sites. In the attempts of understanding strain adaptive phenomena within bones, different theoretical models have been proposed. Also, the existing literatures mostly follow the measurement of surface strains using strain gauges to experimentally quantify the strains experienced in the functional environment. In this work, we propose a novel idea of understanding site-specific functional adaptation to the prolonged load in bone on the basis of inherited residual strains and structural organization. We quantified the residual strains and amount of apatite crystals distribution, i.e., the degree of orientation, using X-ray diffraction procedures. The sites of naturally existing hole in bone, called foramen, are considered from bovine femur and metacarpal samples. Significant values of residual strains are found to exist in the specimens. Trends of residual strains noted in the specimens are mostly consistent with the degree of orientation of the crystallites. These features explain the response behavior of bone to the mechanical loading history near the foramen sites. Preferential orientation of crystals mapped around a femoral foramen specimen showed furnished tailored arrangement of the crystals around the hole. Effect of external loading at the femoral foramen site is also explained by the tensile loading experiment.  相似文献   

15.
Enzymes and tissue antigens were localized on plastic embedded undecalcified bones and teeth using Technovit 7200 VLC (Kulzer, Germany). This resin is hard enough for cutting and grinding procedures on rotating plates with diamond layers. The pores between the diamond grains are not obstructed with this resin. The procedure described here permits localization of antigens in the soft tissues adjacent to, or in the biological hard tissues themselves and in dental implants (ceramic or metallic) on the light microscopic level. The undecalcified bone is fixed and embedded in plastic and cut at 100-150 μm. The slices are ground automatically by a grinding machine to a thickness of 5-10 μm. After application of the substrates for alkaline and acid phosphatases and the required dyes, the distribution of these enzymes can be demonstrated. Tissue antigens also can be detected with slightly modified standard techniques of immunohistochemistry and lectin histochemistry using the peroxidase technique or fluorescence microscopy.  相似文献   

16.
The mechanical rigidity and degradation rate of hydrogels utilized as cell transplantation vehicles have been regarded as critical factors in new tissue formation. However, conventional approaches to accelerate the degradation rate of gels deteriorate their function as a mechanical support in parallel. We hypothesized that adjusting the molecular weight distribution of polymers that are hydrolytically labile but capable of forming gels would allow one to alter the degradation rate of the gels over a broad range, while limiting the range of their elastic moduli (E). We investigated this hypothesis with binary alginate hydrogels formed from both ionically and covalently cross-linked partially oxidized (1% uronic acid residues), low [molecular weight (MW) approximately 60,000 g/mol] and high MW alginates (MW approximately 120,000 g/mol) in order to examine the utility of this approach with various cross-linking strategies. Increasing the fraction of low MW alginates to 0.50 maintained a value of E similar to that for the high MW alginate gels but led to faster degradation, irrespective of the cross-linking mode. This result was attributed to a faster separation between cross-linked domains upon chain breakages for the low MW alginates, coupled with their faster chain scission than the high MW alginates. The more rapidly degrading oxidized binary hydrogels facilitated the formation of new bone tissues from transplanted bone marrow stromal cells, as compared with the nonoxidized high MW hydrogels. The results of these studies will be useful for controlling the physical properties of a broad array of hydrogel-forming polymers.  相似文献   

17.
Under normal conditions, loading activities result in microdamage in the living skeleton, which is repaired by bone remodeling. However, microdamage accumulation can affect the mechanical properties of bone and increase the risk of fracture. This study aimed to determine the effect of microdamage on the mechanical properties and composition of bone. Fourteen male goats aged 28 months were used in the present study. Cortical bone screws were placed in the tibiae to induce microdamage around the implant. The goats were euthanized, and 3 bone segments with the screws in each goat were removed at 0 days, 21 days, 4 months, and 8 months after implantation. The bone segments were used for observing microdamage and bone remodeling, as well as nanoindentation and bone composition, separately. Two regions were measured: the first region (R1), located 1.5 mm from the interface between the screw hole and bone; and the second region (R2), located>1.5 mm from the bone-screw interface. Both diffuse and linear microdamage decreased significantly with increasing time after surgery, with the diffuse microdamage disappearing after 8 months. Thus, screw implantation results in increased bone remodeling either in the proximal or distal cortical bone, which repairs the microdamage. Moreover, bone hardness and elastic modulus decreased with microdamage repair, especially in the proximal bone tissue. Bone composition changed greatly during the production and repair of microdamage, especially for the C (Carbon) and Ca (Calcium) in the R1 region. In conclusion, the presence of mechanical microdamage accelerates bone remodeling either in the proximal or distal cortical bone. The bone hardness and elastic modulus decreased with microdamage repair, with the micromechanical properties being restored on complete repair of the microdamage. Changes in bone composition may contribute to changes in bone mechanical properties.  相似文献   

18.
Bone strain is the governing stimuli for the remodeling process necessary in the maintenance of bone's structure and mechanical strength. Strain gages are the gold standard and workhorses of human bone experimental strain analysis in vivo. The objective of this systematic literature review is to provide an overview for direct in vivo human bone strain measurement studies and place the strain results within context of current theories of bone remodeling (i.e. mechanostat theory). We employed a standardized search strategy without imposing any time restriction to find English language studies indexed in PubMed and Web of Science databases that measured human bone strain in vivo. Twenty-four studies met our final inclusion criteria. Seven human bones were subjected to strain measurements in vivo including medial tibia, second metatarsal, calcaneus, proximal femur, distal radius, lamina of vertebra and dental alveolar. Peak strain magnitude recorded was 9096 με on the medial tibia during basketball rebounding and the peak strain rate magnitude was -85,500 με/s recorded at the distal radius during forward fall from standing, landing on extended hands. The tibia was the most exposed site for in vivo strain measurements due to accessibility and being a common pathologic site of stress fracture in the lower extremity. This systematic review revealed that most of the strains measured in vivo in different bones were generally within the physiological loading zone defined by the mechanostat theory, which implies stimulation of functional adaptation necessary to maintain bone mechanical integrity.  相似文献   

19.
Implantation of biodegradable scaffold is considered as a promising method to treat bone disorders, but knowledge of the dynamic bone repair process is extremely limited. In this study, based on the representative volume cell of a periodic scaffold, the influence of rehabilitation exercise duration per day on the bone repair was investigated by a computational framework. The framework coupled scaffold degradation and bone remodeling. The scaffold degradation was described by a function of stochastic hydrolysis independent of mechanical stimulation, and the bone formation was remodeled by a function of the mechanical stimulation, i.e., strain energy density. Then, numerical simulations were performed to study the dynamic bone repair process. The results showed that the scaffold degradation and the bone formation in the process were competitive. An optimal exercise duration per day emerged. All exercise durations promoted the bone maturation with a final Young’s modulus of 1.9 ± 0.3 GPa. The present study connects clinical rehabilitation and fundamental research, and is helpful to understand the bone repair process and further design bone scaffold for bone tissue engineering.  相似文献   

20.
Wang E  Lee SH  Lee SW 《Biomacromolecules》2011,12(3):672-680
In nature, organic matrix macromolecules play a critical role in enhancing the mechanical properties of biomineralized composites such as bone and teeth. Designing artificial matrix analogues is promising but challenging because relatively little is known about how natural matrix components function. Therefore, in lieu of using natural components, we created biomimetic matrices using genetically engineered elastin-like polypeptides (ELPs) and then used them to construct mechanically robust ELP-hydroxyapatite (HAP) composites. ELPs were engineered with well-defined backbone charge distributions by periodic incorporation of negative, positive, or neutral side chains or with HAP-binding octaglutamic acid motifs at one or both protein termini. ELPs exhibited sequence-specific capacities to interact with ions, bind HAP, and disperse HAP nanoparticles. HAP-binding ELPs were incorporated into calcium phosphate cements, resulting in materials with improved mechanical strength, injectability, and antiwashout properties. The results demonstrate that rational design of genetically engineered polymers is a powerful system for determining sequence-property relationships and for improving the properties of organic-inorganic composites. Our approach may be used to further develop novel, multifunctional bone cements and expanded to the design of other advanced composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号