首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phytophthora cinnamomi occurs worldwide and has a host range in excess of 1,000 plant species. Avocados (Persea americana Mill) have been described as highly susceptible to this soil-borne pathogen. Here, the regulation of defence responses in avocado root seedlings inoculated with P. cinnamomi mycelia is described. A burst of reactive oxygen species (ROS) was observed 4 days after inoculation. The higher physiological concentration of H2O2 induced by P. cinnamomi on avocado roots had no effect on in vitro growth of the oomycete. Total phenols and epicathecin content showed a significant decrease, but lignin and pyocianidins exhibited no changes after inoculation. Also, increased nitric oxide (NO) production was observed 72 h after treatment. We studied the effects of one NO donor [sodium nitroprusside (SNP)], and one NO scavenger [2- to 4-carboxyphenyl-4,4,5,5-tetramethylimidazole-1-oxyl-3-oxide (CPTIO)] to determine the role of NO during root colonisation by P. cinnamomi mycelia. Pretreatment of the roots with CPTIO, but not with SNP, inhibited root colonisation suggesting an important role for NO production during the avocado–P. cinnamomi interaction. Our data suggest that although defence responses are activated in avocado roots in response to P. cinnamomi infection, these are not sufficient to avoid pathogen invasion.  相似文献   

2.
3.
4.
Phytophthora cinnamomi is a soil‐borne plant pathogen that causes devastating disease in agricultural and natural systems worldwide. While a small number of species survive infection by the pathogen without producing disease symptoms, the nature of resistance, especially under controlled conditions, remains poorly understood. At present, there are no standardized criteria by which resistance or susceptibility to P. cinnamomi can be assessed, and we have used five parameters consisting of plant fresh weight, root growth, lesion length, relative chlorophyll content of leaves and pathogen colonization of roots to analyse responses to the pathogen. The parameters were tested using two plant species, Zea mays and Lupinus angustifolius, through a time course study of the interactions and resistance and susceptibility defined 7 days after inoculation. A scoring system was devised to enable differentiation of these responses. In the resistant interaction with Z. mays, there was no significant difference in fresh weight, root length and relative chlorophyll content in inoculated compared with control plants. Both lesion size and pathogen colonization of root tissues were limited to the site of inoculation. Following inoculation L. angustifolius showed a significant reduction in plant fresh weight and relative leaf chlorophyll content, cessation of root growth and increased lesion lengths and pathogen colonization. We propose that this technique provides a standardized method for plant–P. cinnamomi interactions that could be widely used to differentiate resistant from susceptible species.  相似文献   

5.
Feral pigs have long been implicated as potential vectors in the spread of the devastating plant pathogen Phytophthora cinnamomi due to their rooting and wallowing activities which may predispose them as vectors of infested soil. In this study, we aim to determine whether feral pigs have the potential to act as vectors of plant pathogens such as P. cinnamomi through their feeding activity. The typically omnivorous diet of feral pigs may also lead to the passage of P. cinnamomi infected plant material through their digestive system. This study investigates the potential for feral pigs to pass viable P. cinnamomi in their faeces following the ingestion of millet seeds, pine plugs and Banksia leptophilia roots inoculated with P. cinnamomi. Recovery rates of P. cinnamomi from the millet seeds, pine plugs and B. leptophilia roots following a single ingested bolus were 33.2, 94.9 and 10.4 %, respectively supported by quantitative PCR analysis. These results demonstrate that P. cinnamomi remain viable within infected plant material following passage through the pig digestive tract, although the digestive processes reduce the pathogen’s viability. An inverse relationship was observed between the viability of infected material and passage time, suggesting that partially digested plant material provides protection for P. cinnamomi against the adverse environmental conditions of the pig digestive tract. Phytophthora cinnamomi remained viable for up to 7 days in larger pieces of colonised woody plant material such as the pine plugs. A plant infection trial using passaged P. cinnamomi colonised pine plugs showed that even material that remained in the digestive tract for 7 days was capable of infecting and killing healthy plants, susceptible to P. cinnamomi. This study provides compelling evidence that feral pigs have the ability to transport viable P. cinnamomi in their digestive tract.  相似文献   

6.
Salvia miltiorrhiza is a valuable Chinese herb (Danshen) that is widely used in traditional Chinese medicine. Diterpene quinones, known as tanshinones, are the main bioactive components of S. miltiorrhiza; however, there is only limited information regarding the molecular mechanisms underlying secondary metabolism in this plant. We used cDNA microarray analysis to identify changes in the gene expression profile at different stages of hairy root development in S. miltiorrhiza. A total of 203 genes were singled out from 4,354 cDNA clones on the microarray, and 114 unique differentially expressed cDNA clones were identified: six genes differentially expressed in 45-day hairy root compared with 30-day hairy root; 96 genes differentially expressed in 60-day hairy root compared with 30-day hairy root; and 12 genes unstably expressed at different stages. Among the 96 genes differentially expressed in 60-day hairy root compared with 30-day hairy root, a total of 57 genes were up-regulated, and 26 genes represent 29 metabolism-related enzymes. Copalyl diphosphate synthase, which catalyzes the conversion of the universal diterpenoid precursor (E,E,E)-geranylgeranyl diphosphate to copalyl diphosphate, was up-regulated 6.63 fold, and another six genes involved in tanshinone biosynthesis and eight candidate P450 genes were also differentially expressed. These data provide new insights for further identification of the enzymes involved in tanshinone biosynthesis.  相似文献   

7.
8.
Our previous work has demonstrated that Arabidopsis thaliana can actively recruit beneficial rhizobacteria Bacillus subtilis strain FB17 (hereafter FB17) through an unknown shoot-to-root long-distance signaling pathway post a foliar bacterial pathogen attack. However, it is still not well understood which genetic targets FB17 affects in plants. Microarray analysis of A. thaliana roots treated with FB17 post 24 h of treatment showed 168 and 129 genes that were up- and down-regulated, respectively, compared with the untreated control roots. Those up-regulated include auxin-regulated genes as well as genes involved in metabolism, stress response, and plant defense. In addition, other defense-related genes, as well as cell-wall modification genes were also down-regulated with FB17 colonization. Expression patterns of 20 selected genes were analyzed by semi-quantitative RT-PCR, validating the microarray results. A. thaliana insertion mutants were used against FB17 to further study the functional response of the differentially expressed genes. Five mutants for the up-regulated genes were tested for FB17 colonization, three (at3g28360, at3g20190 and at1g21240) mutants showed decreased FB17 colonization on the roots while increased FB17 titers was seen with three mutants of the down-regulated genes (at3g27980, at4g19690 and at5g56320). Further, these mutants for up-regulated genes and down-regulated genes were foliar infected with Pseudomonas syringae pv. tomato (hereafter PstDC3000) and analyzed for Aluminum activated malate transporter (ALMT1) expression which showed that ALMT1 may be the key regulator for root FB17 colonization. Our microarray showed that under natural condition, FB17 triggers plant responses in a manner similar to known plant growth-promoting rhizobacteria and to some extent also suppresses defense-related genes expression in roots, enabling stable colonization. The possible implication of this study opens up a new dialogin terms of how beneficial microbes regulate plant genetic response for mutualistic associations.  相似文献   

9.
Phytophthora cinnamomi is one of the most devastating plant pathogens worldwide. Current control of P. cinnamomi in natural ecosystems primarily relies on chemical phosphite (Phi). To investigate host- and Phi-mediated resistance, A. thaliana ecotypes and mutants defective in salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA) signalling pathways were screened for susceptibility to P. cinnamomi. In contrast to Col-0, the aba2-4 mutant, deficient in the synthesis of ABA, was susceptible suggesting a role for ABA in resistance to P. cinnamomi. Phi treatment increased resistance in aba2-4, but not to the level of Col-0, suggesting that Phi may act through both ABA-dependent and ABA-independent pathways. Phi treatment or P. cinnamomi inoculation of Col-0 down-regulated AtMYC2, a positive regulator of ABA signalling, which negatively regulates JA/ET-related pathogenesis-related genes, such as PDF1.2, whilst positively regulating JA-mediated herbivore responses such as VSP and PI. Consistent with this, P. cinnamomi or Phi treatment caused up-regulation of PDF1.2 and THI2.1 and down-regulation of VSP2 and the ABA-responsive gene RD22. Despite the up-regulation of JA/ET-dependent defence genes, the JA-defective mutant, jar1-1 and ET-defective mutants, ein2-1 and etr1-3, showed wild-type levels of resistance to P. cinnamomi, suggesting that these JA/ET defences are not required for resistance to P. cinnamomi. These results suggest that the resistance response of Col-0 act, at least in part, through a mechanism dependent on ABA synthesis, which appears independent of the interaction between ABA and elements of the JA/ET pathway, whilst Phi-mediated resistance, although inducing a response resembling the resistance response of Col-0, is independent of ABA signalling.  相似文献   

10.
Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was identified as a candidate SCN defence‐related gene in our previous analysis of soybean defence against SCN using GeneChip microarray experiments. The current study started with the isolation of the full‐length cDNAs of GmSAMT1 from a SCN‐resistant soybean line and from a SCN‐susceptible soybean line. The two cDNAs encode proteins of identical sequences. The GmSAMT1 cDNA was expressed in Escherichia coli. Using in vitro enzyme assays, E. coli‐expressed GmSAMT1 was confirmed to function as salicylic acid methyltransferase. The apparent Km value of GmSAMT1 for salicylic acid was approximately 46 μm . To determine the role of GmSAMT1 in soybean defence against SCN, transgenic hairy roots overexpressing GmSAMT1 were produced and tested for SCN resistance. Overexpression of GmSAMT1 in SCN‐susceptible backgrounds significantly reduced the development of SCN, indicating that overexpression of GmSAMT1 in the transgenic hairy root system could confer resistance to SCN. Overexpression of GmSAMT1 in transgenic hairy roots was also found to affect the expression of selected genes involved in salicylic acid biosynthesis and salicylic acid signal transduction.  相似文献   

11.
12.
13.
14.
Sclerotinia rot caused by Sclerotinia sclerotiorum is one of the most serious diseases of oilseed rape. To understand the resistance mechanisms in the Brassica napus to S. sclerotiorum, comparative disease progression, histological and proteomic studies were conducted of two B. napus genotypes (resistant cv. Charlton, susceptible cv. RQ001-02M2). At 72 and 96 h post inoculation (hpi), lesion size on cotyledons was significantly (P≤0.001) smaller in the resistant Charlton. Anatomical investigations revealed impeded fungal growth (at 24 hpi and onwards) and hyphal disintegration only on resistant Charlton. Temporal changes (12, 24, 48 and 72 hpi) in protein profile showed certain enzymes up-regulated only in resistant Charlton, such as those related to primary metabolic pathways, antioxidant defence, ethylene biosynthesis, pathogenesis related proteins, protein synthesis and protein folding, play a role in mediating defence responses against S. sclerotiorum. Similarly a eukaryotic translation initiation factor 5A enzyme with increased abundance in susceptible RQ001-02M2 and decreased levels in resistant Charlton has a role in increased susceptibility to this pathogen. This is the first time that the expression of these enzymes has been shown to be associated with mediating the defence response against S. sclerotinia in cotyledon tissue of a resistant cultivar of B. napus at a proteomics level. This study not only provides important new insights into the resistance mechanisms within B. napus against S. sclerotiorum, but opens the way for novel engineering of new B. napus varieties that over-express these key enzymes as a strategy to enhance resistance and better manage this devastating pathogen.  相似文献   

15.
16.
Phosphite is used to protect plants from the soil borne pathogen, Phytophthora cinnamomi. Although phosphite stimulates resistance to P. cinnamomi, this is the first histological study of its effect on Eucalyptus marginata, an economically important forest tree in Western Australia. Clonal lines of E. marginata, considered resistant and susceptible to P. cinnamomi, were underbark inoculated with P. cinnamomi. 4 days later, they were treated with 0, 2.5, 5 or 10 g L−1 phosphite. Transverse hand sections were stained for suberin and lignin, and histological responses to infection were examined. Defence responses were stimulated at all phosphite concentrations in both clonal lines, and the genotypic difference in lesion length was eliminated within 8 days of treatment. In the resistant line, suberin production was stimulated while in the susceptible line both lignin and suberin were stimulated. By 2 days after treatment, phosphite stimulated a faster rate of suberin production in the resistant line than the susceptible line, but by 4 days after treatment, there was no difference in the increase between the lines. Damage caused by P. cinnamomi was found to extend furthest in the cortex and outer phloem in transverse sections in both genotypes. In the presence of P. cinnamomi, phosphite stimulated mitosis as part of the defence response, with meristematic activity involved in the compartmentalisation of damaged tissue (formation of periderm) and closure of healthy tissue (callus). Phytotoxicity had a detrimental effect in healthy tissues and this was more apparent in the resistant line, where it did not provide the best protection from lesion extension and plant mortality, suggesting phytotoxicity could disrupt defence responses. Phosphite increases the capacity of susceptible and resistant E. marginata clonal lines to wall-off and contain P. cinnamomi colonisation through lignin and suberin deposition, and increased meristematic activity.  相似文献   

17.
The root parasitic plant, Striga hermonthica, constrains the production of several agronomically important poaceous crops in the arid and semiarid tropical regions of Sub-Saharan Africa. The parasite is incompatible with the model legume, Lotus japonicus. Studies at the molecular and metabolic levels have revealed that expression of the genes involved in the biosynthesis of vestitol, a legume-specific phytoalexin, was highly up-regulated in L. japonicus roots challenged with S. hermonthica. High-performance liquid chromatography and mass spectroscopy confirmed the presence of vestitol in the exudate released from L. japonicus roots inoculated with S. hermonthica seedlings. Fluorescence, similar to that emitted by authentic vestitol, was displayed on the surface of L. japonicus roots to which successful attachment of S. hermonthica had been achieved. Vestitol exerted a limited inhibitory effect on S. hermonthica germination, but it significantly inhibited seedling growth. These results indicate that vestitol biosynthesis in L. japonicus was induced by S. hermonthica attachment and that vestitol contributed, at least in part, to the host’s defence mechanism and acted as a chemical barrier against the intrusion of the parasite.  相似文献   

18.
During pathogen attack, the host plant induces genes to ward off the pathogen while the pathogen often produces effector proteins to increase susceptibility of the host. Gene expression studies of syncytia formed in soybean root by soybean cyst nematode (Heterodera glycines) identified many genes altered in expression in resistant and susceptible roots. However, it is difficult to assess the role and impact of these genes on resistance using gene expression patterns alone. We selected 100 soybean genes from published microarray studies and individually overexpressed them in soybean roots to determine their impact on cyst nematode development. Nine genes reduced the number of mature females by more than 50 % when overexpressed, including genes encoding ascorbate peroxidase, β-1,4-endoglucanase, short chain dehydrogenase, lipase, DREPP membrane protein, calmodulin, and three proteins of unknown function. One gene encoding a serine hydroxymethyltransferase decreased the number of mature cyst nematode females by 45 % and is located at the Rhg4 locus. Four genes increased the number of mature cyst nematode females by more than 200 %, while thirteen others increased the number of mature cyst nematode females by more than 150 %. Our data support a role for auxin and ethylene in susceptibility of soybean to cyst nematodes. These studies highlight the contrasting gene sets induced by host and nematode during infection and provide new insights into the interactions between host and pathogen at the molecular level. Overexpression of some of these genes result in a greater decrease in the number of cysts formed than recognized soybean cyst nematode resistance loci.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号