首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Sweetpotato (Ipomoea batatas) ranks as the seventh most important staple crop in the world and the fifth in developing countries after rice, wheat, maize and cassava. Sweetpotato is mainly grown in developing countries, which account for more than 95% of total production of the whole world. Genetic resources, including cultivated varieties and wild species, are a prerequisite for novel sweetpotato breeding in both conventional and genetic engineering programs. Various cryopreservation protocols have been developed for shoot tips and embryogenic tissues. The former explants are preferred for long-term conservation of sweetpotato genetic resources, while the latter are valuable for sweetpotato genetic improvement. This review provides update comprehensive information on cryopreservation of sweetpotato shoot tips and embryogenic tissues.Plant pathogens such as viruses and phytoplasma severely hamper high yield and high quality production of sweetpotato. Thus, usage of pathogen-free planting materials is pivotal for sustainable sweetpotato production. Cryotherapy of shoot tips can efficiently eradicate sweetpotato pathogens such as viruses and phytoplasma. The mechanism behind pathogen eradication by cryotherapy of shoot tips has been elucidated. Pathogen eradication by cryotherapy provides an alternative, efficient strategy for production of pathogen-free plants. In addition, cryopreserved tissues may also be considered to be safer for exchange of germplasm between countries and regions.  相似文献   

2.
Sweetpotato has been the subject of little research worldwide compared with other major crop staples, and this is especially so for less developed countries where sweetpotato is critical for food security. This review synthesises information on plant protection issues that affect smallholder sweetpotato farmers in less developed countries to identify major issues and suggest research priorities. Though the pests and diseases of sweetpotato in less developed countries are largely common to industrialised systems, their relative importance differs and losses tend to be more severe as a result of differing agronomic practices and relative unavailability of management options and technical support that are important in developed countries. Smallholders are heavily reliant on cultural practices such as traditional forms of biological control using ants and livestock, fallowing and composting (sometimes with plant materials having biocidal properties). Crop protection methods that have been developed for use in sweetpotato production in developed countries, such as pathogen‐tested planting material, early maturing varieties, pheromone trapping and pesticides are less accessible to, and relevant for, smallholders. Smallholders also typically harvest a given crop progressively which extends the period over which storage roots are potentially vulnerable to attack but reduces the risk of post‐harvest losses. Human population growth in developing countries is leading to an increase in cropping intensity with shorter fallow periods and more years of continuous crops. This has the dual effect of depleting soil nutrients and increasing the potential for pest and pathogen build‐up. Associated with this, the adoption of strategies to manage crop nutrition, such as not burning crop residues, promote carryover of pests and pathogen inocula. As a consequence of these factors, sweetpotato yield losses from diseases, especially viruses, and pests, particularly weevils, can be high. Climate change is likely to result in more frequent drought and this will increase losses caused by sweetpotato weevils that are favoured by dry conditions. This review of sweetpotato pests and their management options concludes with suggestions for some future research priorities including the combination of traditional practices that have pest management outcomes with relevant practices from industrial production that are able to be transferred or modified for use in smallholder production. Increased technical support for decision making and diagnostics, including molecular approaches that have scope for field use, will be important in reducing the burden imposed by biotic threats to this important global crop.  相似文献   

3.
4.
为鉴定引起四川盆地地区核桃黑斑病的病原菌,采用组织分离法对病原菌进行分离,利用柯赫氏法则验证其致病性,依据菌株形态学和基于16S rDNA基因序列分析对病原菌进行鉴定;同时,利用分离的菌株对18个栽培品种(无性系)进行抗病性评价。结果表明,分离菌株的菌落形态与黄单胞杆菌属(Xanthomonas)相似,其16S rDNA序列与树生黄单胞杆菌(X. arboricola)的(登录号为KP340804.1)同源性高达99%,因此,将引起四川盆地地区核桃黑斑病的病原菌鉴定为树生黄单胞杆菌。18个核桃栽培品种(无性系)的田间侵染发病率和病情指数分别为35.07%~78.57%和17.71%~51.96%,变异系数分别为17.62%和28.78%,并以此为基础评价出5个高抗病品种(无性系)。这为核桃黑斑病致病机理研究和抗病新品种的选育奠定基础。  相似文献   

5.
The preponderant clonal evolution hypothesis (PCE) predicts that frequent clonal reproduction (sex between two clones) in many pathogens capable of sexual recombination results in strong linkage disequilibrium and the presence of discrete genetic subdivisions characterized by occasional gene flow. We expand on the PCE and predict that higher rates of clonal reproduction will result in: (1) morphologically cryptic species that exhibit (2) low within‐species variation and (3) recent between‐species divergence. We tested these predictions in the Caribbean lizard malaria parasite Plasmodium floridense using 63 single‐infection samples in lizards collected from across the parasite's range, and sequenced them at two mitochondrial, one apicoplast, and five nuclear genes. We identified 11 provisionally cryptic species within P. floridense, each of which exhibits low intraspecific variation and recent divergence times between species (some diverged approximately 110,000 years ago). Our results are consistent with the hypothesis that clonal reproduction can profoundly affect diversification of species capable of sexual recombination, and suggest that clonal reproduction may have led to a large number of unrecognized pathogen species. The factors that may influence the rates of clonal reproduction among pathogens are unclear, and we discuss how prevalence and virulence may relate to clonal reproduction.  相似文献   

6.
The effects of Fusarium avenaceum and Fusarium culmorum on the reduction in yield components, after independent inoculation of 14 winter wheat cultivars, were investigated. Single isolates of F. avenaceum and F. culmorum were independently used in inoculations of winter wheat heads. Reductions in the following yield traits: 1000‐kernel weight (TKW), the weight (WKH) and number (NKH) of kernels per head after inoculation were analysed statistically. The results indicate differences between both pathogens in their effects on yield traits. The statistical calculations were performed using analysis of variance (a three‐factor experiment) for particular yield trait reductions and multivariate analysis of variance for the yield trait reductions jointly. Almost all of the univariate and multivariate hypotheses concerning no differences between pathogens (F. culmorum, F. avenaceum), climatic conditions (years) and cultivars as well as hypotheses concerning no interactions between factors (pathogens, years, cultivars) were rejected at least at P= 0.05 significance level. The reduction of yield traits indicated individual reactions of the tested winter wheat cultivars to different pathogens. Among the tested traits the highest influence on the rejection of the hypothesis concerning the equivalence of F. avenaceum and F. culmorum was observed for TKW and WKH. The effect of the pathogen on yield reduction was greater for F. avenaceum than for F. culmorum during 1996 and 1997. A comparison of the cultivars indicated that the Begra cultivar showed the highest tolerance to inoculation with both Fusarium pathogens. Moreover, this genotype as well as several others showed lower tolerance to F. avenaceum rather than to F. culmorum, whereas Elena was the only cultivar with the opposite tendency.  相似文献   

7.
Sweetpotato chlorotic stunt virus (SPCSV; genus Crinivirus , family Closteroviridae) is one of the most important pathogens of sweetpotato ( Ipomoea batatas L.). It can reduce yields by 50% by itself and cause various synergistic disease complexes when co-infecting with other viruses, including sweetpotato feathery mottle virus (SPFMV; genus Potyvirus , family Potyviridae). Because no sources of true resistance to SPCSV are available in sweetpotato germplasm, a pathogen-derived transgenic resistance strategy was tested as an alternative solution in this study. A Peruvian sweetpotato landrace 'Huachano' was transformed with an intron-spliced hairpin construct targeting the replicase encoding sequences of SPCSV and SPFMV using an improved genetic transformation procedure with reproducible efficiency. Twenty-eight independent transgenic events were obtained in three transformation experiments using a highly virulent Agrobacterium tumefaciens strain and regeneration through embryogenesis. Molecular analysis indicated that all regenerants were transgenic, with 1–7 transgene loci. Accumulation of transgene-specific siRNA was detected in most of them. None of the transgenic events was immune to SPCSV, but ten of the 20 tested transgenic events exhibited mild or no symptoms following infection, and accumulation of SPCSV was significantly reduced. There are few previous reports of RNA silencing-mediated transgenic resistance to viruses of Closteroviridae in cultivated plants. However, the high levels of resistance to accumulation of SPCSV could not prevent development of synergistic sweet potato virus disease in those transgenic plants also infected with SPFMV.  相似文献   

8.
Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV) are the most common viruses infecting sweetpotato in Uganda. Field plots planted with graft inoculated plants of virus‐free cultivars Beauregard, Dimbuka, Ejumula, Kabode and NASPOT 1 were used to assess the effect of SPFMV and SPCSV on yield and quality of sweetpotatoes in two agro‐ecologies. SPFMV spreads rapidly to control plots at Makerere University Agricultural Research Institute Kabanyolo (MUARIK), and these plots had similar yields to those singly infected with SPFMV but at the National Semi Arid Resource Research Institute (NaSARRI) where SPFMV spreads slowly, plots infected with SPFMV yielded 40% less than the control. Recovery from SPFMV appeared to be more frequent at NaSARRI than at MUARIK. Infection by SPCSV alone resulted in yield losses of 14–52%, while mixed infections of SPFMV+SPCSV resulted in yield losses in both locations of 60–95% depending on the cultivar. SPCSV and mixed infections of SPFMV+SPCSV also reduced the number of roots formed as well as the diameter of the roots, resulting in a greater length to diameter ratio compared to the healthy control. This study, therefore, confirms that both SPFMV and SPCSV, both singly and when mixed, can reduce yield, the extent depending on the cultivar. To mitigate the effect of these viruses, farmers should use clean planting materials of resistant varieties.  相似文献   

9.
Twenty-five sweetpotato cultivars from Papua New Guinea (PNG) and Australia were studied for their flour digestibility properties. The cultivars displayed monophasic digestograms, and a modified first-order kinetic model adequately predicted the rate and extent of starch digestion. Flours from all the cultivars had high average glycemic index (GIavg) and glycemic load (GL). This study of starch digestion in a wide range of sweetpotato cultivars demonstrates associations and interactions of non-starch components in the flours, and their effects on starch digestibility. The presence of resistant starch (RS) in some cultivars is highlighted with respect to its potential contribution to human health and nutrition.  相似文献   

10.
Symptoms of leaf and stem chlorosis and plant stunting were common in sweetpotato plants (Ipomoea batatas) in farmers’ fields in two widely separated locations, Kununurra and Broome, in the tropical Kimberley region in the state of Western Australia in 2003 and 2004. In the glasshouse, progeny plants developed similar symptoms characteristic of phytoplasma infection, consisting of chlorosis and a stunted, bushy appearance as a result of proliferation of axillary shoots. The same symptoms were reproduced in the African sweetpotato cv. Tanzania grafted with scions from the plant Aus1 with symptoms and in which no viruses were detected. PCR amplification with phytoplasma‐specific primers and sequencing of the 16S‐23S rRNA gene region from two plants with symptoms, Aus1 (Broome) and Aus142A (Kununurra), revealed highly identical sequences. Phylogenetic analysis of the 16S rRNA gene sequences obtained from previously described sweetpotato phytoplasma and inclusion of other selected phytoplasma for comparison indicated that Aus1 and Aus142A belonged to the Candidatus Phytoplasma aurantifolia species (16SrII). The 16S genes of Aus1 and Aus142A were almost identical to those of sweet potato little leaf (SPLL‐V4) phytoplasma from Australia (99.3%–99.4%) but different from those of the sweetpotato phytoplasma from Taiwan (95.5%–95.6%) and Uganda (SPLL‐UG, 90.0%–90.1%). Phylogenetically, Aus1, Aus142A and a phytoplasma previously described from sweetpotato in the Northern Territory of Australia formed a group distinctly different from other isolates within Ca. Phytoplasma aurantifolia species. These findings indicate that novel isolates of the 16SrII‐type phytoplasma pose a potential threat to sustainable sweetpotato production in northern Australia.  相似文献   

11.
The spread of aggressive fungal pathogens into previously non‐endemic regions is a major threat to plant health and food security. Analyses of the spatial and genetic structure of plant pathogens offer valuable insights into their origin, dispersal mechanisms and evolution, and have been useful to develop successful disease management strategies. Here, we elucidated the genetic diversity, population structure and demographic history of worldwide invasion of the ascomycete Verticillium dahliae, a soil‐borne pathogen, using a global collection of 1100 isolates from multiple plant hosts and countries. Seven well‐differentiated genetic clusters were revealed through discriminant analysis of principal components (DAPC), but no strong associations between these clusters and host/geographic origin of isolates were found. Analyses of clonal evolutionary relationships among multilocus genotypes with the eBURST algorithm and analyses of genetic distances revealed that genetic clusters represented several ancient evolutionary lineages with broad geographic distribution and wide host range. Comparison of different scenarios of demographic history using approximate Bayesian computations revealed the branching order among the different genetic clusters and lineages. The different lineages may represent incipient species, and this raises questions with respect to their evolutionary origin and the factors allowing their maintenance in the same areas and same hosts without evidence of admixture between them. Based on the above findings and the biology of V. dahliae, we conclude that anthropogenic movement has played an important role in spreading V. dahliae lineages. Our findings have implications for the development of management strategies such as quarantine measures and crop resistance breeding.  相似文献   

12.
Development of orange-fleshed sweetpotatoes (OFSP) is desired for the improvement of the food supply and nutritional status of millions of people in developing countries, particularly in sub-Saharan Africa. However, sweetpotato [Ipomoea batatas (L.) Lam] breeding is challenging due to its genetic complexity, and marker-assisted breeding tools are needed to facilitate crop improvement. We identified quantitative trait loci (QTL) for dry-matter, starch, and β-carotene content in a hexaploid sweetpotato mapping population derived from a cross between Tanzania, a white-fleshed, high dry-matter African landrace, and Beauregard, an orange-fleshed, low dry-matter sweetpotato cultivar popular in the USA. Two parental maps were constructed using a population of 240 clones. Strong correlations were observed between starch and dry-matter content (r > 0.8, P < 0.0001) in the storage roots, while moderate correlations (r = –0.6, P < 0.0001) were observed for β-carotene and starch content. In both parental maps, QTL analysis revealed the presence of 13 QTL for storage root dry-matter content, 12 QTL for starch content, and 8 QTL for β-carotene content. Multiple QTL regression models developed for segregation of alleles in each parent explained 15–24% of the variation in dry-matter content, 17–30% of the starch content, and 17–35% of β-carotene content. To the best of our knowledge, this research presents the only QTL mapping study published to date for dry-matter, starch, and β-carotene content in sweetpotato. This work improves our understanding of the inheritance of these important traits in sweetpotato, and represents a first step toward the long-term goal of developing marker-assisted breeding tools to facilitate sweetpotato breeding efforts.  相似文献   

13.
A broad diversity of arthropod‐borne viruses (arboviruses) of global health concern are endemic to East Africa, yet most surveillance efforts are limited to just a few key viral pathogens. Additionally, estimates of arbovirus diversity in the tropics are likely to be underestimated as their discovery has lagged significantly over past decades due to limitations in fast and sensitive arbovirus identification methods. Here, we developed a nearly pan‐arbovirus detection assay that uses high‐resolution melting (HRM) analysis of RT–PCR products from highly multiplexed assays to differentiate broad diversities of arboviruses. We differentiated 15 viral culture controls and seven additional synthetic viral DNA sequence controls, within Flavivirus, Alphavirus, Nairovirus, Phlebovirus, Orthobunyavirus and Thogotovirus genera. Among Bunyamwera, sindbis, dengue and Thogoto virus serial dilutions, detection by multiplex RT–PCR‐HRM was comparable to the gold standard Vero cell plaque assays. We applied our low‐cost method for enhanced broad‐range pathogen surveillance from mosquito samples collected in Kenya and identified diverse insect‐specific viruses, including a new clade in anopheline mosquitoes, and Wesselsbron virus, an arbovirus that can cause viral haemorrhagic fever in humans and has not previously been isolated in Kenya, in Culex spp. and Anopheles coustani mosquitoes. Our findings demonstrate how multiplex RT–PCR‐HRM can identify novel viral diversities and potential disease threats that may not be included in pathogen detection panels of routine surveillance efforts. This approach can be adapted to other pathogens to enhance disease surveillance and pathogen discovery efforts, as well as the study of pathogen diversity and viral evolutionary ecology.  相似文献   

14.
Small interfering RNA deep sequencing (SRDS) was used to detect viruses in 23 sweetpotato plants, collected from various locations in Tanzania. Alignment of small RNA reads using a MAQ program recovered genomes of viruses from five families, namely Geminiviridae (2), Closteroviridae (1), Betaflexiviridae (1), Caulimoviridae (1) and Potyviridae (1). This was in agreement with the variation of symptoms observed on sweetpotato plants in fields and screen house, which included leaf curl, vein yellowing, chlorosis, stunted growth and brown blotches. PCR was also used to confirm the occurrence of viruses associated with leaf curl and symptomless infections. A complete genome (2768 nucleotides) was obtained for a sweepovirus that was 89.9% identical to the strain of Sweet potato leaf curl Sao Paulo virus (SPLCSPV; Begomovirus) reported in South Africa. Sweepoviruses are known to undergo frequent recombinations and evidence for this was found in the SPLCSPV sequence studied. The SRDS‐based results indicated occurrence of the poorly studied Sweet potato badnavirus B (SPBV‐B) and Sweet potato badnavirus A (collectively known as Sweet potato pakakuy virus; SPPV; Caulimoviridae) in sweetpotato plants in Tanzania. A 5′‐end partial sequence (3065 nucleotides), encoding hypothetical, movement and coat proteins, was obtained and found to be 86.3% and 73.1% identical to SPBV‐B and SPBV‐A, respectively. A survey for the distribution of SPPV and Sweet potato symptomless mastrevirus 1 (SPSMV‐1) showed that these viruses were wide spread and co‐infecting sweetpotato plants in Tanzania. The importance of East Africa as a hot spot for the diversity and evolution of sweet potato viruses is discussed.  相似文献   

15.
Parasites and pathogens are hypothesized to change host growth, reproduction and/or behaviour to increase their own transmission. However, studies which clearly demonstrate that parasites or pathogens are directly responsible for changes in hosts are lacking. We previously found that infection by the systemic fungus Epichloë glyceriae was associated with greater clonal growth by its host, Glyceria striata. Whether greater clonal growth resulted directly from pathogen infection or indirectly from increased likelihood of infection for host genotypes with greater clonal growth could not be determined because only naturally infected and uninfected plants were used. In this study, we decoupled infection and host genotype to evaluate the role of pathogen infection on host development and clonal growth. We found that total biomass production did not differ for clones of the same genotype, but infected clones allocated more biomass to clonal growth. Disinfected clones had more tillers and a greater proportion of their biomass in the mother ramet. Infected clones produced fewer tillers but significantly more and longer stolons than disinfected clones. These results support the hypothesis that pathogen infection directly alters host development. Parasite alteration of clonal growth patterns might be advantageous to the persistence and spread of host plants in some ecological conditions.  相似文献   

16.
Pathogens are a significant component of all plant communities. In recent years, the potential for existing and emerging pathogens of agricultural crops to cause increased yield losses as a consequence of changing climatic patterns has raised considerable concern. In contrast, the response of naturally occurring, endemic pathogens to a warming climate has received little attention. Here, we report on the impact of a signature variable of global climate change – increasing temperature – on the long‐term epidemiology of a natural host–pathogen association involving the rust pathogen Triphragmium ulmariae and its host plant Filipendula ulmaria. In a host–pathogen metapopulation involving approximately 230 host populations growing on an archipelago of islands in the Gulf of Bothnia we assessed changes in host population size and pathogen epidemiological measures over a 25‐year period. We show how the incidence of disease and its severity declines over that period and most importantly demonstrate a positive association between a long‐term trend of increasing extinction rates in individual pathogen populations of the metapopulation and increasing temperature. Our results are highly suggestive that changing climatic patterns, particularly mean monthly growing season (April‐November) temperature, are markedly influencing the epidemiology of plant disease in this host–pathogen association. Given the important role plant pathogens have in shaping the structure of communities, changes in the epidemiology of pathogens have potentially far‐reaching impacts on ecological and evolutionary processes. For these reasons, it is essential to increase understanding of pathogen epidemiology, its response to warming, and to invoke these responses in forecasts for the future.  相似文献   

17.
The growing impact of phloem‐limited pathogens on high‐value crops has led to a renewed interest in understanding how they cause disease. Although these pathogens cause substantial crop losses, many are poorly characterized. In this review, we present examples of phloem‐limited pathogens that include intracellular bacteria with and without cell walls, and viruses. Phloem‐limited pathogens have small genomes and lack many genes required for core metabolic processes, which is, in part, an adaptation to the unique phloem environment. For each pathogen class, we present multiple case studies to highlight aspects of disease caused by phloem‐limited pathogens. The pathogens presented include Candidatus Liberibacter asiaticus (citrus greening), Arsenophonus bacteria, Serratia marcescens (cucurbit yellow vine disease), Candidatus Phytoplasma asteris (Aster Yellows Witches’ Broom), Spiroplasma kunkelii, Potato leafroll virus and Citrus tristeza virus. We focus on commonalities in the virulence strategies of these pathogens, and aim to stimulate new discussions in the hope that widely applicable disease management strategies can be found.  相似文献   

18.
19.
Most emerging pathogens of humans can infect multiple host species (Woolhouse & Gowtage‐Sequeria, 2005). This simple fact has motivated multiple large‐scale, comparative analyses of the drivers of pathogen sharing and zoonotic pathogen richness among hosts as well as the factors determining the zoonotic potential of pathogens themselves. However, most of this work focuses on viruses, limiting a broader understanding of how host range varies within and between pathogen groups. In this issue of Molecular Ecology, Shaw et al. (2020) compile a comprehensive data set of host–pathogen associations across viruses and bacteria and test whether previous patterns observed in the former occur in the latter. They find most viruses and bacteria are specialists, and viruses are more likely to be generalists; however, generalist bacteria encompass multiple host orders, whereas viral sharing occurs more within host orders. Lastly, the authors demonstrate that many factors previously identified as predictors of zoonotic richness for viruses occur for bacteria and that host phylogenetic similarity is a primary determinant of cross‐species transmission. However, pathogen sharing with humans was more common and more weakly related to phylogenetic distance to Homo sapiens for bacteria compared to viruses, suggesting the former could pose greater spillover risks across host orders. This work represents a key advance in our understanding of host specificity and pathogen sharing beyond viruses.  相似文献   

20.
Bioenergy production is driving modifications to native plant species for use as novel biofuel crops. Key aims are to increase crop growth rates and to enhance conversion efficiency by reducing biomass recalcitrance to digestion. However, selection for these biofuel‐valuable traits has potential to compromise plant defenses and alter interactions with pests and pathogens. Insect‐vectored plant viruses are of particular concern because perennial crops have potential to serve as virus reservoirs that influence regional disease dynamics. In this study, we examined relationships between growth rates and biomass recalcitrance in five switchgrass (Panicum virgatum) populations, ranging from near‐wildtype to highly selected cultivars, in a common garden trial. We measured biomass accumulation rates and assayed foliage for acid detergent lignin, neutral detergent fiber, in vitro neutral detergent fiber digestibility and in vitro true dry matter digestibility. We then evaluated relationships between these traits and susceptibility to a widely distributed group of aphid‐transmitted Poaceae viruses (Luteoviridae: Barley and cereal yellow dwarf viruses, B/CYDVs). Virus infection rates and prevalence were assayed with RT‐PCR in the common garden, in greenhouse inoculation trials, and in previously established switchgrass stands across a 300‐km transect in Michigan, USA. Aphid host preferences were quantified in a series of arena host choice tests with field‐grown foliage. Contrary to expectations, biomass accumulation rates and foliar digestibility were not strongly linked in switchgrass populations we examined, and largely represented two different trait axes. Natural B/CYDV prevalence in established switchgrass stands ranged from 0% to 28%. In experiments, susceptibility varied notably among switchgrass populations and was more strongly predicted by potential biomass accumulation rates than by foliar digestibility; highly selected, productive cultivars were most virus‐susceptible and most preferred by aphids. Evaluation and mitigation of virus susceptibility of new biofuel crops is recommended to avert possible unintended consequences of biofuel production on regional pathogen dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号