首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmissions of plant viruses between individuals of their vector insects through mating are rare events. Recently, three begomoviruses were found to be transmitted between males and females of the whitefly Bemisia tabaci through mating, and two viruses were shown to be transmitted transovarially to progeny. However, results between reports were not consistent. Here we examined the horizontal and vertical transmission of Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl China virus (TYLCCNV) by the B and Q biotypes of B. tabaci, using virus isolates and whitefly colonies established recently in China. Both TYLCV DNA and TYLCCNV DNA were shown to be transmitted horizontally and vertically by each of the two biotypes of the whitefly, but frequency of transmission was usually low. In transovarial transmission, virus DNA was detected in eggs and nymphs but not in the adults of the first generation progeny, except in the combination of TYLCV and Q biotype whitefly where 2–3% of the offspring adults contained the virus DNA. We also showed that the first generation adults, which developed from eggs of viruliferous whiteflies, were not infective to plants. These results demonstrated that for the viruses and whiteflies tested here low frequency of horizontal and vertical transmission can be expected but these two modes of transmission are unlikely to have much epidemiological relevance in the field.  相似文献   

2.
The sweetpotato whitefly, Bemisia tabaci (Gennadius), is a worldwide pest of numerous agricultural and ornamental crops. In addition to directly feeding on plants, it also acts as a vector of plant viruses of cultivated and uncultivated host plant species. Moreover, host plants can affect the population dynamics of whiteflies. An open‐choice screening experiment was conducted with B‐biotype B. tabaci on a diverse collection of crops, weeds, and other indigenous plant species. Five of the plant species were further evaluated in choice or no‐choice tests in the laboratory. The results reveal 49 new reproductive host plant species for B. tabaci. This includes 11 new genera of host plants (Arenaria, Avena, Carduus, Dichondra, Glechoma, Gnaphalium, Molugo, Panicum, Parthenocissus, Trianthema, and Triticum) for this whitefly. All species that served as hosts were acceptable for feeding, oviposition, and development to the adult stage by B. tabaci. The new hosts include three cultivated crops [oats (Avena sativa L.), proso millet (Panicum miliaceum L.), and winter wheat (Triticum aestivum L.)], weeds and other wild species, including 32 Ipomoea species, which are relatives of sweetpotato [I. batatas (L.) Lam.)]. Yellow nutsedge, Cyperus esculentus L., did not serve as a host for B. tabaci in either open‐choice or no‐choice tests. The results presented herein have implications for whitefly ecology and the numerous viruses that B. tabaci spreads to and among cultivated plants.  相似文献   

3.
4.
The tobacco whitefly Bemisia tabaci (Gennadius) cryptic species complex and of the greenhouse whitefly Trialeurodes vaporariorum (Westwood) are extensively reported as destructive pests in vegetable crops worldwide. A survey was conducted in 2011 and 2012 to determine the occurrence and genetic diversity present in the populations of these whiteflies in the major vegetable production areas of Costa Rica. Insect samples were collected from sweet pepper (Capsicum annuum L.), tomato (Solanum lycopersicum L.), common bean (Phaseolus vulgaris L.) and weeds present in commercial crops either in open field or greenhouse conditions. PCR‐RFLP analysis of mitochondrial cytochrome c oxidase subunit 1 gene (mtCOI) sequences of 621 whitefly individuals confirmed the presence of the Mediterranean (MED) type of the B. tabaci and of T. vaporariorum in most sampled regions. Also, individuals of the Middle East‐Asia Minor 1 (MEAM1) type of the B. tabaci were observed in low numbers. Contingency analyses based on type of crop, geographical region, whitefly species, year of collection and production system confirmed that T. vaporariorum was the most frequent species in vegetable production areas in Costa Rica, both in greenhouses and in open fields. B. tabaci MED is likely spreading to new areas of the country, whereas B. tabaci MEAM1 was mostly absent or rarely found. Comparisons of mtCOI sequences from B. tabaci individuals revealed the presence of four B. tabaci sequence haplotypes (named MED‐i, MED‐ii, MEAM1‐i, MEAM1‐xviii) in Costa Rica, three of them identical to B. tabaci haplotypes previously reported in the Western Hemisphere and other parts of the world. Analysis of sequences of T. vaporariorum individuals revealed a more complex population with the presence of 11 haplotypes, two of which were identical to T. vaporariorum sequences reported from other countries.  相似文献   

5.
Whiteflies, Hemiptera: Aleyrodidae, Bemisia tabaci, a complex of morphologically indistinquishable species5, are vectors of many plant viruses. Several genera of these whitefly-transmitted plant viruses (Begomovirus, Carlavirus, Crinivirus, Ipomovirus, Torradovirus) include several hundred species of emerging and economically significant pathogens of important food and fiber crops (reviewed by9,10,16). These viruses do not replicate in their vector but nevertheless are moved readily from plant to plant by the adult whitefly by various means (reviewed by2,6,7,9,10,11,17). For most of these viruses whitefly feeding is required for acquisition and inoculation, while for others only probing is required. Many of these viruses are unable or cannot be easily transmitted by other means. Therefore maintenance of virus cultures, biological and molecular characterization (identification of host range and symptoms)3,13, ecology2,12, require that the viruses be transmitted to experimental hosts using the whitefly vector. In addition the development of new approaches to management, such as evaluation of new chemicals14 or compounds15, new cultural approaches1,4,19, or the selection and development of resistant cultivars7,8,18, requires the use of whiteflies for virus transmission. The use of whitefly transmission of plant viruses for the selection and development of resistant cultivars in breeding programs is particularly challenging7. Effective selection and screening for resistance employs large numbers of plants and there is a need for 100% of the plants to be inoculated in order to find the few genotypes which possess resistance genes. These studies use very large numbers of viruliferous whiteflies, often several times per year.Whitefly maintenance described here can generate hundreds or thousands of adult whiteflies on plants each week, year round, without the contamination of other plant viruses. Plants free of both whiteflies and virus must be produced to introduce into the whitefly colony each week. Whitefly cultures must be kept free of whitefly pathogens, parasites, and parasitoids that can reduce whitefly populations and/or reduce the transmission efficiency of the virus. Colonies produced in the manner described can be quickly scaled to increase or decrease population numbers as needed, and can be adjusted to accommodate the feeding preferences of the whitefly based on the plant host of the virus.There are two basic types of whitefly colonies that can be maintained: a nonviruliferous and a viruliferous whitefly colony. The nonviruliferous colony is composed of whiteflies reared on virus-free plants and allows the weekly availability of whiteflies which can be used to transmit viruses from different cultures. The viruliferous whitefly colony, composed of whiteflies reared on virus-infected plants, allows weekly availability of whiteflies which have acquired the virus thus omitting one step in the virus transmission process.  相似文献   

6.
The continuous rise of CO2 concentrations in the atmosphere is reducing plant nutritional quality for herbivores and indirectly affects their performance. The whitefly (Bemisia tabaci, Gennadius) is a major worldwide pest of agricultural crops causing significant yield losses. This study investigated the plant‐mediated indirect effects of elevated CO2 on the feeding behavior and life history of B. tabaci Mediterranean species. Eggplants were grown under elevated and ambient CO2 concentrations for 3 weeks after which plants were either used to monitor the feeding behavior of whiteflies using the Electrical Penetration Graph technique or to examine fecundity and fertility of whiteflies. Plant leaf carbon, nitrogen, phenols and protein contents were also analyzed for each treatment. Bemisia tabaci feeding on plants exposed to elevated CO2 showed a longer phloem ingestion and greater fertility compared to those exposed to ambient CO2 suggesting that B. tabaci is capable of compensating for the plant nutritional deficit. Additionally, this study looked at the transmission of the virus Tomato yellow leaf curl virus (Begomovirus) by B. tabaci exposing source and receptor tomato plants to ambient or elevated CO2 levels before or after virus transmission tests. Results indicate that B. tabaci transmitted the virus at the same rate independent of the CO2 levels and plant treatment. Therefore, we conclude that B. tabaci Mediterranean species prevails over the difficulties that changes in CO2 concentrations may cause and it is predicted that under future climate change conditions, B. tabaci would continue to be considered a serious threat for agriculture worldwide.  相似文献   

7.
8.
Horizontal transmission of begomoviruses between Bemisia tabaci biotypes   总被引:1,自引:0,他引:1  
We have previously shown that the monopartite Tomato yellow leaf curl virus (TYLCV), a begomovirus (family Geminiviridae, genus Begomovirus) infecting tomato plants can be transmitted in a gender-dependent manner among its insect vector the whitefly Bemisia tabaci type B (Gennaduis) (Aleyrodidae: Hemiptera) during mating. Viruliferous females were able to transmit the virus to non-viruliferous males and vice versa, in the absence of any other virus source. The recipient insects were able to infect tomato plants. In this communication, we present evidence that two bipartite begomoviruses infecting cucurbits, Squash leaf curl virus (SLCV) and Watermelon chlorotic stunt virus (WmCSV) can be transmitted in a gender-dependent manner among whiteflies. In addition we show that TYLCV can be transmitted during mating among individuals from the same biotype (from B-males to B-females and vice versa; and from Q-males to Q-females and vice versa). However, viruliferous males of the B biotype are unable to transmit the virus to females of the Q biotype (and vice versa); similarly, viruliferous males of the Q biotype are unable to transmit the virus to females of the B biotype (and vice versa). These findings support the hypothesis that a pre-zygotic mating barrier between the Q and B biotypes is the cause for the absence of gene flow between the two biotypes, and that virus transmission can be used as a marker for inter-biotype mating. To be transmitted during mating, the virus needs to be present in the haemolymph of the donor insect. Abutilon mosaic virus (AbMV), a bipartite begomovirus that can be ingested but not transmitted by B. tabaci, is absent in the whitefly haemolymph, and cannot be transmitted during mating. Mating was a precondition for horizontal virus transfer from male to female, or female to male. Virus was not transmitted when viruliferous B. tabaci were caged with the non-vector non-viruliferous whitefly Trialeurodes vaporariorum (Westwood) (Aleyrodidae: Hemiptera) and vice versa.  相似文献   

9.
Cultures of Bemisia tabaci from Ivory Coast (IC), Pakistan (PK) and USA (US B-type) were compared for the frequency with which they transmitted three tomato geminivirus isolates: Indian tomato leaf curl virus from Bangalore (ITmLCV), and tomato yellow leaf curl viruses from Nigeria (TYLCV-Nig) and Senegal (TYLCV-Sen). Frequency of transmission from tomato to tomato depended both on the whitefly culture and the virus isolate. US B-type and IC whiteflies transmitted TYLCV-Sen more frequently than ITmLCV whereas PK whiteflies transmitted ITmLCV more frequently than TYLCV-Sen. US B-type whiteflies transmitted both viruses four to nine times more frequently than IC whiteflies. TYLCV-Nig was transmitted rarely by US B-type and not at all by IC whiteflies. Previous work indicates that the geminivirus coat protein controls vector transmissibility. The differential adaptation of TYLCV-Sen to transmission by US B-type whiteflies and of ITmLCV to PK whiteflies was associated with a large difference in epitope profile of the coat proteins of the two viruses. Also, the readily transmissible TYLCV-Sen differed appreciably in epitope profile from the poorly transmissible TYLCV-Nig, which reached a consistently greater concentration in source tissues but lacked epitope 18. However, the lack of epitope 18 in ITmLCV did not prevent its transmission by US B-type whiteflies. Differences in frequency and specificity of geminivirus transmission by whitefly cultures from different countries therefore were associated with differences among epitope profiles of the coat proteins of the viruses, but the structural features of the proteins that control transmission remain to be determined.  相似文献   

10.
1 The ability to quantify whitefly migration provides a tool that can contribute to an improved understanding of the epidemic development of whitefly‐transmitted viruses. 2 In an attempt to develop a protocol for estimating whitefly immigration and emigration rates in an annual crop, new traps and sampling devices were tested in the field and models for population dynamics were developed. 3 An estimate of immigration rate was derived from the growth of a natural population of Trialeurodes vaporariorum (Westwood) in the beginning of a crop cycle before offspring of immigrants contributed to population growth. 4 A model for changes in whitefly density during an entire bean (Phaseolus vulgaris L.) crop cycle, including an immigration parameter, was also developed. 5 Non‐attractant window traps surrounding an annual field crop were assumed to intercept whiteflies immigrating into and emigrating away from the crop. Captures on these traps could not categorically be identified as immigrants or emigrants, but the cumulated captures nevertheless explained 66% of the variation in population density found within the field. Hence, window traps may be used as an efficient and reliable alternative to yellow sticky traps, aspirator methods and leaf‐turn methods, etc., for estimating whitefly densities in field crops.  相似文献   

11.
田间不同植物上烟粉虱种群密度   总被引:1,自引:0,他引:1  
张晓明  杨念婉  万方浩 《生态学报》2014,34(16):4652-4661
对廊坊地区田间81种植物上烟粉虱的发生情况进行了系统调查。结果表明,烟粉虱可为害其中44种植物,且在不同的寄主植物上烟粉虱的种群密度有显著差异;而玉米、高粱和小米等37种植物上无烟粉虱为害。烟粉虱在香水薄荷、荆芥、甘草、薄荷、藿香、益母草、猪屎豆、白晶菊、牛膝、待宵草、蓝蓟、紫花苜蓿、极香罗勒上的虫口密度最高,危害级别达到4级(每100 cm2叶片虫口密度大于50头)。在蜀葵、向日葵和烟草上每100 cm2叶片烟粉虱虫口密度较低,但单株虫口密度较高。鉴于向日葵、玉米、高粱在中国北方棉花产区广泛种植,玉米和高粱的植株高大,且烟粉虱为害对向日葵产量影响极小,可考虑选用向日葵作为田间诱集植物,玉米和高粱作为屏障植物辅助控制棉田烟粉虱。  相似文献   

12.
An epidemic of chilli leaf curl disease was recorded in 2004 in Jodhpur, a major chilli‐growing area in Rajasthan, India. Several isolates were efficiently transmitted by the whitefly (Bemisia tabaci), all of which induced severe leaf curl symptoms in chilli. A single whitefly was capable of transmitting the virus, and eight or more whiteflies per plant resulted in 100% transmission. The minimum acquisition access period (AAP) and inoculation access period (IAP) were 180 and 60 min, respectively. The virus persisted in whiteflies for up to 5 days postacquisition. Of 25 species tested, the virus infected only five (Capsicum annuum, Carica papaya, Solanum lycopersicum, Nicotiana tabacum and N. benthamiana). The virus was identified as Chilli leaf curl virus (ChiLCV), which shared the closest sequence identity (96.1%) with an isolate of ChiLCV from potato in Pakistan and showed sequence diversity up to 12.3% among the ChiLCV isolates reported from India and Pakistan. A betasatellite was identified, which resembled most closely (97.3%) that of Tomato leaf curl Bangladesh betasatellite previously reported from chilli and tomato leaf curl in India. The betasatellite was very different from that reported from chilli leaf curl in Pakistan, indicating that different betasatellites are associated with chilli leaf curl in India and Pakistan. We describe here for the first time the virus–vector relationships and host range of ChiLCV.  相似文献   

13.
Abstract Fitness and efficacy of Encarsia sophia (Girault & Dodd) (Hymenoptera: Aphelinidae) as a biological control agent was compared on two species of whitefly (Hemiptera: Aleyrodidae) hosts, the relatively smaller sweetpotato whitefly, Bemisia tabaci (Gennadius) biotype ‘B’, and the larger greenhouse whitefly, Trialeurodes vaporariorum (Westwood). Significant differences were observed on green bean (Phaseolus vulgaris L.) in the laboratory at 27 ± 2°C, 55%± 5% RH, and a photoperiod of 14: 10 h (L: D). Adult parasitoids emerging from T. vaporariorum were larger than those emerging from B. tabaci, and almost all biological parameters of E. sophia parasitizing the larger host species were superior except for the developmental times of the parasitoids that were similar when parasitizing the two host species. Furthermore, parasitoids emerging from T. vaporariorum parasitized more of these hosts than did parasitoids emerging from B. tabaci. We conclude that E. sophia reared from larger hosts had better fitness than from smaller hosts. Those from either host also preferred the larger host for oviposition but were just as effective on smaller hosts. Therefore, larger hosts tended to produce better parasitoids than smaller hosts.  相似文献   

14.
Field monitoring revealed that the infection ratio of the bacterial symbiont Cardinium in the whitefly (Bemisia tabaci MED) was relatively low in northern China. However, the role of this symbiont and the symbiont–whitefly–host plant interaction mechanism are poorly understood. We investigated the influence of Cardinium on the competitiveness of the host whitefly and the physiological interaction between the host plants and host whiteflies. Cardinium-infected whiteflies were displaced by uninfected whiteflies after 5 generations, which showed that Cardinium infection reduced whitefly competitiveness. The defense response genes of cotton significantly decreased under infestation by infected whiteflies compared to uninfected whiteflies. The expression of detoxification metabolism genes, especially the uridine 5ʹ-diphospho-glucuronyltransferase and P450 genes, in infected whiteflies significantly decreased. These results demonstrated that Cardinium could inhibit the defense response of the host plant and decrease the detoxification metabolism ability of the host whitefly. The reduced competitiveness of infected whiteflies may be associated with the inhibition of the whitefly detoxification metabolism by Cardinium, resulting in the reduced performance of infected whiteflies. However, Cardinium infection can suppress plant defenses, which may benefit both infected and uninfected whiteflies when they coexist. This research illustrates the symbiont–whitefly–host plant interaction mechanism and the population dynamics of the whitefly.  相似文献   

15.
Begomoviruses are important crop viral disease agents, and they are transmitted by whiteflies of the Bemisia tabaci complex. Although the transmission of begomoviruses by whiteflies has been studied for many years, the mechanisms governing differential transmission of begomoviruses by different species of the Bemisia tabaci complex remain largely unknown. Here we firstly compared the transmission efficiency of tobacco curly shoot virus (TbCSV) by four species of the B. tabaci complex and found that Asia II 1 transmitted this virus with the highest efficiency, whereas MEAM1 transmitted it with the lowest. Next, by performing quantitative analysis of virus and immune-fluorescence detection, we found that the efficiency of TbCSV to cross the midgut wall was higher in Asia II 1 than in MEAM1. Finally, we set the quantities of virions in the haemolymph to the same level in Asia II 1 and MEAM1 via injection and then compared their capacity in TbCSV transmission, and found that the difference in TbCSV transmission between them became smaller. Taken together, our findings suggest that the efficiency of a begomovirus to cross the midgut wall of a whitefly to reach the vector’s haemolymph plays a significant role in determining transmission of the virus.  相似文献   

16.
17.
Cucumber Vein Yellowing Virus; Host Range and Virus Vector Relationships   总被引:1,自引:0,他引:1  
Cucumber vein yellowing virus (CVYV) is transmitted by Bemisia tabaci, it has a narrow host range restricted to some cucurbitaceous plants including Cucumis sativus, C. melo, C. melo var. flexousus, Cucurbita pepo, C. foesti, Citrullus vulgaris, C. colocynthis and Lagenaria siceraria. Although a single whitefly can transmit the disease, the efficiency of transmission was low. At least 15–20 insects per plant were required to cause an infection of 55 % of inoculated plants. The minimum acquisition and inoculation feeding periods were 30 and 15 min, respectively. The latent period in the vector is about 75 min and the whitefly was infectious for not more than 5 h.  相似文献   

18.
19.

Background  

Whiteflies are cosmopolitan phloem-feeding pests that cause serious damage to many crops worldwide due to direct feeding and vectoring of many plant viruses. The sweetpotato whitefly Bemisia tabaci (Gennadius) and the greenhouse whitefly Trialeurodes vaporariorum (Westwood) are two of the most widespread and damaging whitefly species. To complete their unbalanced diet, whiteflies harbor the obligatory bacterium Portiera aleyrodidarum. B. tabaci further harbors a diverse array of secondary symbionts, including Hamiltonella, Arsenophonus, Cardinium, Wolbachia, Rickettsia and Fritschea. T. vaporariorum is only known to harbor P. aleyrodidarum and Arsenophonus. We conducted a study to survey the distribution of whitefly species in Croatia, their infection status by secondary symbionts, and the spatial distribution of these symbionts in the developmental stages of the two whitefly species.  相似文献   

20.
The incidence of disease caused by tobacco leaf curl geminivirus (TbLCV) in ten tobacco growing areas of India ranged from 1.2% to 77%. The highest incidence of disease was observed in Andhra Pradesh (77%) followed by Gujarat (59%), Karnataka (17%), Bihar (11.6%) and West Bengal (5.4%). Under field conditions, an average of 32 adult whiteflies (Bemisia tabaci) per plant were recorded in Andhra Pradesh followed by Gujarat (20), Karnataka (12), Bihar (8) and West Bengal (5). In sequential sowings at Bangalore, all the plants were infected within 90 days in plots planted from February to June. Infection in plots planted later was progressively less. There was a positive correlation between whitefly catches and the final incidence of leaf curl disease in plantings. TbLCV was transmitted by Bemisia tabaci to 35 plant species, including Beta vulgaris, Capsicum annuum, Carica papaya, Cymopsis tetragonoloba, Lycopersicon esculentum, Sesamum indicum, Phaseolus vulgaris and Petunia hybrida. Forty five TbLCV isolates from different parts of India induced four distinct types of symptoms on tobacco cultivars Samsun and Anand 119. Group 1 isolates caused severe curling and cup-shaped enations; group II isolates induced pale green leaves, pit-like depressions and thorny enations: group III isolates caused leathery leaves, narrow and tiny protruding enations between the veins, and group IV isolates induced irregular thickening and swelling of veins and green flap-like enations on veins. Nylon net covers protected tobacco seedlings in nursery beds for 45 days. Ricinus communis and Helianthus annuus sown around the tobacco nursery bed as barrier crops attracted adult whiteflies and decreased the number found on tobacco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号