首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Groucho (Gro) is a Drosophila corepressor required by numerous DNA-binding repressors, many of which are distributed in gradients and provide positional information during development. Gro contains well-conserved domains at its N- and C-termini, and a poorly conserved central region that includes the GP, CcN, and SP domains. All lethal point mutations in gro map to the conserved regions, leading to speculation that the unconserved central domains are dispensable. However, our sequence analysis suggests that the central domains are disordered leading us to suspect that the lack of lethal mutations in this region reflects a lack of order rather than an absence of essential functions. In support of this conclusion, genomic rescue experiments with Gro deletion variants demonstrate that the GP and CcN domains are required for viability. Misexpression assays using these same deletion variants show that the SP domain prevents unrestrained and promiscuous repression by Gro, while the GP and CcN domains are indispensable for repression. Deletion of the GP domain leads to loss of nuclear import, while deletion of the CcN domain leads to complete loss of repression. Changes in Gro activity levels reset the threshold concentrations at which graded repressors silence target gene expression. We conclude that co-regulators such as Gro are not simply permissive components of the repression machinery, but cooperate with graded DNA-binding factors in setting borders of gene expression. We suspect that disorder in the Gro central domains may provide the flexibility that allows this region to mediate multiple interactions required for repression.  相似文献   

3.
4.
5.
U1 small nuclear ribonucleoprotein studied by in vitro assembly   总被引:9,自引:3,他引:6       下载免费PDF全文
The small nuclear RNAs are known to be complexed with proteins in the cell (snRNP). To learn more about these proteins, we developed an in vitro system for studying their interactions with individual small nuclear RNA species. Translation of HeLa cell poly(A)+ mRNA in an exogenous message-dependent reticulocyte lysate results in the synthesis of snRNP proteins. Addition of human small nuclear RNA U1 to the translation products leads to the formation of a U1 RNA-protein complex that is recognized by a human autoimmune antibody specific for U1 snRNP. This antibody does not react with free U1 RNA. Moreover, addition of a 10- to 20-fold molar excess of transfer RNA instead of U1 RNA does not lead to the formation of an antibody-recognized RNP. The proteins forming the specific complex with U1 RNA correspond to the A, B1, and B2 species (32,000, 27,000, and 26,000 mol wt, respectively) observed in previous studies with U1 snRNP obtained by antibody- precipitation of nuclear extracts. The availability of this in vitro system now permits, for the first time, direct analysis of snRNA- protein binding interactions and, in addition, provides useful information on the mRNAs for snRNP proteins.  相似文献   

6.
The ability of series of U1 snRNAs and U6 snRNAs to migrate into the nucleus of Xenopus oocytes after injection into the cytoplasm was analyzed. The U snRNAs were made either by injecting U snRNA genes into the nucleus of oocytes or, synthetically, by T7 RNA polymerase, incorporating a variety of cap structures. The results indicate that nuclear targeting of U1 snRNA requires both a trimethylguanosine cap structure and binding of at least one common U snRNP protein. Using synthetic U6 snRNAs, it is further demonstrated that the trimethylguanosine cap structure can act in nuclear targeting in the absence of the common U snRNP proteins. These results imply that U snRNP nuclear targeting signals are of a modular nature.  相似文献   

7.
Mass spectrometry allows the elucidation of molecular details of the interaction domains of the individual components in macromolecular complexes subsequent to cross-linking of the individual components. Here, we applied chemical and UV cross-linking combined with tandem mass-spectrometric analysis to identify contact sites of the nuclear import adaptor snurportin 1 to the small ribonucleoprotein particle U1 snRNP in addition to the known interaction of m3G cap and snurportin 1. We were able to define previously unknown sites of protein–protein and protein–RNA interactions on the molecular level within U1 snRNP. We show that snurportin 1 interacts with its central m3G-cap-binding domain with Sm proteins and with its extreme C-terminus with stem-loop III of U1 snRNA. The crosslinking data support the idea of a larger interaction area between snurportin 1 and U snRNPs and the contact sites identified prove useful for modeling the spatial arrangement of snurportin 1 domains when bound to U1 snRNP. Moreover, this suggests a functional nuclear import complex that assembles around the m3G cap and the Sm proteins only when the Sm proteins are bound and arranged in the proper orientation to the cognate Sm site in U snRNA.  相似文献   

8.
The U1 small nuclear ribonucleoprotein particle (snRNP)-specific 70K and A proteins are known to bind directly to stem-loops of the U1 snRNA, whereas the U1-C protein does not bind to naked U1 snRNA, but depends on other U1 snRNP protein components for its association. Focusing on the U1-70K and U1-C proteins, protein-protein interactions contributing to the association of these particle-specific proteins with the U1 snRNP were studied. Immunoprecipitation of complexes formed after incubation of naked U1 snRNA or purified U1 snRNPs lacking their specific proteins (core U1 snRNP) with in vitro translated U1-C protein, revealed that both common snRNP proteins and the U1-70K protein are required for the association of U1-C with the U1 snRNP. Binding studies with various in vitro translated U1-70K mutants demonstrated that the U1-70K N-terminal domain is necessary and sufficient for the interaction of U1-C with core U1 snRNPs. Surprisingly, several N-terminal fragments of the U1-70K protein, which lacked the U1-70K RNP-80 motif and did not bind naked U1 RNA, associated stably with core U1 snRNPs. This suggests that a new U1-70K binding site is generated upon association of common U1 snRNP proteins with U1 RNA. The interaction between the N-terminal domain of U1-70K and the core RNP domain was specific for the U1 snRNP; stable binding was not observed with core U2 or U5 snRNPs, suggesting essential structural differences among snRNP core domains. Evidence for direct protein-protein interactions between U1-specific proteins and common snRNP proteins was supported by chemical crosslinking experiments using purified U1 snRNPs. Individual crosslinks between the U1-70K and the common D2 or B'/B protein, as well as between U1-C and B'/B, were detected. A model for the assembly of U1 snRNP is presented in which the complex of common proteins on the RNA backbone functions as a platform for the association of the U1-specific proteins.  相似文献   

9.
The U1 small nuclear ribonucleoprotein particle (U1 snRNP), a cofactor in pre-mRNA splicing, contains three proteins, termed 70K, A, and C, that are not present in the other spliceosome-associated snRNPs. We studied the binding of the A and C proteins to U1 RNA, using a U1 snRNP reconstitution system and an antibody-induced nuclease protection technique. Antibodies that reacted with the A and C proteins induced nuclease protection of the first two stem-loops of U1 RNA in reconstituted U1 snRNP. Detailed analysis of the antibody-induced nuclease protection patterns indicated the existence of relatively long-range protein-protein interactions in the U1 snRNP, with the 5' end of U1 RNA and its associated specific proteins interacting with proteins bound to the Sm domain near the 3' end. UV cross-linking experiments in conjunction with an A-protein-specific antibody demonstrated that the A protein bound directly to the U1 RNA rather than assembling in the U1 snRNP exclusively via protein-protein interactions. This conclusion was supported by additional experiments revealing that the A protein could bind to U1 RNA in the absence of bound 70K and Sm core proteins.  相似文献   

10.
U1 small nuclear ribonucleoparticle (U1 snRNP) plays a central role during RNA processing. Previous structures of U1 snRNP revealed how the ribonucleoparticle is organized and recognizes the pre-mRNA substrate at the exon–intron junction. As with many other ribonucleoparticles involved in RNA metabolism, U1 snRNP contains extensions made of low complexity sequences. Here, we developed a protocol to reconstitute U1 snRNP in vitro using mostly full-length components in order to perform liquid-state NMR spectroscopy. The accuracy of the reconstitution was validated by probing the shape and structure of the particle by SANS and cryo-EM. Using an NMR spectroscopy-based approach, we probed, for the first time, the U1 snRNP tails at atomic detail and our results confirm their high degree of flexibility. We also monitored the labile interaction between the splicing factor PTBP1 and U1 snRNP and validated the U1 snRNA stem loop 4 as a binding site for the splicing regulator on the ribonucleoparticle. Altogether, we developed a method to probe the intrinsically disordered regions of U1 snRNP and map the interactions controlling splicing regulation. This approach could be used to get insights into the molecular mechanisms of alternative splicing and screen for potential RNA therapeutics.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号