首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract: We examined the potential importance of dexamethasone-mediated alterations in energy metabolism in providing protection against hypoxic-ischemic brain damage in immature rats. Seven-day-old rats (n = 165) that had been treated with dexamethasone (0.1 mg/kg, i.p.) or vehicle were assigned to control or hypoxic-ischemic groups (unilateral carotid artery occlusion plus 2–3 h of 8% oxygen at normothermia). The systemic availability of alternate fuels such as β-hydroxybutyrate, lactate, pyruvate, and free fatty acids was not altered by dexamethasone treatment, and, except for glucose, brain levels were also unaffected. At the end of hypoxia, levels of cerebral high-energy phosphates (ATP and phosphocreatine) were decreased in vehicle- but relatively preserved in dexamethasone-treated animals. The local cerebral metabolic rate of glucose utilization (lCMRgl) was decreased modestly under control conditions in dexamethasone-treated animals, whereas cerebral energy use measured in a model of decapitation ischemia did not differ significantly between groups. The lCMRgl increased markedly during hypoxia-ischemia ( p < 0.05) and remained elevated throughout ischemia in dexamethasone-but not vehicle-treated groups, indicating an enhanced glycolytic flux with dexamethasone treatment. Thus, dexamethasone likely provides protection against hypoxic-ischemic damage in immature rats by preserving cerebral ATP secondary to a maintenance of glycolytic flux.  相似文献   

2.
The purpose of this study was to determine whether mild hypobaric hypoxic preconditioning provides protection against learning deficit caused by subsequent more severe hypoxia insult. Learning was examined using a passive avoidance task. Three groups of Wistar male rats: the intact and exposed to either severe hypoxia (160 Torr, exposition 3 h) or mild hypobaric hypoxic preconditioning (360 Torr, exposition 2 h, repeated three or six times daily) followed by severe hypoxia, were included in this study. In experiment 1 a passive avoidance response was acquired in 15 min immediately after hypoxia. In experiment 2 rats were exposed to hypoxia in 60 min after the acquisition of passive avoidance response. The mild hypobaric hypoxic preconditioning significantly attenuated the hypoxia-induced learning deficit in rats in Experiments 1 and 2. In experiment 1 the mild hypobaric hypoxic preconditioning repeated six times was more effective in protection against learning deficit in hypoxia exposed rats than in the case of triple mild hypobaric hypoxic preconditioning. The amount of rats suffered irreversible respiratory arrest was also assessed in this study. It was found that 50% of rats exposed to severe hypoxia died in consequence of this pathology, whereas in rats preconditioned before the severe hypoxia only 15% died for this reason. The overall results indicate that the mild hypobaric hypoxic preconditioning significantly increases CNS resistance to severe hypoxia in rats.  相似文献   

3.
Hypoxic preconditioning   总被引:9,自引:0,他引:9  
Lu GW  Yu S  Li RH  Cui XY  Gao CY 《Molecular neurobiology》2005,31(1-3):255-271
A concept of tissue-cell adaptation to hypoxia (hypoxic preconditioning) is raised and its corresponding animal model is introduced. A significantly strengthened tolerance to hypoxia and a protective effect of the brain extracts from the preconditioned animals are presented. Changes in animals' behavior, neuromorphology, neurophysiology, neurochemistry and molecular neurobiology during preconditioning are described. Energy saving, hypometabolism, and cerebral protection in particular are thought to be involved in the development of hypoxic tolerance and tissue-cell protection. The essence and significance of the hypoxic tissue-cell adaptation or preconditioning are discussed in terms of biological evolution and practical implication.  相似文献   

4.
In this study we examined cerebellar alterations in a neonatal rat model of hypoxic-ischemic brain injury with or without hypoxic preconditioning (Pc). Between postnatal days 7 and 15, the cerebellum is still undergoing intense cellular proliferation, differentiation and migration, dendritogenesis and synaptogenesis. The expression of glutamate decarboxylase 1 (GAD67) and the differentiation factor NeuroD1 were examined as markers of Purkinje and granule cells, respectively. We applied quantitative immunohistochemistry to sagittal cerebellar slices, and Western blot analysis of whole cerebella obtained from control (C) rats and rats submitted to Pc, hypoxia-ischemia (L) and a combination of both treatments (PcL). We found that either hypoxia-ischemia or Pc perturbed the granule cells in the posterior lobes, affecting their migration and final placement in the internal granular layer. These effects were partially attenuated when the Pc was delivered prior to the hypoxia-ischemia. Interestingly, whole nuclear NeuroD1 levels in Pc animals were comparable to those in the C rats. However, a subset of Purkinje cells that were severely affected by the hypoxic-ischemic insult—showing signs of neuronal distress at the levels of the nucleus, cytoplasm and dendritic arborization—were not protected by Pc. A monoclonal antibody specific for GAD67 revealed a three-band pattern in cytoplasmic extracts from whole P15 cerebella. A ∼110 kDa band, interpreted as a potential homodimer of a truncated form of GAD67, was reduced in Pc and L groups while its levels were close to the control animals in PcL rats. Additionally we demonstrated differential glial responses depending on the treatment, including astrogliosis in hypoxiated cerebella and a selective effect of hypoxia-ischemia on the vimentin-immunolabeled intermediate filaments of the Bergmann glia. Thus, while both glutamatergic and GABAergic cerebellar neurons are compromised by the hypoxic-ischemic insult, the former are protected by a preconditioning hypoxia while the latter are not.  相似文献   

5.
There is an increasing body of evidence that a brief exposure to anesthesia induces ischemic tolerance in rat brain (anesthetic preconditioning). However, it is unknown whether preconditioning with sevoflurane, a commonly used volatile anesthetic in current clinical practice, produces a delayed window of neuroprotection against ischemia and what the mechanisms are for this protection. To address these issues, adult male Sprague–Dawley rats were subjected to middle cerebral arterial occlusion (MCAO) for 2 h. Sevoflurane preconditioning was induced 24 h before brain ischemia by exposing the animals to sevoflurane at 1.0 minimum alveolar concentration (2.4%) in oxygen for 60 min. Animals preconditioned with sevoflurane had lower neurological deficit scores and smaller brain infarct volumes than animals with brain ischemia at 6 and 24 h after MCAO, respectively. Application of a selective antagonist for mitochondrial ATP-sensitive potassium (mitoKATP) channel, 5-hydroxydecanoate (5-HD, 40 mg/kg i.p.) 30 min before sevoflurane exposure attenuated this beneficial effect. Moreover, protein kinase C ε (PKC ε) was translocated to the membrane fraction at 6 h, but not 24 h, after brain reperfusion in animals preconditioned with sevoflurane and this effect was also abolished by 5-HD. We concluded that sevoflurane preconditioning induces a delayed neuroprotection and that mitochondrial KATP channels and PKC ε may be involved in this neuroprotection.  相似文献   

6.
We examined the impact of hypoxia-ischemia on high-affinity [3H]glutamate uptake into a synaptosomal fraction prepared from immature rat corpus striatum. In 7-day-old pups the right carotid artery was ligated, and pups were exposed to 8% oxygen for 0, 0.5, 1, or 2.5 h, and allowed to recover for up to 24 h before they were killed. High-affinity glutamate uptakes in striatal synaptosomes derived from tissue ipsilateral and contralateral to ligation were compared. After 1 h of hypoxia plus ischemia, high-affinity glutamate uptake in the striatum was reduced by 54 +/- 13% compared with values from the opposite (nonischemic) side of the brain (p less than 0.01, t test versus ligates not exposed to hypoxia). There were similar declines after 2.5 h of hypoxia-ischemia. Activity remained low after a 1 h recovery period in room air, but after 24 h of recovery, high-affinity glutamate uptake was equal bilaterally. Kinetic analysis revealed that loss of activity could be attributed primarily to a 40% reduction in the number of uptake sites. Hypoxia alone had no effect on high-affinity glutamate uptake although it reduced synaptosomal uptake of [3H]3,4-dihydroxyphenylethylamine. Addition of 1 mg/ml of bovine serum albumin to the incubation medium preferentially stimulated high-affinity glutamate uptake in hypoxic-ischemic brain compared with its effects in normal tissue. These studies demonstrate that hypoxia-ischemia reversibly inhibits high-affinity glutamate uptake and this occurs earlier than the time required to produce neuronal damage in the model.  相似文献   

7.
There was studied effect of severe hypobaric hypoxia and subsequent reoxygenation on level and dynamics of lipid peroxidation in membranes of neocortex cells and in mitochondriaenriched neocortex fraction of non-preconditioned rats and of rats preconditioned thrice with a moderate hypobaric hypoxia. The threefold hypoxic preconditioning increasing brain resistance has been shown to significantly prevent disturbance of lipid peroxidation processes in neocortex—one of the most hypoxia-sensitive brain structures—and to modify development of these processes in mitochondria.  相似文献   

8.
9.
低氧预适应的脑机制   总被引:9,自引:1,他引:8  
A concept ot tissue adaptation to hypoxia( i.e. hypoxic preconditioning) was developed and its corresponding animal models were reproduced in 1966s. The methods of model reproduction in rat, rabbit, and mouse in particular and the main results are brifly introduced in this review. The tolerance to hypoxia o{ preconditioned animals is significantly increased. Regular changes in animals‘ behavior, neurophysiology, respiratory and circulatory physiology, neuromorphology in vivo and {unction of brain and spinal cord in vitro are briefly demonstrated. The protective effects in vivo and in vitro of homogenate extract taken from the brain o{ preconditioned animals, neurochemcals and molecular neurobiolcgical alterations are briefly presented. The essence and significance of tissue adaption to hypoxia/hypoxic preconditioning are discussed in the review in terms of evolution and practical implication.  相似文献   

10.
Summary In the present study we have investigated the effect of prenatal hypoxia on expression of amyloid precursor protein (APP) and some metallopeptidases, which regulate β-amyloid peptide (Aβ) levels (neprilysin (NEP) and endothelin-converting enzyme (ECE-1)) in the cortex of rats during different periods of postnatal development. We have found that the level of APP in the sensorimotor cortex (SMC) of rats, analysed by Western blotting, increases from days 1 to 5 of postnatal development and then steadily decreases with age, with the most dramatic decline in the period from day 180 to 600. In the cortex of rats subjected to prenatal hypoxia on day 13.5 of embryogenesis, the postnatal levels of APP were higher than in the control. Secretion of the soluble form of APP (sAPP) by α-secretase was found to be the most active on day 30 of postnatal development and there was a significant decrease in the production of sAPP after prenatal hypoxia. NEP was found to be expressed in the cortex of rats only at the early stages of postnatal development and it was barely detectable in adult rats. The decline of NEP levels during ageing might contribute to accumulation of Aβ in later life in humans. Prenatal hypoxia resulted in a significant decrease of NEP expression on day 10, but its level was recovered when animals were preconditioned to mild hypoxia. A similar phenomenon was observed when the expression of ECE-1 was analysed. Overall, prenatal hypoxia leads to significant changes in the levels of APP and expression of metallopeptidases involved in amyloid metabolism during all postnatal life and preconditioning to hypoxia appeared to be neuroprotective.  相似文献   

11.
Periventricular white matter injury in premature infants is linked to chronic neurological dysfunction. Periventricular white matter injury is caused by many mechanisms including hypoxia-ischemia (HI). Animal models of HI in the neonatal rodent brain can replicate some important features of periventricular white matter injury. Most rodent studies have focused upon early cellular and tissue events following unilateral neonatal HI that is elicited by unilateral carotid artery ligation and followed by timed exposure to moderate hypoxia. Milder hypoxic-ischemic insults elicit preferential white matter injury. Little information is available about long-term cellular effects of unilateral HI. One month after unilateral neonatal hypoxia ischemia, we show that all the components for structural reorganization of the brain are present in moderately injured rats. These components in the injured side include extensive influx of neurites, axonal and dendritic growth cones, abundant immature synapses, and myelination of many small axons. Surprisingly, this neural recovery is often found in and adjacent to cysts that have the ultrastructural features of bone extracellular matrix. In contrast, brains with severe hypoxia ischemia one month after injury still undergo massive neuronal degeneration. While massive destruction of neurons and glia are striking events shortly after brain HI, neural cells re-express their intrinsic properties and attempt an anatomical recovery long after injury. Special issue dedicated to Anthony Campagnoni.  相似文献   

12.
The immature brain is more resistant to hypoxia/ischemia than the mature brain. Although chronic hypoxia can induce adaptive-changes on the developing brain, the mechanisms underlying such adaptive changes are poorly understood. To further elucidate some of the adaptive changes during postnatal hypoxia, we determined the activities of four enzymes of glucose oxidative metabolism in eight brain regions of hypoxic and normoxic rats. Litters of Sprague-Dawley rats were put into the hypoxic chamber (oxygen level maintained at 9.5%) with their dams starting on day 3 postnatal (P3). Age-matched normoxic rats were use as control animals. In P10 hypoxic rats, lactate dehydrogenase (LDH) activity in cerebral cortex, striatum, olfactory bulb, hippocampus, hypothalamus, pons and medulla, and cerebellum was significantly increased (by 100%–370%) compared to those in P10 normoxic rats. In P10 hypoxic rats, hexokinase (HK) activity in hypothalamus, hippocampus, olfactory bulb, midbrain, and cerebral cortex was significantly decreased (by 15%–30%). Neither -ketoglutarate dehydrogenase complex (KGDHC, which is believed to have an important role in the regulation of the tricarboxylic acid [TCA] cycle flux) nor citrate synthase (CS) activity was significantly decreased in the eight regions of P10 hypoxic rats compared to those in P10 normoxic rats. In P30 hypoxic rats, LDH activity was only increased in striatum (by 19%), whereas HK activity was only significantly decreased (by 30%) in this region. However, KGDHC activity was significantly decreased in olfactory bulb, hippocampus, hypothalamus, cerebral cortex, and cerebellum (by 20%–40%) in P30 hypoxic rats compared to those in P30 normoxic rats. Similarly, CS activity was decreased, but only in olfactory bulb, hypothalamus, and midbrain (by 9%–21%) in P30 hypoxic rats. Our results suggest that at least some of the mechanisms underlying the hypoxia-induced changes in activities of glycolytic enzymes implicate the upregulation of HIF-1. Moreover, our observation that chronic postnatal hypoxia induces differential effects on brain glycolytic and TCA cycle enzymes may have pathophysiological implications (e.g., decreased in energy metabolism) in childhood diseases (e.g., sudden infant death syndrome) in which hypoxia plays a role.  相似文献   

13.
In an experimental model of perinatal hypoxic-ischemic brain injury, we examined quisqualic acid (Quis)-stimulated phosphoinositide (PPI) turnover in hippocampus and striatum. To produce a unilateral forebrain lesion in 7-day-old rat pups, the right carotid artery was ligated and animals were then exposed to moderate hypoxia (8% oxygen) for 2.5 h. Pups were killed 24 h later and Quis-stimulated PPI turnover was assayed in tissue slices obtained from hippocampus and striatum, target regions for hypoxic-ischemic injury. The glutamate agonist Quis (10(-4) M) preferentially stimulated PPI hydrolysis in injured brain. In hippocampal slices of tissue derived from the right cerebral hemisphere, the addition of Quis stimulated accumulation of inositol phosphates by more than ninefold (1,053 +/- 237% of basal, mean +/- SEM, n = 9). In contrast, the addition of Quis stimulated accumulation of inositol phosphates by about fivefold in the contralateral hemisphere (588 +/- 134%) and by about sixfold in controls (631 +/- 177%, p less than 0.005, comparison of ischemic tissue with control). In striatal tissue, the corresponding values were 801 +/- 157%, 474 +/- 89%, and 506 +/- 115% (p less than 0.05). In contrast, stimulation of PPI turnover elicited by the cholinergic agonist carbamoylcholine, (10(-4) or 10(-2) M) was unaffected by hypoxia-ischemia. The results suggest that prior exposure to hypoxia-ischemia enhances coupling of excitatory amino acid receptors to phospholipase C activity. This activation may contribute to the pathogenesis of irreversible brain injury and/or to mechanisms of recovery.  相似文献   

14.
15.
We have developed an animal model of hypoxic preconditioning and assumed that oxygen radicals and their endogenous scavenging enzymes may play an important role in the preconditioning. To test this hypothesis, activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and the content of lipid peroxides (LPO) were measured during the preconditioning. Compared with unpreconditioned control animals, in animals exposed to hypoxia only once, the activities of SOD and GSH-Px in whole brain were found to be significantly decreased while the LPO content in the hippocampus significantly increased. However, those in animals exposed to 4 runs of hypoxia tended to return to control levels and were lower than those in animals exposed to 1 and 2 runs of hypoxia. Our results indicate that the oxygen radicals and their specific scavenging enzymes seem to be involved in the development of tolerance to hypoxia.  相似文献   

16.
We examined the utilization of lactate as an energy substrate in ischemic preconditioned slices obtained from the rat brain left hemisphere, of which the contralateral middle cerebral artery was occluded 48 h before the slice preparation. The levels of high-energy phosphates in the brain slices were measured using 31P NMR with a time resolution of 4 min at 25 degrees C. When iodoacetic acid-pretreated brain slices were further treated with fluorocitrate, a glial toxin, for 2 h (neuron-rich slices), the recovery of the phosphocreatine (PCr) level in artificial cerebrospinal fluid (ACSF) containing lactate after high-K+ stimulation was completely abolished in intact slices, whereas the PCr level in ischemic preconditioned slices well recovered in otherwise similar conditions. These results indicated that neurons, when preconditioned with ischemia, acquire the ability to utilize lactate as an energy substrate. In parallel experiments, we recorded population excitatory postsynaptic potentials and spikes from granule cells in hippocampal slices. Population spikes of intact slices in ACSF containing lactate were completely abolished in 30 min, but those of the ischemic preconditioned slices were maintained well over 50%. These results show that ischemic preconditioning may induce certain systematic changes in neurons, such as the expression of lactate transporters and/or the activation of lactate dehydrogenase.  相似文献   

17.
Reperfusion following prolonged ischemia induces cellular damage in whole skeletal muscle models. Ischemic preconditioning attenuates the deleterious effects. We tested whether individual skeletal muscle fibers would be similarly affected by severe hypoxia and reoxygenation (H/R) in the absence of extracellular factors and whether cellular damage could be alleviated by hypoxic preconditioning. Force and free cytosolic Ca2+ ([Ca2+]c) were monitored in Xenopus single muscle fibers (n = 24) contracting tetanically at 0.2 Hz during 5 min of severe hypoxia and 5 min of reoxygenation. Twelve cells were preconditioned by a shorter bout of H/R 1 h before the experimental trial. In preconditioned cells, force relative to initial maximal values (P/P(o)) and relative peak [Ca2+]c fell (P < 0.05) during 5 min of hypoxia and recovered during reoxygenation. In contrast, P/P(o) and relative peak [Ca2+]c fell more during hypoxia (P < 0.05) and recovered less during reoxygenation (P < 0.05) in control cells. The ratio of force to [Ca2+]c was significantly higher in the preconditioned cells during severe hypoxia, suggesting that changes in [Ca2+]c were not solely responsible for the loss in force. We conclude that 1) isolated skeletal muscle fibers contracting in the absence of extracellular factors are susceptible to H/R injury associated with changes in Ca2+ handling; and 2) hypoxic preconditioning improves contractility, Ca2+ handling, and cell recovery during subsequent hypoxic insult.  相似文献   

18.
Hypoxia at birth is a major source of brain damage and it is associated with serious neurological sequelae in survivors. Alterations in the extracellular turnover of glutamate (Glu) and acetylcholine (ACh), two neurotransmitters that are essential for normal hippocampal function and learning and memory processes, may contribute to some of the neurological effects of perinatal hypoxia. We set out to determine the immediate and long-lasting effects of hypoxia on the turnover of these neurotransmitters by using microdialysis to measure the extracellular concentration of Glu and ACh in hippocampus, when hypoxia was induced in rats at postnatal day (PD) 7, and again at PD30. In PD7 rats, hypoxia induced an increase in extracellular Glu concentrations that lasted for up to 2.5 h and a decrease in extracellular ACh concentrations over this period. By contrast, perinatal hypoxia attenuated Glu release in asphyxiated rats, inducing a decrease in basal Glu levels when these animals reached PD30. Unlike Glu, the basal ACh levels in these animals were greater than in controls at PD30, although ACh release was stimulated less strongly than in control animals. These results provide the first evidence of the initial and long term consequences of the hypoxia on Glu and ACh turnover in the brain, demonstrating that hypoxia produces significant alterations in hippocampal neurochemistry and physiology.  相似文献   

19.
Fetal asphyctic preconditioning, induced by a brief episode of experimental hypoxia-ischemia, offers neuroprotection to a subsequent more severe asphyctic insult at birth. Extensive cell stress and apoptosis are important contributing factors of damage in the asphyctic neonatal brain. Because ceramide acts as a second messenger for multiple apoptotic stimuli, including hypoxia/ischemia, we sought to investigate the possible involvement of the ceramide pathway in endogenous neuroprotection induced by fetal asphyctic preconditioning. Global fetal asphyxia was induced in rats by clamping both uterine and ovarian vasculature for 30 min. Fetal asphyxia resulted in acute changes in brain ceramide/sphingomyelin metabolic enzymes, ceramide synthase 1, 2, and 5, acid sphingomyelinase, sphingosine-1-phosphate phosphatase, and the ceramide transporter. This observation correlated with an increase in neuronal apoptosis and in astrocyte number. After birth, ceramide and sphingomyelin levels remained high in fetal asphyxia brains, suggesting that a long-term regulation of the ceramide pathway may be involved in the mechanism of tolerance to a subsequent, otherwise lethal, asphyctic event.  相似文献   

20.
The role of the kidney tubules in the renal formation of erythropoietin is incompletely understood. Therefore, the capability to produce erythropoietin in response to hypoxia was studied in rats with tubular lesions. Nephron damage was induced in two different ways. First, rats were treated with the nephrotoxic aminoglycoside gentamicin (67.5 mg/kg and day) for 14 days. The animals were then subjected to simulated altitude (6,800 m) for 6 h. The resulting plasma erythropoietin concentration was significantly lower (0.5 IU/ml) than in saline treated control rats exposed to hypoxia (1.0 IU/ml). Second, unilateral hydronephrosis was induced by ureteral ligation. The contralateral kidney was removed immediately before the animals were exposed to simulated altitude for 6 h. The plasma erythropoietin concentration in the ureter-ligated rats did not increase above the value (0.3 IU/ml) in hypoxia exposed anephric rats. These results indicate that the production of erythropoietin is reduced following tubular injury. Tubule cells may directly produce the hormone or interfere with the O2-sensing mechanisms controlling its synthesis. The latter hypothesis would seem to be supported by our failure to demonstrate in vitro erythropoietin production by the two established kidney tubule cell lines, LLC-PK1 and PK-15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号