首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Genetic theories of sexual selection predict that most ornamental secondary sexual traits provide reliable indication of the genetic quality of their bearers. Accordingly, also the offspring of mates with elaborate mating display should perform better than those of less conspicuous counterparts. In this study, we used Arctic charr (Salvelinus alpinus) as a model species to investigate whether the variation in a carotenoid-based red breeding coloration (a sexually dichromatic trait) in different sexes would reflect differences in individual genetic variability, one measure of individual quality, and/or indirectly, be manifested in variation in the offspring’s early viability and growth. We created maternal half-sibling families by artificially fertilizing the eggs with milt from bright- and pale-coloured males and then held the resulting progenies under identical hatchery conditions. The expression of red coloration among parental fish was not associated with their genetic diversity estimates in either sex nor did offspring sired by bright males consistently differ in terms of embryo survival or endogenous growth efficiency from offspring sired by pale males. By contrast, maternal effects were notably strong and, additionally, the degree of female coloration was negatively linked to their reproductive potential. The more intensely coloured females had a smaller relative fecundity and they also produced offspring of lower viability, implying a significant trade-off in resource allocation between ornamentation and offspring. Our results indicate that the red breeding ornamentation of Arctic charr is likely to be informative rather among females than males when the reproductive quality is predicted on grounds of the number of offspring produced. Nevertheless, this study does not support the direct selection hypothesis in explaining the evolution of female ornamentation, but rather suggests that the less intense coloration of female charr compared to males may reflect inter-sexual differences in the trade-off between natural and sexual selection.  相似文献   

2.
The 'good genes' hypothesis predicts that males advertise their quality with different sexual ornaments and that females are able to recognize the genetic quality of males by evaluating these characteristics. In the present study, we investigated the parental effects on offspring performance (feeding and swimming ability of newly-hatched larvae) and examined whether male ornamentation indicates offspring success in performance trials of whitefish ( Coregonus lavaretus Linnaeus). Offspring first-feeding success had a strong paternal effect and it was also positively correlated with the size of male breeding tubercles, indicating that breeding ornamentation of males can function as an honest indicator of their genetic quality. In addition, the observed positive correlation between male tubercle size and condition factor suggests that highly ornamented males are efficient foragers and that this trait may have a heritable basis. By contrast to feeding success, only a maternal effect was found in the swimming ability of the larvae. Clear family-specific differences observed in both measures of performance strongly suggest that parental identity may have important effects on larval survival in the wild.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 532–539.  相似文献   

3.
Little evidence of benefits from female mate choice has been found when males provide no parental care or resources. Yet, good genes models of sexual selection suggest that elaborated male sexual characters are reliable signals of mate quality and that the offspring of males with elaborate sexual ornaments will perform better than those of males with less elaborate ornaments. We used cod (Gadus morhua L.), an externally fertilizing species where males provide nothing but sperm, to examine the potential of optimal mate selection with respect to offspring survival. By applying in vitro fertilizations, we crossed eight females with nine males in all possible combinations and reared each of the 72 sib groups. We found that offspring survival was dependent on which female was mated with which male and that optimal mate selection has the potential to increase mean offspring survival from 31.9 to 55.6% (a 74% increase). However, the size of the male sexual ornaments and sperm quality (i.e. sperm velocity and sperm density) could not predict offspring survival. Thus, even if there may be large fitness benefits of mate selection, we might not yet have identified the male characteristics generating high offspring survival.  相似文献   

4.
H. Kokko 《Ecology letters》2001,4(4):322-326
“Good genes” models of mate choice are commonly tested by examining whether attractive males sire offspring with improved survival. If offspring do not survive better (or indeed survive less well), but instead inherit the attractiveness of their father, results are typically interpreted to support the Fisherian process, which allows the evolution of preferences for arbitrary traits. Here, I show that the above view is mistaken. Because of life‐history trade‐offs, an attractive male may perform less well in other components of fitness. A female obtains a “good genes” benefit whenever males show heritable variation in quality, even if high‐quality males invest so much in sexual advertisement that attractiveness has no positive correlation with any other life‐history trait than male mating success itself. Therefore, a negative correlation between attractiveness and viability does not falsify good genes, if mating with a high‐quality male results on average in superior offspring performance (mating success of sons included). The heritable “good genes” benefit can be sustained even if sexually antagonistic genes cause female offspring sired by high‐quality males to survive and reproduce less well. Neglecting the component of male mating success from measurements of fitness returns from sons and daughters will bias the advantage of mating with a high‐quality male downwards. This result may partly account for the rather weak “good genes” effects found in a recent meta‐analysis.  相似文献   

5.
Sex allocation theory predicts that parents should adjust investment in sons and daughters according to relative fitness of differently sexed offspring. In species with female preference for highly ornamented males, one advantage potentially accruing to parents from investing more in sons of the most ornamented males is that male offspring will inherit characters ensuring sexual attractiveness or high-quality genes, if ornaments honestly reveal male genetic quality. Furthermore, in species where extra-pair fertilizations occur, offspring sired by an extra-pair male are expected to more frequently be male than those of the legitimate male if the latter is of lower quality than the extra-pair male. We investigated adjustment of sex ratio of offspring in relation to ornamentation of the extra-pair and the social mate of females by direct manipulation of tails of male barn swallows Hirundo rustica . Molecular sexing of the offspring was performed using the W chromosome-linked avian chromo-helicase-DNA-binding protein (CHD) gene while paternity assessment was conducted by typing of hypervariable microsatellite loci. Extra-pair offspring sex ratio was not affected by ornamentation of their biological fathers relative to the experimental ornamentation of the parental male. Experimental ornamentation of the parental males did not affect the sex ratio of nestlings in their broods. Female barn swallows might be unable to bias offspring sex ratio at hatching according to the quality of the biological father. Alternatively, fitness benefits in terms of sexual attractiveness of sons might be balanced by the cost of compensating for little parental care provided by highly ornamented parental males, if sons are more costly to rear than daughters, or the advantage of producing more daughters, if males with large ornaments contribute differentially more to the viability of daughters than sons.  相似文献   

6.
The reproductive success of a male bird is often correlated with measurable traits that predict his intrinsic quality. Females are thought to base their selection of mates on the latter's 'quality' in order to gain their 'good genes'. Male Australian Magpies Gymnorhina tibicen of the white-backed race tyrannica were trapped in two breeding seasons. Measurements were taken of morphometric and other characteristics in order to discover whether particular traits of males were associated with: (1) percentage of offspring sired in the territory, (2) number of fledglings produced in the territory per season and (3) whether females select males for their 'good genes'. There were no consistently significant correlations between any of the measured variables and male Magpie reproductive success within territories. In particular, none of the traits measured had any consistent correlation with the percentage of offspring sired in a territorial group. This was an unexpected result given that the species is strongly territorial but also engages regularly in extra-group copulations. These findings appear contrary to the predictions of the 'good genes' hypothesis. The general lack of correlation between the variables and level of genetic paternity may in fact be due to females engaging in extra-group mating primarily to avoid breeding with a close relative rather than to choose a high-quality male. In this case, males would not have to be 'high quality', but merely genetically different from the female's social mate.  相似文献   

7.
Although elaborate bird song provides one of the prime examples of a trait that evolved under sexual selection, it is still unclear whether females judge the quality of males by attributes of their song and whether these song features honestly signal a male's genetic quality. We measured the ability of male dusky warblers Phylloscopus fuscatus to maintain a high sound amplitude during singing, which probably reflects an individual's physiological limitations. This new measure of singing performance was correlated with male longevity and with extra-pair paternity, indicating that females who copulated with better singers obtained 'good genes' for their offspring. Our findings are consistent with the idea that females assess male quality by subtle differences in their performance during the production of notes, rather than by the quantity or versatility of song. In addition, observations on territorial conflicts indicate that attractive males invest less in competition over territories because they can reproduce via extra-pair paternity.  相似文献   

8.
We performed a controlled mating experiment to determine whether genetic variation in larval traits in Hyla crucifer was predictable on the basis of mating status or body size of male parent. Larval growth rate was predictably related to body size of the sire. Males from the upper half of the body-size distribution sired offspring with 6% higher growth rates than those of offspring sired by males from the lower half of the body-size distribution. Offspring sired by males that obtained mates in nature had 3% higher growth rates than their half-siblings sired by males that did not mate in nature. Genetic variation for larval-period duration and size at metamorphosis was detected; however, neither mating status nor body size of sire could be used to predict values of these traits in the progeny. Although all three larval traits can affect fitness, there was no evidence that the offspring of some sires would always outperform the offspring of others in all three traits. The predictable association between adult male size and larval growth rate means that the H. crucifer mating system would have a directional effect on larval growth rate if male body size influences the outcome of male-male competition or female choice.  相似文献   

9.
Sand lizard Lacerta agilis females characteristically mate with several males which, in staged mating experiments, results in multiple paternity of the offspring. In order to investigate multiple paternity in a natural population and interpret male reproductive behaviours in terms of sired young, we sampled the blood of females, potential fathers and hatchlings, and determined paternity using multilocus DNA fingerprinting as well as the variation at a single locus detected by the probe (TC) n . The paternity analyses were preceded by a laboratory experiment in which we established that the parental alleles identified by the single locus probe were inherited in a Mendelian way. Our molecular data demonstrated that 12 out of 13 males (92%) that sired offspring were correctly identified from the 56 sexually mature males in the population. Also smaller males were accepted as sexual partners by the females, but sired fewer young in competition with larger males and were less able to maintain prolonged post-copulatory mate guarding. This may result in that some sexually successful males are only observed inside a female's home range, but never in pair-association with the female.  相似文献   

10.
Environmental conditions experienced by parents are increasingly recognized to affect offspring performance. We set out to investigate the effect of parental larval diet on offspring development time, adult body size and adult resistance to the bacterium Serratia marcescens in Drosophila melanogaster. Flies for the parental generation were raised on either poor or standard diet and then mated in the four possible sex-by-parental diet crosses. Females that were raised on poor food produced larger offspring than females that were raised on standard food. Furthermore, male progeny sired by fathers that were raised on poor food were larger than male progeny sired by males raised on standard food. Development times were shortest for offspring whose one parent (mother or the father) was raised on standard and the other parent on poor food and longest for offspring whose parents both were raised on poor food. No evidence for transgenerational effects of parental diet on offspring disease resistance was found. Although paternal effects have been previously demonstrated in D. melanogaster, no earlier studies have investigated male-mediated transgenerational effects of diet in this species. The results highlight the importance of not only considering the relative contribution each parental sex has on progeny performance but also the combined effects that the two sexes may have on offspring performance.  相似文献   

11.
We analysed the morphology of nestling barn swallows (Hirundo rustica) in relation to their sex, and laying and hatching order. In addition, we studied sex-allocation in relation to parentage, parental age and expression of a secondary sexual character of fathers. Molecular sexing was conducted using the sex chromosome-linked avian CHD1 gene. Sex of the offspring was not associated with laying or hatching order. None of nine morphological, serological and immunological variables varied in relation to offspring sex. Sexual dimorphism did not vary in relation to parental age and expression of a paternal secondary sexual character. The proportion of sons declined with brood size. Individual males and females had a similar proportion of sons during consecutive breeding years. The proportion of sons of individual females declined with age, but increased with the expression of a secondary sexual character of their current mate. The generalized lack of variation in sexual dimorphism among nestlings may suggest that barn swallows do not differentially invest in sons vs. daughters. Alternatively, male offspring may require different parental effort compared to their female siblings in order to attain the same morphological state. The lack of variation in offspring sexual dimorphism with paternal ornamentation suggests no adjustment of overall parental effort in relation to reproductive value of the two sexes. However, male-biased sex ratio among offspring of highly ornamented males may represent an adaptive sex-allocation strategy because the expression of male ornaments is heritable and highly ornamented males are at a sexual selection advantage.  相似文献   

12.
Genetic models of maternal effects and models of mate choice have focused on the evolutionary effects of variation in parental quality. There have been, however, few attempts to combine these into a single model for the evolution of sexually selected traits. We present a quantitative genetic model that considers how male and female parental quality (together or separately) affect the expression of a sexually selected offspring trait. We allow female choice of males based on this parentally affected trait and examine the evolution of mate choice, parental quality and the indicator trait. Our model reveals a number of consequences of maternal and paternal effects. (1) The force of sexual selection owing to adaptive mate choice can displace parental quality from its natural selection optimum. (2) The force of sexual selection can displace female parental quality from its natural selection optimum even when nonadaptive mate choice occurs (e.g. runaway sexual selection), because females of higher parental quality produce more attractive sons and these sons counterbalance the loss in fitness owing to over-investment in each offspring. (3) Maternal and paternal effects can provide a source of genetic variation for offspring traits, allowing evolution by sexual selection even when those traits do not show direct genetic variation (i.e. are not heritable). (4) The correlation between paternal investment and the offspring trait influenced by the parental effects can result in adaptive mate choice and lead to the elaboration of both female preference and the male sexually selected trait. When parental effects exist, sexual selection can drive the evolution of parental quality when investment increases the attractiveness of offspring, leading to the elaboration of indicator traits and higher than expected levels of parental investment.  相似文献   

13.
Sexual selection theory assumes that secondary sexual characters do not influence female reproductive effort. Female animals may invest relatively more in reproduction if they acquire mates of high phenotypic quality, because offspring sired by preferred males may be relatively more viable than offspring sired by less preferred males. Here we report for the first time in a field study that females of the monogamous barn swallow Hirundo rustica adjust their reproductive effort to the attractiveness of their mates. Experimental manipulation of male tail length, which is a trait currently subject to a directional female mating preference, affected the reproductive effort by females in single broods as well as their decision on the seasonal number of clutches. These results, and those of previous experiments, demonstrate that female barn swallows assess the quality of their mates throughout the reproductive season and adjust their reproductive decisions accordingly. This result has important implications for the theory of sexual selection and for the possibility of testing current models of female mate preferences, because the viability of offspring will be confounded by differential reproductive effort.  相似文献   

14.
Multiple mating in female animals is something of a paradox because it can either be risky (e.g., higher probability of disease transmission, social costs) or provide substantial fitness benefits (e.g., genetic bet hedging whereby the likelihood of reproductive failure is lowered). The genetic relatedness of parental units, particularly in lizards, has rarely been studied in the wild. Here, we examined levels of multiple paternity in Australia's largest agamid lizard, the eastern water dragon (Intellagama lesueurii), and determined whether male reproductive success is best explained by its heterozygosity coefficient or the extent to which it is related to the mother. Female polyandry was the norm: 2/22 clutches (9.2%) were sired by three or more fathers, 17/22 (77.2%) were sired by two fathers, and only 3/22 (13.6%) clutches were sired by one father. Moreover, we reconstructed the paternal genotypes for 18 known mother–offspring clutches and found no evidence that females were favoring less related males or that less related males had higher fitness. However, males with greater heterozygosity sired more offspring. While the postcopulatory mechanisms underlying this pattern are not understood, female water dragons likely represent another example of reproduction through cryptic means (sperm selection/sperm competition) in a lizard, and through which they may ameliorate the effects of male‐driven precopulatory sexual selection.  相似文献   

15.
There is an evolutionary trade-off between the resources that a species invests in dispersal versus those invested in reproduction. For many insects, reproductive success in patchily-distributed species can be improved by sibling-mating. In many cases, such strategies correspond to sexual dimorphism, with males–whose reproductive activities can take place without dispersal–investing less energy in development of dispersive resources such as large body size and wings. This dimorphism is particularly likely when males have little or no chance of mating outside their place of birth, such as when sperm competition precludes successful fertilisation in females that have already mated. The economically important bark beetle pest species Dendroctonus micans (Coleoptera: Curculionidae, Scolytinae) has been considered to be exclusively sibling-mating, with 90% of females having already mated with their brothers by emergence. The species does not, however, show strong sexual dimorphism; males closely resemble females, and have been observed flying through forests. We hypothesised that this lack of sexual dimorphism indicates that male D. micans are able to mate with unrelated females, and to sire some or all of their offspring, permitting extrafamilial reproduction. Using novel microsatellite markers, we carried out cross-breeding laboratory experiments and conducted paternity analyses of resulting offspring. Our results demonstrate that a second mating with a less-related male can indeed lead to some offspring being sired by the latecomer, but that most are sired by the first, sibling male. We discuss these findings in the context of sperm competition versus possible outbreeding depression.  相似文献   

16.
In many species, each female pairs with a single male for the purpose of rearing offspring, but may also engage in extra-pair copulations. Despite the prevalence of such promiscuity, whether and how multiple mating benefits females remains an open question. Multiple mating is typically thought to be favoured primarily through indirect benefits (i.e. heritable effects on the fitness of offspring). This prediction has been repeatedly tested in a variety of species, but the evidence has been equivocal, perhaps because such studies have focused on pre-reproductive survival rather than lifetime fitness of offspring. Here, we show that in a songbird, the dark-eyed junco (Junco hyemalis), both male and female offspring produced by extra-pair fertilizations have higher lifetime reproductive success than do offspring sired within the social pair. Furthermore, adult male offspring sired via extra-pair matings are more likely to sire extra-pair offspring (EPO) themselves, suggesting that fitness benefits to males accrue primarily through enhanced mating success. By contrast, female EPO benefited primarily through enhanced fecundity. Our results provide strong support for the hypothesis that the evolution of extra-pair mating by females is favoured by indirect benefits and shows that such benefits accrue much later in the offspring's life than previously documented.  相似文献   

17.
The differential allocation hypothesis predicts increased investment in offspring when females mate with high-quality males. Few studies have tested whether investment varies with mate relatedness, despite evidence that non-additive gene action influences mate and offspring genetic quality. We tested whether female lekking lance-tailed manakins (Chiroxiphia lanceolata) adjust offspring sex and egg volume in response to mate attractiveness (annual reproductive success, ARS), heterozygosity and relatedness. Across 968 offspring, the probability of being male decreased with increasing parental relatedness but not father ARS or heterozygosity. This correlation tended to diminish with increasing lay-date. Across 162 offspring, egg volume correlated negatively with parental relatedness and varied with lay-date, but was unrelated to father ARS or heterozygosity. Offspring sex and egg size were unrelated to maternal age. Comparisons of maternal half-siblings in broods with no mortality produced similar results, indicating differential allocation rather than covariation between female quality and relatedness or sex-specific inbreeding depression in survival. As males suffer greater inbreeding depression, overproducing females after mating with related males may reduce fitness costs of inbreeding in a system with no inbreeding avoidance, while biasing the sex of outbred offspring towards males may maximize fitness via increased mating success of outbred sons.  相似文献   

18.
Evolutionary biologists commonly seek explanations for how selection drives the emergence of novel traits. Although trait loss is also predicted to occur frequently, few contemporary examples exist. In Hawaii, the Pacific field cricket (Teleogryllus oceanicus) is undergoing adaptive sexual signal loss due to natural selection imposed by eavesdropping parasitoids. Mutant male crickets (“flatwings”) cannot sing. We measured the intensity of sexual selection on wing phenotype in a wild population. First, we surveyed the relative abundance of flatwings and “normal‐wings” (nonmutants) on Oahu. Then, we bred wild‐mated females’ offspring to determine both female genotype with respect to the flatwing mutation and the proportion of flatwing males that sired their offspring. We found evidence of strong sexual selection favoring the production of song: females were predominantly homozygous normal‐wing, their offspring were sired disproportionately by singing males, and at the population level, flatwing males became less common following a single sexual selection event. We report a selection coefficient describing the total (pre‐ and postcopulatory) sexual selection favoring normal‐wing males in nature. Given the maintenance of the flatwing phenotype in Hawaii in recent years, this substantial sexual selection additionally suggests an approximate strength of opposing natural selection that favors silent males.  相似文献   

19.
In chimpanzees (Pan troglodytes), high-ranking males are expected to have high reproductive success and females typically emigrate upon reaching maturity. Although high average relatedness among males in the same social groups has been assumed, previous reports have indicated that relatedness among males is not necessarily significantly higher than that among females. The paternity of 11 offspring and the relatedness of 50 individuals in the M group of chimpanzees at Mahale Mountains National Park, Tanzania, were investigated using DNA analyses. We determined the fathers of 10 offspring. Two different alpha males sired a total of five offspring, whereas the other males had low reproductive success. The proportion of paternal half-sibling pairs among the 10 offspring was 15.6%. The average relatedness among mature males was significantly higher than that among mature females. The existence of an old male and the long tenure of one alpha male may have contributed to this significant difference. The average dyadic relatedness among mature natal individuals was significantly higher than that in natal-immigrant pairs in which the individuals came from different groups. The average relatedness among immigrant females was similar to that in pairs of natal and immigrant females, suggesting that the immigrants came from various groups. Thus, female transfer acts to maintain low average relatedness within the group. A comparison of our results to those from other study sites suggests that although the average relatedness among adult males does not reach the level of half-siblings, under some circumstances it can exceed the relatedness of females.  相似文献   

20.
Females may invest more in reproduction if they acquire mates of high phenotypic quality, because offspring sired by preferred partners may be fitter than offspring sired by non-preferred ones. In this study, we tested the differential maternal allocation hypothesis in the freshwater crayfish, Austropotamobius italicus, by means of a pairing experiment aimed at evaluating the effects of specific male traits (body size, chelae size and chelae asymmetry) on female primary reproductive effort. Our results showed that females laid larger but fewer eggs for relatively small-sized, large-clawed males, and smaller but more numerous eggs for relatively large-sized, small-clawed males. Chelae asymmetry had no effects on female reproductive investment. While the ultimate consequences of this pattern of female allocation remain unclear, females were nevertheless able to adjust their primary reproductive effort in relation to mate characteristics in a species where inter-male competition and sexual coercion may mask or obscure their sexual preferences. In addition, our results suggest that female allocation may differentially affect male characters, thus promoting a trade-off between the expression of different male traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号