首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The chlorophyll-deficient gun5-1 and cch Arabidopsis mutants carry single point mutations in the CHLH subunit of the magnesium chelatase enzyme, which catalyses the first committed step of chlorophyll biosynthesis. Recombinant Synechocystis ChlH subunits carrying the gun5-1 or cch mutations are inactive in Mg-chelatase assays, despite being able to bind both substrate and product, and retaining a capacity to form a ChlH–ChlI–ChlD Mg-chelatase complex. These mutant subunits act as inhibitors of ChlH, showing that the ChlH-porphyrin complex associates reversibly with the ChlI and D subunits during the catalytic cycle. This inhibition is reversed upon addition of Gun4.  相似文献   

2.
The genes encoding the three Mg chelatase subunits, ChlH, ChlI and ChlD, from the cyanobacterium Synechocystis PCC6803 were all cloned in the same pET9a-based Escherichia coli expression plasmid, forming an artificial chlH-I-D operon under the control of the strong T7 promoter. When a soluble extract from IPTG-induced E. coli cells containing the pET9a-ChlHID plasmid was assayed for Mg chelatase activity in vitro, a high activity was obtained, suggesting that all three subunits are present in a soluble and active form. The chlM gene of Synechocystis PCC6803 was also cloned in a pET-based E. coli expression vector. Soluble extract from an E. coli strain expressing chlM converted Mg-protoporphyrin IX to Mg-protoporphyrin monomethyl ester, demonstrating that chlM encodes the Mg-protoporphyrin methyltransferase of Synechocystis. Co-expression of the chlM gene together with the chlH-I-D construct yielded soluble protein extracts which converted protoporphyrin IX to Mg-protoporphyrin IX monomethyl ester without detectable accumulation of the Mg-protoporphyrin IX intermediate. Thus, active Mg chelatase and Mg-protoporphyrin IX methyltransferase can be coupled in E. coli extracts. Purified ChlI, -D and -H subunits in combination with purified ChlM protein were subsequently used to demonstrate in vitro that a molar ratio of ChlM to ChlH of 1 to 1 results in conversion of protoporphyrin IX to Mg-protoporphyrin monomethyl ester without significant accumulation of Mg-protoporphyrin.  相似文献   

3.
The chelation of Fe2+ and Mg2+ ions forms protoheme IX and Mg-protoporphyrin IX, respectively, and the latter is an intermediate in chlorophyll synthesis. Active magnesium protoporphyrin IX chelatase (Mg-chelatase) is an enzyme complex consisting of three different subunits. To investigate the function of the CHL I subunit of Mg-chelatase and the effects of modified Mg-chelatase activity on the tetrapyrrole biosynthetic pathway, we characterized N. tabacum transformants carrying gene constructs with the Chl I cDNA sequence in antisense and sense orientation under the control of the CaMV 35S promoter. Both elevated and diminished levels of Chl I mRNA and Chl I protein led to reduced Mg-chelatase activities, reflecting a perturbation of the assembly of the enzyme complex. The transformed plants did not accumulate the substrate of Mg-chelatase, protoporphyrin IX, but the leaves contained less chlorophyll and possessed increased chlorophyll a/b ratios, as well as a deficiency of light-harvesting chlorophyll binding proteins of photosystems I and II. The expression and activity of several tetrapyrrolic enzymes were reduced in parallel to lower the Mg-chelatase activity. Consistent with the lower chlorophyll contents, the rate-limiting synthesis of 5-aminolevulinate was also decreased in the transgenic lines analyzed. The consequence of reduced Mg-chelatase on early and late steps of chlorophyll synthesis, and on the organization of light harvesting complexes is discussed.  相似文献   

4.
5.
6.
7.
Mg-protoporphyrin IX chelatase catalyzes insertion of the magnesium ion into protoporphyrin IX, the last common intermediate precursor in chlorophyll and heme biosynthesis, to form Mg-protoporphyrin IX. In Rhodobacter sphaeroides, and Synechocystis, the three open reading frames bchD/chlD, bchH/chlH and bchl/chll encode proteins which are required for in vitro Mg-chelatase activity. In higher plants also, three proteins are necessary for the Mg chelation, and genes homologous to bchH and bchl have been isolated previously. In this study, a novel tobacco cDNA sequence homologous to bchD is isolated and initially characterized. Together with the tobacco clones encoding the other two subunits, full-length cDNAs are now available for the first time for all three subunits of one plant species. The CHL D polypeptide deduced from the open reading frame encodes a protein of 758 aa (82.9 kDa) with an amino terminal extension that resembles a plastid transit peptide. Sequence comparison of tobacco CHL D revealed similarities to the D subunit of Rhodobacter and Synechocystis of 44% and 75%. The amino terminal half of CHL D shows significant similarity (46%) to the entire CHL I peptide sequence, indicating a gene duplication from an ancestral gene. The carboxy terminal half seemed to be unique. Both parts of CHL D are linked with a glutamine/asparagine/proline-rich region flanked by a highly acid-rich segment. Protein-protein interaction among the three subunits CHL D, H and I was studied using the yeast two-hybrid system. Physical interaction was demonstrated between CHL D and CHL I indicating that CHL D is part of the Mg-chelatase. Heterodimer formation of CHL H with CHL I or CHL D could not be demonstrated by transactivation of the lacZ reporter gene. Homodimerization of the CHL D subunit was indicated in the more sensitive assay on X-Gal-containing agar plates. In vitro Mg2+ insertion into protoporphyrin IX was demonstrated in protein extracts of yeast strains expressing the three subunits of tobacco Mg-chelatase. The reconstitution of the recombinant enzyme activity required additional ATP.  相似文献   

8.
A bacteriochlorophyll a biosynthesis mutant of the purple photosynthetic bacterium Rhodobacter capsulatus was functionally complemented with a cosmid genomic library from Synechocystis sp. PCC 6803. The complemented R. capsulatus strain contains a defined mutation in the bchM gene that codes for Mg-protoporphyrin IX methyltransferase, the enzyme which converts Mg-protoporphyrin IX to Mg-protoporphyrin IX methylester using S-adenosyl-l-methionine as a cofactor. Since chlorophyll biosynthesis also requires the same methylation reaction, the Synechocystis genome should similarly code for a Mg-protoporphyrin IX methyltransferase. Sequence analysis of the complementing Synechocystis cosmid indicates that it contains an open reading frame exhibiting 29% sequence identity to BchM. In addition, expression of the Synechocystis gene in the R. capsulatus bchM mutant via the strong R. capsulatus puc promoter was shown to support nearly wild-type levels of bacteriochlorophyll a synthesis. To our knowledge, the Synechocystis sequence thus represents the first chlorophyll biosynthesis gene homolog of bchM. The complementing Synechocystis cosmid was also shown to code for a gene product that is a member of a highly conserved family of RNA binding proteins, the function of which in cyanobacteria remains undetermined.  相似文献   

9.
Chlamydomonas reinhardtii chloroplasts catalyzed two sequential steps of Chl biosynthesis, S-adenosyl-l-methionine:Mg-protoporphyrin IX methyltransferase and Mg-protoporphyrin IX monomethyl ester oxidative cyclase. A double mutant strain of C. reinhardtii was constructed which has a cell wall deficiency and is unable to form chlorophyll in the dark. Dark-grown cells were disrupted with a BioNeb nebulizer under conditions which lysed the plasma membrane but not the chloroplast envelope. Chloroplasts were purified by Percoll density gradient centrifugation. The purified chloroplasts were used to define components required for the biosynthesis of Mg-2,4-divinylpheoporphyrin a 5 (divinyl protochlorophyllide) from Mg-protoporphyrin IX. Product formation requires the addition of Mg-protoporphyrin IX, the substrate for S-adenosyl-l-methionine:Mg-protoporphyrin IX methyltransferase which produces Mg-protoporphyrin IX monomethyl ester. The Mg-protoporphyrin IX monomethyl ester that is generated in situ is the substrate for Mg-protoporphyrin IX monomethyl ester oxidative cyclase. The reaction product was identified as Mg-2,4-divinylpheoporphyrin a 5 (divinyl protochlorophyllide) by excitation and emission spectrofluorometry and HPLC on ion-paired reverse-phase and polyethylene columns. Mg-2,4-divinylpheoporphyrin a 5 formation by the coupled enzyme system required O2 and was stimulated by the addition of NADP+, an NADPH regenerating system, and S-adenosyl-l-methionine. Product was formed at a relatively steady rate for at least 60 min.Abbreviations MgDVP Mg-2,4-divinylpheoporphyrin a 5 (divinyl protochlorophyllide) - SAM S-adenosyl-l-methionine  相似文献   

10.
Effect of NaCl was studied on chlorophyll (Chl) synthesis and its intermediates (protoporphyrin IX, Mg-protoporphyrin IX, and protochlorophyllide), dry mass, ethylene evolution, and activities of superoxide dismutase (SOD) and peroxidase (APX) in wheat (Triticum aestivum L.) seedlings at 24, 48, and 72 h after germination. A conspicuous decrease in Chl synthesis, associated with increase in ethylene evolution and SOD and APX activities, was noted as NaCl concentration was increased from 0 to 100 mM. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号