首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
After being acclimated to constant warm (28 degrees C day/28 degrees C night) and cool-night temperature (28 degrees C day/20 degrees C night) regimes in growth chambers for 2 weeks, the two groups of mature Phalaenopsis aphrodite subsp. formosana plants both clearly exhibited a diurnal oscillation of stomatal conductance, net CO(2) uptake rate, malate and starch levels, and the phosphoenolpyruvate carboxylase (EC 4.1.1.31) and NAD(+)-malic enzyme (EC 1.1.1.39) activities. Hence, P. aphrodite is an obligate crassulacean acid metabolism plant. Nevertheless, different night temperature greatly affected both the stomatal conductance and the contribution of ambient and respiratory CO(2) to the nocturnal accumulation of malate. However, the amounts of nocturnal accumulated malate and daily deposited starch appeared to have no significant difference between the two groups. These results demonstrate that P. ahrodite is congruent with the characteristics of CAM plants having great flexibility and plasticity in response to changes in environmental conditions. In addition, the formation of reproductive stem, viz. spike, was noticeably inhibited by a constant warm temperature, but induced by a fluctuating warm day and cool night condition. The relationship between the metabolic pool variation and spike induction of Phalaenopsis is also discussed.  相似文献   

2.
The C(4) succulent plant Portulaca oleracea shifts its photosynthetic metabolism to crassulacean acid metabolism (CAM) after 23 d of withholding water. This is accounted by diurnal acid fluctuation, net nocturnal but not day CO(2) uptake and drastic changes in phosphoenolpyruvate carboxylase (PEPC) kinetic and regulatory properties [Lara et al. (2003) Photosynth: Res. 77: 241]. The goal of the present work was to characterize the CAM activity in leaves of P. oleracea during water stress through the study of enzymes involved in carbon fixation and carbohydrate metabolism. After drought stress, a general decrease in the photosynthetic metabolism, as accounted by the decrease in the net CO(2) fixation and in the activity of enzymes such as ribulose-1,5-bisphosphate carboxylase/oxygenase, PEPC, pyruvate orthophosphate dikinase, phosphoenolpyruvate carboxykinase and NAD-malic enzyme was observed. We also found changes in the day/night activities and level of immunoreactive protein of some of these enzymes which were correlated to night CO(2) fixation, as occurs under CAM metabolism. Based on the results obtained, including those from in situ immunolocalization studies, we propose a scheme for the possible CO(2) fixation pathways used by P. oleracea under conditions of sufficient and limiting water supply.  相似文献   

3.
J. Brulfert  D. Guerrier  O. Queiroz 《Planta》1982,154(4):332-338
Measurements of net CO2 exchange, malate accumulation, properties and capacity of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in leaves of different ages of two short-day dependent Crassulacean acid metabolism (CAM) plants (Kalanchoe blossfeldiana v. Poelln. Tom thumb and K. velutina Welw.) show that, in both species: a) young leaves from plants grown under long days display a CO2 exchange pattern typical of C3 plants; b) leaf aging promotes CAM under long-day conditions; c) short-day treatment induces CAM in young leaves to a higher degree than aging under long days; d) at least in K. blossfeldiana, the PEPC form developed with leaf aging under long days and the enzyme form synthetized de novo in young leaves grown under short days were shown to have similar properties. Short days also promote CAM in older leaves though at a lesser extent than in young leaves: The result is that this photoperiodic treatment increases the general level of CAM performance by the whole plant. The physiological meaning of the control of PEPC capacity by photoperiodism could be to afford a precisely timed seasonal increase in CAM potentiality, enabling the plant to immediately optimize its response to the onset of drought periods.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - PEPC phosphoenolpyruvate carboxylase (EC 4.1.1.31) - LD long day - SD short day  相似文献   

4.
In the succulent leaves of Aloe arborescens Mill diurnal oscillations of the malic acid content, being indicative of Crassulacean Acid Metabolism (CAM), were exhibited only by the green mesophyll. In contrast, the malic acid level of the central chloroplast-free water-storing tissue remained constant throughout the day-night cycle. Apart from malate, the green tissue contained high amounts of isocitrat which was lacking in the water tissue. There was no significant transfer from the green mesophyll to the water tissue of 14C fixed originally via dark 14CO2 fixation in the mesophyll. Both isolated mesophyll and water tissue were capable of dark CO2 fixation yielding mainly malate as the first stable product. Both tissues have phosphoenolpyruvate carboxylase. However, the enzymes derived from the both sources could be distinguished by their molecular weights and by their kinetic properties, suggesting different phosphoenolpyruvate carboxylase proteins. The conclusion drawn from the experiments is that in a. arborescens the CAM cycle proceeds exclusively in the green mesophyll and that the water tissue, though capable of malate synthesis via -carboxylation of phosphoenolpyruvate, behaves as an independent metabolic system where CAM is lacking. This view is supported by the finding that the cell walls bordering the green mesophyll from the water tissue lack plasmodesmata, hence conveniant pathways of metabolite transport.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - PEP-C phosphoenolpyruvate carboxylase  相似文献   

5.
Ascorbic acid oxidase (AAO) is a plant blue-copper protein catalyzing dioxygen reduction to water using ascorbic acid as the electron donor. In spite of extensive molecular characterization the physiological role of AAO is still uncertain. Abundant mRNA, protein and activity of AAO were observed in illuminated leaves of Cucurbita pepo. AAO activity was found to be proportional to light intensity. The light effect was rapidly reversed in dark and activity remained low throughout the dark period. Activity was elicited in dark by increased oxygen concentration. AAO activity increased in the facultative CAM Kalancho? blossfeldiana upon induction of the CAM cycle and decreased during germination of C. pepo and Zea mays under hypoxic conditions. These results strongly suggest that AAO activity could be part of a dynamic system for oxygen management in plants.  相似文献   

6.
Summary Ananas comosus (L.) Merr. var. Smooth Cayenne plants when grown in vitro under different temperature regimes developed as CAM or as C3 plants. The plants used in this study were developed from the lateral buds of the nodal etiolated stem explants cultured on Murashige and Skoog medium for 3 mo. The cultures were maintained under a 16-h photoperiod for different thermoperiods. With 28°C light/15°C dark thermoperiod, as compared with constant 28°C light and dark, pineapple plants had a succulence index two times greater, and also a greater nocturnal titratable acidity and phosphoenolpyruvate carboxylase (PEPCase) activity, indicating CAM-type photosynthesis. The highest abscisic acid (ABA) level occurred during the light period, 8 h prior to maximum PEPCase activity, while the indole-3-acetic acid (IAA) peak was found during the dark period, coinciding with the time of highest PEPCase activity. These plants were also smaller with thicker leaves and fewer roots, but had greater dry weight. Their leaves showed histological characteristics of CAM plants, such as the presence of greater quantities of chlorenchyma and hypoderm. In addition, their vascular system was more conspicuous. In contrast, under constant temperature (28°C light/dark) plants showed little succulence in the leaves. There was no significant acid oscillation and diurnal variation in PEPCase activity in these plants, suggesting the occurrence of C3 photosynthesis. Also, no diurnal variation in ABA and IAA contents was observed. The results of this study clearly indicate a role for temperature in determining the type of carbon fixation pathway in in vitro grown pineapple. Evidence that ABA and IAA participate in CAM signaling is provided.  相似文献   

7.
The possibility that Crassulacean acid metabolism (CAM) is subject to long day photoperiodic control in Portulacaria afra (L.) Jacq., a facultative CAM plant, was studied. Periodic measurements of 14CO2 uptake, stomatal resistance, and titratable acidity were made on plants exposed to long and short day photoperiods. Results indicates that waterstressed P. afra had primarily nocturnal CO2 uptake, daytime stomatal closure, and a large diurnal acid fluctuation in either photoperiod. Mature leaf tissue from nonstressed plants under long days exhibited a moderate diurnal acid fluctuation and midday stomatal closure. Under short days, there was a reduced diurnal acid fluctuation in mature leaf tissue. Young leaf tissue taken from nonstressed plants did not utilize the CAM pathway under either photoperiod as indicated by daytime CO2 uptake, lack of diurnal acid fluctuation, and incomplete daytime stomatal closure.

The induction of CAM in P. afra appears to be related to the water status of the plant and the age of the leaf tissue. The photosynthetic metabolism of mature leaves may be partly under the control of water stress and of photoperiod, where CAM is favored under long days.

  相似文献   

8.
Wyka TP  Bohn A  Duarte HM  Kaiser F  Lüttge UE 《Planta》2004,219(4):705-713
In continuous light, leaves of the Crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier exhibit a circadian rhythm of CO2 uptake, stomatal conductance and leaf-internal CO2 pressure. According to a current quantitative model of CAM, the pacemaking mechanism involves periodic turgor-related tension and relaxation of the tonoplast, which determines the direction of the net flux of malate between the vacuole and the cytoplasm. Cytoplasmic malate, in turn, through its inhibitory effect on phosphoenolpyruvate carboxylase, controls the rate of CO2 uptake. According to this mechanism, when the accumulation of malate is disrupted by removing CO2 from the ambient air, the induction of a phase delay with respect to an unperturbed control plant is expected. First, using the mathematical model, such phase delays were observed in numerical simulations of three scenarios of CO2 removal: (i) starting at a trough of CO2 uptake, lasting for about half a cycle (ca. 12 h in vivo); (ii) with the identical starting phase, but lasting for 1.5 cycles (ca. 36 h); and (iii) starting while CO2 increases, lasting for half a cycle again. Applying the same protocols to leaves of K. daigremontiana in vivo did not induce the predicted phase shifts, i.e. after the end of the CO2 removal the perturbed rhythm adopted nearly the same phase as that of the control plant. Second, when leaves were exposed to a nitrogen atmosphere for three nights prior to onset of continuous light to prevent malate accumulation, a small, 4-h phase advance was observed instead of a delay, again contrary to the model-based expectations. Hence, vacuolar malic acid accumulation is ruled out as the central pacemaking process. This observation is in line with our earlier suggestion [T.P. Wyka, U. Lüttge (2003) J Exp Bot 54:1471–1479] that in extended continuous light, CO2 uptake switches gradually from a CAM-like to a C3-like mechanism, with oscillations of the two CO2 uptake systems being tightly coordinated. It appears that the circadian rhythm of gas exchange in this CAM plant emerges from one or several devices that are capable of generating temporal information in a robust manner, i.e. they are protected from even severe metabolic perturbations.Abbreviations CAM Crassulacean acid metabolism - cia Ratio of mesophyll CO2 concentration to external CO2 concentration - JC Rate of carbon dioxide uptake - JW Transpiration rate - gW Stomatal conductance - LL Continuous light conditions - PEPC Phosphoenolpyruvate carboxylase - Rubisco d-Ribulose-1,5-bisphosphatecarboxylase/oxygenase - Effective quantum yield of photosystem II  相似文献   

9.
Phosphoenolpyruvate carboxylase (EC 4.1.1.31; PEPCase) from Bryophyllum fedtschenkoi leaves has previously been shown to exist in two forms in vivo. During the night the enzyme is phosphorylated and relatively insensitive to feedback inhibition by malate whereas during the day the enzyme is dephosphorylated and more sensitive to inhibition by malate. These properties of PEPCase have now been investigated in leaves maintained under constant conditions of temperature and lighting. When leaves were maintained in continuous darkness and CO2-free air at 15°C, PEPCase exhibited a persistent circadian rhythm of interconversion between the two forms. There was a good correlation between periods during which the leaves were fixing respiratory CO2 and periods during which PEPCase was in the form normally observed at night. When leaves were maintained in continuous light and normal air at 15°C, starting at the end of a night or the end of a day, a circadian rhythm of net uptake of CO2 was observed. Only when these constant conditions were applied at the end of a day was a circadian rhythm of interconversions between the two forms of PEPCase observed and the rhythms of enzyme interconversion and CO2 uptake did not correlate in phase or period.Abbreviations CAM Crassulacean acid metabolism - FW fresh weight - PEPCase phosphoenolpyruvate carboxylase - RuBPCase ribulose-1,5-bisphosphate carboxylase To whom correspondence should be addressed.  相似文献   

10.
Upon transfer from well-watered conditions to total drought, long-day-grown cladodes of Opuntia ficus-indica Mill. shift from full Crassulacean acid metabolism (CAM) to CAM-idling. Experiments using 14C-tracers were conducted in order to characterize the carbon-flow pattern in cladodes under both physiological situations. Tracer was applied by 14CO2 fumigations and NaH14CO3 injections during the day-night cycle. The results showed that behind the closed stomata, mesophyll cells of CAM-idling plants retained their full capacity to metabolize CO2 in light and in darkness. Upon the induction of CAM-idling the level of the capacity of phosphoenolpyruvate carboxylase (EC 4.1.1.31) was maintained. By contrast, malate pools decreased, displaying finally only a small or no day-night oscillation. The capacity of NADP-malic enzyme (EC 1.1.1.40) decreased in parallel with the reduction in malate pools. Differences in the labelling patterns, as influenced by the mode of tracer application, are discussed.Abbreviations CAM Crassulacean acid metabolism - PEP-Case phosphoenolpyruvate carboxylase  相似文献   

11.
The classical induction of Crassulacean acid metabolism (CAM) in Mesembryanthemum crystallinum L. by water stress is observed within one week when fourto five-week-old plants (grown under a 16/8 h photoperiod at ca. 600 mol quanta · m–2 · s–1) are irrigated with 350 mM NaCl. The induction of CAM was evaluated by measuring phosphoenolpyruvate carboxylase (PEPCase, EC 4.1.1.31) and NADP-malic enzyme (NADP-ME, EC 4.1.1.82) activities and nocturnal increases in malate content and titratable acidity of leaf extracts, and the daily pattern of CO2 exchange and stomatal conductance during the 7-d induction period. Three growth regulators, abscisic acid (ABA), farnesol (an antitranspirant and analog of ABA), and benzylaminopurine (BAP), were found to substitute for NaCl for induction of CAM when fed to plants in nutrient media. Daily irrigation with solutions containing micromolar levels (optimum ca. 10 micromolar) of these growth regulators led to the induction of CAM similar to that by high salt. Application of the growth regulators, like NaCl, caused large increases in the activity of NADP-ME and the activity and level of PEPCase, which are components of the biochemical machinery required for CAM. Western immunoblotting showed that the increased activity of PEPCase on addition of ABA, farnesol and BAP was mainly due to increased levels of the CAM-specific isoforms. Also, dehydration of cut leaves over 8.5 h under light resulted in a severalfold increase in PEPCase activity. An equivalent increase in PEPCase activity in excised leaves was also obtained by feeding 150 mM NaCl, or micromolar levels of ABA or BAP via the petiole, which supports results obtained by feeding the growth regulators to roots. However, the increase in PEPCase activity was inhibited by feeding high levels of BAP to cut leaves prior to dehydration, indicating a more complex response to the cytokinin. Abscisic acid may have a role in induction of CAM in M. crystallinum under natural conditions as there is previous evidence that induction by NaCl causes an increase in the content of ABA, but not cytokinins, in leaves of this species.Abbreviations ABA abscisic acid - BAP 6-benzylaminopurine - CAM Crassulacean acid metabolism - Chl chlorophyll - 2,4D 2,4-dichlorophenoxyacetic acid - NADP-ME NADP-malic enzyme - PEPCase phosphoenolpyruvate carboxylase Methyl jasmonate was generously provided by Dr. Vincent Franceschi (Botany Department, Washington State University). The anti-maize leaf PEPCase was kindly supplied by Dr. Tatsuo Sugiyama (Department of Agricultural Chemistry, Nagoya University, Japan) and the anti-Flaveria trinervia leaf PEPCase was kindly supplied by Dr. Samuel Sun (Department of Plant Molecular Physiology, University of Hawaii, Honulu). This work was funded in part by U.S. Department of Agriculture Competitive Grant 90-37280-5706 and an equipment grant (DMB 8515521) from the National Science Foundation. Ziyu Dai was supported in part by Guangxi Agricultural College and Ministry of Agriculture of the People's Republic of China  相似文献   

12.
The induction of a Crassulacean acid like metabolism (CAM) was evidenced after 21–23 days of drought stress in the C4 succulent plant Portulaca oleracea L. by changes in the CO2 exchange pattern, in malic acid content and in titratable acidity during the day–night cycle. Light microscopy studies also revealed differences in the leaf structure after the drought treatment. Following the induction of the CAM-like metabolism, the regulatory properties of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31), the enzyme responsible for the diurnal fixation of CO2 in C4 plants but nocturnal in CAM plants, were studied. The enzyme from stressed plants showed different kinetic properties with respect to controls, notably its lack of cooperativity, higher sensitivity to L-malate inhibition, higher PEP affinity and lower enzyme content on a protein basis. In both conditions, PEPC's subunit mass was 110 kDa, although changes in the isoelectric point and electrophoretic mobility of the native enzyme were observed. In vivo phosphorylation and native isoelectrofocusing studies indicated variations in the phosphorylation status of the enzyme of samples collected during the night and day, which was clearly different for the control and stressed groups of plants. The results presented suggest that PEPC activity and regulation are modified upon drought stress treatment in a way that allows P. oleracea to perform a CAM-like metabolism. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The maximum extractable activities of twenty-one photosynthetic and glycolytic enzymes were measured in mature leaves of Mesembryanthemum crystallinum plants, grown under a 12 h light 12 h dark photoperiod, exhibiting photosynthetic characteristics of either a C3 or a Crassulacean acid metabolism (CAM) plant. Following the change from C3 photosynthesis to CAM in response to an increase in the salinity of in the rooting medium from 100 mM to 400 mM NaCl, the activity of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) increased about 45-fold and the activities of NADP malic enzyme (EC 1.1.1.40) and NAD malic enzyme (EC 1.1.1.38) increased about 4- to 10-fold. Pyruvate, Pi dikinase (EC 2.7.9.1) was not detected in the non-CAM tissue but was present in the CAM tissue; PEP carboxykinase (EC 4.1.1.32) was detected in neither tissue. The induction of CAM was also accompanied by large increases in the activities of the glycolytic enzymes enolase (EC 4.2.1.11), phosphoglyceromutase (EC 2.7.5.3), phosphoglycerate kinase (EC 2.7.2.3), NAD glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and glucosephosphate isomerase (EC 2.6.1.2). There were 1.5- to 2-fold increases in the activities of NAD malate dehydrogenase (EC 1.1.1.37), alanine and aspartate aminotransferases (EC 2.6.1.2 and 2.6.1.1 respectively) and NADP glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). The activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphatase (EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), hexokinase (EC 2.7.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) remained relatively constant. NADP malate dehydrogenase (EC 1.1.1.82) activity exhibited two pH optima in the non-CAM tissue, one at pH 6.0 and a second at pH 8.0. The activity at pH 8.0 increased as CAM was induced. With the exceptions of hexokinase and glucose-6-phosphate dehydrogenase, the activities of all enzymes examined in extracts from M. crystallinum exhibiting CAM were equal to, or greater than, those required to sustain the maximum rates of carbon flow during acidification and deacidification observed in vivo. There was no day-night variation in the maximum extractable activities of phosphoenolpyruvate carboxylase, NADP malic enzyme, NAD malic enzyme, fructose-1,6-bisphosphatase and NADP malate dehydrogenase in leaves of M. crystallinum undergoing CAM.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

14.
L. Pistelli  G. Marigo  E. Ball  U. Lüttge 《Planta》1987,172(4):479-486
The levels of phosphorylated compounds studied during the dark period of Crassulacean acid metabolism (CAM) in Kalanchoë leaves showed increases for ATP and pyrophosphate and decreases for ADP, AMP and phosphenolpyruvate; levels of inorganic phosphate remained constant. Changes in adenylate levels and the correlated nocturnal increase in adenylate-energycharge were closely related to changes in malate levels. The increase in ATP levels was much inhibited in CO2-free air and stimulated after induction of CAM in short-day-treated plants of K. blossfeldiana cv. Tom Thumb. Changes in levels of phosphoenolpyruvate and pyrophosphate were independent of the presence of CO2. The results show the operation of complex regulatory mechanisms in the energy metabolism of CAM plants during nocturnal malic-acid accumulation.Abbreviations CAM Crassulacean acid metabolism - FW fresh weight - OAA oxaloacetic acia - PEP phosphoenol pyruvate - PPi pyrophosphate  相似文献   

15.
D. Ritz  M. Kluge  H. J. Veith 《Planta》1986,167(2):284-291
Phyllodia of the Crassulacean acid metabolism (CAM) plant Kalanchoë tubiflora were allowed to fix 13CO2 in light and darkness during phase IV of the diurnal CAM cycle, and during prolongation of the regular light period. After 13CO2 fixation in darkness, only singly labelled [13C]malate molecules were found. Fixation of 13CO2 under illumination, however, produced singly labelled malate as well as malate molecules which carried label in two, three or four carbon atoms. When the irradiance during 13CO2 fixation was increased, the proportion of singly labelled malate decreased in favour of plurally labelled malate. The irradiance, however, did not change either the ratio of labelled to unlabelled malate molecules found in the tissue after the 13CO2 application, or the magnitude of malate accumulation during the treatment with label. The ability of the tissue to store malate and the labelling pattern changed throughout the duration of the prolonged light period. The results indicate that malate synthesis by CAM plants in light can proceed via a pathway containing two carboxylation steps, namely ribulose-1,5-bisphosphate-carboxylase/oxygenase (EC 4.1.1.39) and phosphoenolpyruvate carboxylase (EC 4.1.1.31) which operate in series and share common intermediates. It can be concluded that, in light, phosphoenolpyruvate carboxylase can also synthesize malate independently of the proceeding carboxylation step by ribulose-1,5-bisphosphate carboxylase/oxygenase.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase (EC 4.1.1.31) - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) - TMS trimethylsilyl  相似文献   

16.
Clusia is the only genus with bona fide dicotyledonous trees performing Crassulacean acid metabolism (CAM). Clusia minor L. is extraordinarily flexible, being C(3)/CAM intermediate and expressing the photosynthetic modes C(3), CAM, CAM-cycling, and CAM-idling. C(3) photosynthesis and CAM can be observed simultaneously in two opposite leaves on a node and possibly even within the same leaf in the interveinal lamina and the major vein tissue, respectively. The relative activity of photosystem II (PhiPSII) indicating photosynthetic energy use, is larger under photorespiratory than under non-photorespiratory conditions due to the particular energy demand of photorespiration. The heterogeneity of PhiPSII over the leaves as visualized by chlorophyll fluorescence imaging in the C(3) mode is larger under non-photorespiratory conditions than under photorespiratory conditions. These observations indicate that photorespiration, presumably by its particular energy demand, synchronizes photosynthetic activity over the leaves. In the CAM mode, the heterogeneity of PhiPSII is more dependent on the transitions between CAM phases. Free-running circadian oscillations of photosynthesis are strongly dampened in both the C(3) and the CAM mode. Photorespiration is under circadian clock control in both the C(3) and the CAM mode. PhiPSII and the heterogeneity of PhiPSII oscillate in phase with CO(2) uptake and photorespiration only under non-photorespiratory conditions. Under photorespiratory conditions, PhiPSII does not oscillate and there is no heterogeneity, again indicating the stabilizing function of photorespiration. Plants acclimatized to perform CAM switch to C(3) photosynthesis during free-running oscillations while subjected to constant illumination.  相似文献   

17.
Immunotitration of phosphoenolpyruvate carboxylase (EC 4.1.1.31) extracted from leaves of Kalanchoe blossfeldiana v. Poelln. cv. Tom Thumb. It was established that at different times of the day-night cycle the daily rhythm of enzyme capacity does not result from a rhythm in protein synthesis, but rather from changes in the specific activity of the enzyme.Abbreviations CAM Crassulacean acid metabolism - IgG immunoglobulin G - PEP phosphoenolpyruvate To whom correspondence should be addressed  相似文献   

18.
Aiming at understanding the odd case of CAM expression by a C4 plant, some properties of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31, orthophosphate: oxaloacetate carboxylyase, phosphorylating) were comparatively studied in leaves of CAM-expressing and non-expressing Portulaca oleracea L. plants. CAM expression was induced by growing plants under an 8-h photoperiod and under water-stress. CAM induction in leaves of these plants (designated as CAM) is indicated by the nocturnal acidification and by the clear diurnal oscillation pattern and amplitude of acidity, malic acid, and PEPC activity characteristic of CAM plants. Treatment of the other plant group (designated as C4) by growth under a 16-h photoperiod and well-watered conditions did not induce expression of the tested criteria of CAM in plants. In these C4 plants, the mentioned CAM criteria were undetectable. PEPC from CAM and C4 Portulaca responded differently to any of the studied assay conditions or effectors. For example, extent and timing of sensitivity of PEPC to pH change, inhibition by malate, activation by glucose-6-phosphate or inorganic phosphate, and the enzyme affinity to the substrate PEP were reversed with induction of CAM from the C4-P. oleracea. These contrasting responses indicate distinct kinetic and regulatory properties of PEPC of the two modes. Thus by shifting to CAM in the C4 Portulaca a new PEPC isoform may be synthesised to meet CAM requirements. Simultaneous occurrence of both C4 and CAM is suggested in P. oleracea when challenged with growth under stress. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Mesembryanthemum crystallinum responds to high salinity in the soil by shifting the mode of carbon assimilation from the C3 mode to Crassulacean acid metabolism (CAM). Several enzymes of carbon metabolism have increased apparent activities in the CAM mode, including phosphoenolpyruvate carboxylase (PEPcase) and pyruvate orthophosphate dikinase (PPDK). We have identified cDNA clones for PEPcase and PPDK by immunological screening of a cDNA library constructed in the protein expression vector lambda gt11. The clones were characterized by immunoblotting and RNA blotting techniques. RNA blotting showed that during CAM induction the steady-state level of mRNAs for both PEP case and PPDK increased.Abbreviations IPTG isopropyl thiogalactoside - PEP phosphoenolpyruvate - PEPcase phosphoenolpyruvate carboxylase - PPDK pyruvate orthophosphate dikinase - Xgal-5 bromo-4-chloro-3-indolyl-beta-D-galactopyranoside  相似文献   

20.
Light-microscopic analysis of leaf clearings of the obligate Crassulacean-acid-metabolism (CAM) species Kalanchoe daigremontiana Hamet et Perr. has shown the existence of unusual and highly irregular venation patterns. Fifth-order veins exhibit a three-dimensional random orientation with respect to the mesophyll. Minor veins were often observed crossing over or under each other and over and under major veins in the mesophyll. Paraffin sections of mature leaves show tannin cells scattered throughout the mesophyll rather evenly spaced, and a distinct layer of tannin cells below the abaxial epidermis. Scanning electron microscopy showed that bundle-sheath cells are distinct from the surrounding mesophyll in veins of all orders. Transmission electron microscopy demonstrated developing sieve-tube elements in expanded leaves. Cytosolic vesicles produced by dictyosomes undergo a diurnal variation in number and were often observed in association with the chloroplasts. These vesicles are an interesting feature of cell ultrastructure of CAM cells and may serve a regulatory role in the diurnal malic-acid fluctuations in this species.Abbreviations CAM Crassulacean acid metabolism - SEM scanning-electron microscopy - TEM transmission-electron microscopy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号