首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methanococcus voltae is a methanogenic bacterium which requires leucine, isoleucine, and acetate for growth. However, it also can synthesize these amino acids, and it is capable of low levels of autotrophic acetyl coenzyme A (acetyl-CoA) biosynthesis. When cells were grown in the presence of 14CO2, as well as in the presence of compounds required for growth, the alanine found in the cellular protein was radiolabeled. The percentages of radiolabel in the C-1, C-2, and C-3 positions of alanine were 64, 24, and 16%, respectively. The incorporation of radiolabel into the C-2 and C-3 positions of alanine demonstrated the autotrophic acetyl-CoA biosynthetic pathway in this bacterium. Additional evidence was obtained in cell extracts in which autotrophically synthesized acetyl-CoA was trapped into lactate. In these extracts, both CO and CH2O stimulated acetyl-CoA synthesis. 14CH2O was specifically incorporated into the C-3 of lactate. Cell extracts of M. voltae also contained low levels of CO dehydrogenase, 13 nmol min-1 mg of protein-1. These results further confirmed the presence of the autotrophic acetyl-CoA biosynthetic pathway in M. voltae. Likewise, 14CO2 and [U-14C]acetate were also incorporated into leucine and isoleucine during growth. During growth with [U-14C]leucine or [U-14C]isoleucine, the specific radioactivity of these amino acids in the culture medium declined, and the specific radioactivities of these amino acids recovered from the cellular protein were 32 to 40% lower than the initial specific radioactivities in the medium.Cell extracts of M. voltae also contained levels of isopropyl malate synthase, an enzyme that is specific to the leucine biosynthetic pathway, of 0.8 nmol min-1 mg of protein-1. Thus, M. voltae is capable of autotrophic CO2 fixation and leucine and isoleucine biosynthesis.  相似文献   

2.
Synaptosomes isolated from rat cerebra were used to study the effects of the inhalational anesthetic, halothane, on cholinergic processes. To identify possible mechanisms responsible for the depression of acetylcholine synthesis, we examined the effects of halothane on precursor metabolite metabolism involved with supplying the cytosol with acetyl-CoA for acetylcholine synthesis. Three percent halothane/air (vol/vol) depressed 14CO2 evolution from labeled pyruvate and glucose. Steady-state 14CO2 evolution from [1-14C]glucose was depressed 84% by halothane, while 14CO2 evolution from [6-14C]glucose and [3,4-14C]glucose was decreased 67 and 52%, respectively, when compared with control conditions. Halothane inhibited the activities of both pyruvate dehydrogenase (14% depression) and ATP-citrate lyase (32% depression). Total synaptosomal acetyl-CoA concentrations were unaffected by halothane. Three percent halothane/air (vol/vol) caused a 77% increase in medium glucose depletion rate from 1.38 nmol (mg protein)-1 min-1 to 2.44 nmol (mg protein)-1 min-1. Production of lactate by the synaptosomes in the presence of halothane increased by 231% from a control rate of 1.44 nmol (mg protein)-1 min-1 to 4.77 nmol (mg protein)-1 min-1. Lactate production rate from pyruvate was also enhanced by 56% in the presence of halothane. These data lend support to the concept that the NAD+/NADH potential may be involved in the halothane-induced depression of acetylcholine synthesis.  相似文献   

3.
A detailed study of the glucose fermentation pathway and the modulation of catabolic oxidoreductase activities by energy sources (i.e., glucose versus lactate or fumarate) in Propionispira arboris was performed. 14C radiotracer data show the CO2 produced from pyruvate oxidation comes exclusively from the C-3 and C-4 positions of glucose. Significant specific activities of glyceraldehyde-3-phosphate dehydrogenase and fructose-1,6-bisphosphate aldolase were detected, which substantiates the utilization of the Embden-Meyerhoff-Parnas path for glucose metabolism. The methylmalonyl coenzyme A pathway for pyruvate reduction to propionate was established by detection of significant activities (greater than 16 nmol/min per mg of protein) of methylmalonyl coenzyme A transcarboxylase, malate dehydrogenase, and fumarate reductase in cell-free extracts and by 13C nuclear magnetic resonance spectroscopic demonstration of randomization of label from [2-13C]pyruvate into positions 2 and 3 of propionate. The specific activity of pyruvate-ferredoxin oxidoreductase, malate dehydrogenase, fumarate reductase, and transcarboxylase varied significantly in cells grown on different energy sources. D-Lactate dehydrogenase (non-NADH linked) was present in cells of P. arboris grown on lactate but not in cells grown on glucose or fumarate. These results indicate that growth substrates regulate synthesis of enzymes specific for the methylmalonyl coenzyme A path and initial substrate transformation.  相似文献   

4.
The carbon monoxide dehydrogenase (CODH) complex from Methanosarcina thermophila catalyzed the synthesis of acetyl coenzyme A (acetyl-CoA) from CH3I, CO, and coenzyme A (CoA) at a rate of 65 nmol/min/mg at 55 degrees C. The reaction ended after 5 min with the synthesis of 52 nmol of acetyl-CoA per nmol of CODH complex. The optimum temperature for acetyl-CoA synthesis in the assay was between 55 and 60 degrees C; the rate of synthesis at 55 degrees C was not significantly different between pHs 5.5 and 8.0. The rate of acetyl-CoA synthesis was independent of CoA concentrations between 20 microM and 1 mM; however, activity was inhibited 50% with 5 mM CoA. Methylcobalamin did not substitute for CH3I in acetyl-CoA synthesis; no acetyl-CoA or propionyl coenzyme A was detected when sodium acetate or CH3CH2I replaced CH3I in the assay mixture. CO could be replaced with CO2 and titanium(III) citrate. When CO2 and 14CO were present in the assay, the specific activity of the acetyl-CoA synthesized was 87% of the specific activity of 14CO, indicating that CO was preferentially incorporated into acetyl-CoA without prior oxidation to free CO2. Greater than 100 microM potassium cyanide was required to significantly inhibit acetyl-CoA synthesis, and 500 microM was required for 50% inhibition; in contrast, oxidation of CO by the CODH complex was inhibited 50% by approximately 10 microM potassium cyanide.  相似文献   

5.
Previous estimates of flux through the pyruvate-dehydrogenase complex were made by measuring 14CO2 generated from oxidation of [1-14C]pyruvate, assuming a 1:1 stoichiometry. However, this method fails to discriminate between 14CO2 produced from pyruvate dehydrogenase and 14CO2 generated from phospho-enolpyruvate carboxykinase and citric-acid-cycle dehydrogenases. While some previous reports have attempted to correct for the additional 14CO2 production by comparing 14CO2 generated by [1-14C]pyruvate with [2-14C]pyruvate or [3-14C]pyruvate, the estimates are flawed by failure to determine the radioactivity and distribution of the 14C label in the oxalacetate pool. The present method circumvents these problems by utilizing [1,4-14C]succinate to radiolabel the oxalacetate pool and by directly measuring the specific radioactivity of malate. The results demonstrate that flux through the pyruvate-dehydrogenase complex is negligible compared to the other reactions which generate 14CO2 from [1-14C]lactate in the fasted state. Phenylephrine did not significantly alter this result in the fasted state. However, 14CO2 production via the pyruvate-dehydrogenase complex is large (approximately 11.5 nmol.min-1.mg mitochondrial protein-1) compared to 14CO2 production via phosphoenolpyruvate carboxykinase and citric-acid-cycle dehydrogenases (approximately 6.4 nmol.min-1.mg-1) when the pyruvate-dehydrogenase complex is activated, in the fed state with 1 mM dichloroacetate.  相似文献   

6.
The ability of acetyl coenzyme A synthesizing carbon monoxide dehydrogenase isolated from Clostridium thermoaceticum to catalyze the exchange of [3'-32P]coenzyme A with acetyl coenzyme A is studied. This exchange is found to have a rate exceeding that of the acetyl coenzyme A carbonyl exchange also catalyzed by CO dehydrogenase ([1-14C]acetyl coenzyme A + CO in equilibrium acetyl coenzyme A + 14CO). These two exchanges are diagnostic of the ability of CO dehydrogenase to synthesize acetyl coenzyme A from a methyl group, coenzyme A, and carbon monoxide. The kinetic parameters for the coenzyme A exchange have been determined: Km(acetyl coenzyme A) = 1500 microM, Km(coenzyme A) = 50 microM, and Vmax = 2.5 mumol min-1 mg-1. Propionyl coenzyme A is shown to be a substrate (Km approximately 5 mM) for the coenzyme A exchange, with a rate 1/15 that of acetyl coenzyme A, but is not a substrate for the carbonyl exchange. CO dehydrogenase capable of catalyzing both these two exchanges, and the oxidation of CO to CO2, is isolated as a complex of molecular weight 410,000 consisting of three proteins in an alpha 2 beta 2 gamma 2 stoichiometry. The proposed gamma subunit, not previously reported as part of CO dehydrogenase, copurifies with the enzyme and has the same molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as the disulfide reductase previously separated from CO dehydrogenase in a final chromatographic step.  相似文献   

7.
One-carbon metabolic transformations associated with cell carbon synthesis and methanogenesis were analyzed by long- and short-term 14CH3OH or 14CO2 incorporation studies during growth and by cell suspensions. 14CH3OH and 14CO2 were equivalently incorporated into the major cellular components (i.e., lipids, proteins, and nucleic acids) during growth on H2-CO2-methanol. 14CH3OH was selectively incorporated into the C-3 of alanine with decreased amounts fixed in the C-1 and C-2 positions, whereas 14CO2 was selectively incorporated into the C1 moiety with decreasing amounts assimilated into the C-2 and C-3 atoms. Notably, 14CH4 and [3-14C]alanine synthesized from 14CH3OH during growth shared a common specific activity distinct from that of CO2 or methanol. Cell suspensions synthesized acetate and alanine from 14CO2. The addition of iodopropane inhibited acetate synthesis but did not decrease the amount of 14CH3OH or 14CO2 fixed into one-carbon carriers (i.e., methyl coenzyme M or carboxydihydromethanopterin). Carboxydihydromethanopterin was only labeled from 14CH3OH in the absence of hydrogen. Cell extracts catalyzed the synthesis of acetate from 14CO (~1 nmol/min per mg of protein) and an isotopic exchange between CO2 or CO and the C-1 of pyruvate. Acetate synthesis from 14CO was stimulated by methyl B12 but not by methyl tetrahydrofolate or methyl coenzyme M. Methyl coenzyme M and coenzyme M were inhibitory to acetate synthesis. Cell extracts contained high levels of phosphotransacetylase (>6 μmol/min per mg of protein) and acetate kinase (>0.14 μmol/min per mg of protein). It was not possible to distinguish between acetate and acetyl coenzyme A as the immediate product of two-carbon synthesis with the methods employed.  相似文献   

8.
On the basis of enzyme activities detected in extracts of Selenomonas ruminantium HD4 grown in glucose-limited continuous culture, at a slow (0.11 h-1) and a fast (0.52 h-1) dilution rate, a pathway of glucose catabolism to lactate, acetate, succinate, and propionate was constructed. Glucose was catabolized to phosphoenol pyruvate (PEP) via the Emden-Meyerhoff-Parnas pathway. PEP was converted to either pyruvate (via pyruvate kinase) or oxalacetate (via PEP carboxykinase). Pyruvate was reduced to L-lactate via a NAD-dependent lactate dehydrogenase or oxidatively decarboxylated to acetyl coenzyme A (acetyl-CoA) and CO2 by pyruvate:ferredoxin oxidoreductase. Acetyl-CoA was apparently converted in a single enzymatic step to acetate and CoA, with concomitant formation of 1 molecule of ATP; since acetyl-phosphate was not an intermediate, the enzyme catalyzing this reaction was identified as acetate thiokinase. Oxalacetate was converted to succinate via the activities of malate dehydrogenase, fumarase and a membrane-bound fumarate reductase. Succinate was then excreted or decarboxylated to propionate via a membrane-bound methylmalonyl-CoA decarboxylase. Pyruvate kinase was inhibited by Pi and activated by fructose 1,6-bisphosphate. PEP carboxykinase activity was found to be 0.054 mumol min-1 mg of protein-1 at a dilution rate of 0.11 h-1 but could not be detected in extracts of cells grown at a dilution rate of 0.52 h-1. Several potential sites for energy conservation exist in S. ruminantium HD4, including pyruvate kinase, acetate thiokinase, PEP carboxykinase, fumarate reductase, and methylmalonyl-CoA decarboxylase. Possession of these five sites for energy conservation may explain the high yields reported here (56 to 78 mg of cells [dry weight] mol of glucose-1) for S. ruminantium HD4 grown in glucose-limited continuous culture.  相似文献   

9.
Acetylcholine synthesis in rat brain synaptosomes was investigated with regard to the intracellular sources of its two precursors, acetyl coenzyme A and choline. Investigations with α-cyano-4-hydroxycinnamate, an inhibitor of mitochondrial pyruvate transport, indicated that pyruvate must be utilized by pyruvate dehydrogenase located in the mitochondria, rather than in the cytoplasm, as recently proposed. Evidence for a small, intracellular pool of choline available for acetylcholine synthesis was obtained under three experimental conditions. (1) Bromopyruvate competitively inhibited high-affinity choline transport, perhaps because of accumulation of intracellular choline which was not acetylated when acetyl coenzyme A production was blocked. (2) Choline that was accumulated under high-affinity transport conditions while acetyl coenzyme A production was impaired was subsequently acetylated when acetyl coenzyme A production was resumed. (3) Newly synthesized acetylcholine had a lower specific activity than that of choline in the medium. These results indicate that the acetyl coenzyme A that is used for the synthesis of acetylcholine is derived from mitochondrial pyruvate dehydrogenase and that there is a small pool of choline within cholinergic nerve endings available for acetylcholine synthesis, supporting the proposal that the high-affinity transport and acetylation of choline are kinetically coupled.  相似文献   

10.
1. The role of pyruvate carboxylation in the net synthesis of tricarboxylic acid-cycle intermediates during acetate metabolism was studied in isolated rat hearts perfused with [1-14C]pyruvate. 2. The incorporation of the 14C label from [1-14C]pyruvate into the tricarboxylic acid-cycle intermediates points to a carbon input from pyruvate via enzymes in addition to pyruvate dehydrogenase and citrate synthase. 3. On addition of acetate, the specific radioactivity of citrate showed an initial maximum at 2 min, with a subsequent decline in labelling. The C-6 of citrate (which is removed in the isocitrate dehydrogenase reaction) and the remainder of the molecule showed differential labelling kinetics, the specific radioactivity of C-6 declining more rapidly. Since this carbon is lost in the isocitrate dehydrogenase reaction, the results are consistent with a rapid inactivation of pyruvate dehydrogenase after the addition of acetate, which was confirmed by measuring the 14CO2 production from [1-14C]pyruvate. 4. The results can be interpreted to show that carboxylation of pyruvate to the C4 compounds of the tricarboxylic acid cycle occurs under conditions necessitating anaplerosis in rat myocardium, although the results do not identify the enzyme involved. 5. The specific radioactivity of tissue lactate was too low to allow it to be used as an indicator of the specific radioactivity of the intracellular pyruvate pool. The specific radioactivity of alanine was three times that of lactate. When the hearts were perfused with [1-14C]lactate, the specific radioactivity of alanine was 70% of that of pyruvate. The results suggest that a subcompartmentation of lactate and pyruvate occurs in the cytosol.  相似文献   

11.
The rate of utilization of pyruvate (at various concentrations) was measured in lymphocytes prepared from rat mesenteric lymph nodes. The quantitative contribution of pyruvate to CO2, lactate, aspartate, alanine, citrate, acetate, acetyl-CoA and ketone bodies accounted for the pyruvate metabolized. Pyruvate utilization was depressed by increasing concentrations of pyruvate. The maximum catalytic activities and selected intracellular distributions of the following enzymes of pyruvate, citrate and acetyl-CoA metabolism were measured: citrate synthase, ATP-citrate lyase, lactate dehydrogenase, acetyl-CoA hydrolase, acetylcarnitine transferase, NAD+- and NADP+- isocitrate dehydrogenases, HMG-CoA lyase, HMG-CoA synthase, Pyruvate dehydrogenase, acetoacetyl-CoA thiolase, 3-oxoacid-CoA transferase, 3-hydroxybutyrate dehydrogenase and pyruvate carboxylase. Acetyl-CoA formed from pyruvate did not contribute to the respiratory energy metabolism of resting lymphocytes. Instead acetyl-CoA was converted to acetoacetate by reactions which may favour the pathway catalyzed by acetoacetyl-CoA thiolase and 3-oxoacid-CoA transferase. Acetate, acetyl- and palmitoyl-carnitine inhibited the decarboxylation of [1-14C] pyruvate. These observations may be connected with the suppression of pyruvate utilization by increased pyruvate substrate concentration. Only very small amounts of either pyruvate or acetate were incorporated into lipids in resting lymphocytes. The amounts incorporated were partitioned in approximately the same pattern into FFA, T.G., cholesterol and cholesterol esters. Taken together the data show that pyruvate metabolism is directed inter alia at the formation of acetoacetate which may serve as a lipid synthesis precursor. When pyruvate utilization and metabolism was enhanced by concanavalin A, then acetoacetate formation was not favoured and from this it is proposed that the acetyl units may then be directed into lipid synthesis and may also make a contribution to the energy metabolism of the activated lymphocyte.  相似文献   

12.
Pyruvate-dependent CO2 fixation by isolated mitochondria was strongly inhibited by sodium benzoate. Pyruvate carboxylase was identified as a site of inhibition by limiting flux measurements to assays of pyruvate carboxylase coupled with malate dehydrogenase. Benzoate reduced pyruvate-dependent incorporation of [14C]KHCO3 into malate and pyruvate-dependent malate accumulation by 74 and 72%, respectively. Aspartate-dependent malate accumulation was insensitive to benzoate, ruling out malate dehydrogenase as a site of action. Inhibition by benzoate was antagonized by glycine, which sharply accelerated conversion of benzoate to hippurate. Assays of coenzyme A and its acyl derivatives revealed inhibition to correlate with depletion of acetyl CoA and accumulation of benzoyl CoA. Depletion of acetyl CoA was sufficient to account for greater than 50% reduction in pyruvate carboxylase activity. Competition between acetyl CoA and benzoyl CoA for the activator site on pyruvate carboxylase was insignificant. Results support the interpretation that the observed inhibition of pyruvate carboxylase occurred primarily by depletion of the activator, acetyl CoA, through sequestration of coenzyme A during benzoate metabolism.  相似文献   

13.
The relation between pyruvate utilization and acetylcholine synthesis was investigated in minces of adult rat brain. The flux of pyruvate to acetylcholine was less than 1% of that to CO2; nevertheless, a number of agents which inhibited conversion of [1-14C]-pyruvate or [2-14C]pyruvate into 14CO2 were associated with corresponding decreases in the conversion of [2-14C]pyruvate into acetylcholine. The amount of acetylcholine produced by minces of whole rat brain, measured by g.l.c.-mass spectrometry, decreased similarly. Among the inhibitory compounds tested were 3-bromopyruvate, an irreversible inhibitor of pyruvate dehydrogenase; 2-oxobutyrate, a competitive inhibitor of pyruvate dehydrogenase; other 2-oxo acids; and amobarbital and pentobarbital. Linear-regression equations relating CO2 production to acetylcholine synthesis gave correlation coefficients of 0.89-0.93 for the combined observations. The inhibition of acetylcholine synthesis could not be attributed to inhibition of choline acetyltransferase. Incorporation of [2-14C]pyruvate into lipids, proteins and nucleic acids was effected less than that into acetylcholine. Under these experimental conditions, it was shown that pyruvate utilization can limit acetylcholine synthesis.  相似文献   

14.
When Bacillus megaterium spores germinate in the absence of an exogenous carbon source, the first minutes of germination are accompanied by production of large amounts (approximately 70 nmol/mg of dry spores) of acetate and much smaller amounts of pyruvate and lactate. The majority of these compounds are excreted into the medium. Exogenous pyruvate and alanine are also converted to CO2 and acetate by germinating spores, presumably by using the pyruvate dehydrogenase that is present in dormant spores. These data suggest that the 3-phosphoglyceric acid stores in the dormant spore and alanine generated by proteolysis early in germination can be catabolized to acetate during germination with production of large amounts of reduced nicotinamide adenine dinucleotide, acetyl coenzyme A, and adenosine 5'-triphosphate.  相似文献   

15.
The pivotal role of acetyl coenzyme A in CO2 assimilation by autotrophic methanogenic bacteria has been demonstrated by pulse-labelling of growing Methanobacterium thermoautotrophicum with 14CO2. After very short incubation with 14CO2 (1.5 s) approximately 1% of label incorporated into the soluble cell fraction was contained in acetyl coenzyme A. The percentage distribution of 14C within acetyl CoA markedly decreased with time, which is indicative for acetyl CoA being an immediate 14CO2 fixation product. Label in the acetate molecule first appeared in the carboxyl carbon, but the methyl carbon became equally labelled within only 10 s. The acetyl CoA was compared with authentic material by various criterions and its cellular concentration was determined to be 52 M. This small cellular pool size of acetyl CoA as compared to e.g. alanine (6.4 mM) provides an explanation for the observed labelling kinetics. The data are fully consistent with autotrophic carbon assimilation via a total synthesis of acetyl coenzyme A from 2 CO2.Dedicated to Professor Dr. Gerhart Drews on occasion of his 60th birthday  相似文献   

16.
D S Flournoy  P A Frey 《Biochemistry》1986,25(20):6036-6043
The pyruvate dehydrogenase component (E1) of the pyruvate dehydrogenase complex catalyzes the decomposition of 3-fluoropyruvate to CO2, fluoride anion, and acetate. Acetylthiamin pyrophosphate (acetyl-TPP) is an intermediate in this reaction. Incubation of the pyruvate dehydrogenase complex with 3-fluoro[1,2-14C]pyruvate, TPP, coenzyme A (CoASH), and either NADH or pyruvate as reducing systems leads to the formation of [14C]acetyl-CoA. In this reaction the acetyl group of acetyl-TPP is partitioned by transfer to both CoASH (87 +/- 2%) and water (13 +/- 2%). When the E1 component is incubated with 3-fluoro[1,2-14C]pyruvate, TPP, and dihydrolipoamide, [14C]acetyldihydrolipoamide is produced. The formation of [14C]acetyldihydrolipoamide was examined as a function of dihydrolipoamide concentration (0.25-16 mM). A plot of the extent of acetyl group partitioning to dihydrolipoamide as a function of 1/[dihydrolipoamide] showed 95 +/- 2% acetyl group transfer to dihydrolipoamide when dihydrolipoamide concentration was extrapolated to infinity. It is concluded that acetyl-TPP is chemically competent as an intermediate for the pyruvate dehydrogenase complex catalyzed oxidative decarboxylation of pyruvate.  相似文献   

17.
Summary A comparative study has been made of the metabolism in several strains of Thiobacillus neapolitanus of formate, acetate, propionate, butyrate, valerate and pyruvate. Conflicting reports in the literature concerning the mechanism of pyruvate assimilation in thiobacilli have been resolved. Pyruvate undergoes decarboxylation to yield acetyl coenzyme A, which is converted to glutamate, proline and arginine via reactions of the incomplete Krebs' cycle of this organism. Pyruvate is converted also to alanine, valine, isoleucine, leucine and lysine by mechanisms like those in heterotrophs. No aspartate is formed from the C-3 of pyruvate. Removal of the C-1 of pyruvate yields carbon dioxide, which is refixed into all cell constituents. Formate is not produced by this scission reaction, as formate itself is incorporated almost exclusively into purines. Aspartate can be synthesized by the activities of phosphoenolpyruvate carboxylase and oxaloacetate-glutamate transamination. Carbon from propionate is converted principally to lipids, although some amino acid production occurs with the same distinctive labelling pattern as is found after acetate assimilation by T. neapolitanus strains C and X. Butyrate and valerate also showed some distinctive patterns of incorporation into cell constituents. Fluoropyruvate and fluoropropionate inhibited the growth of T. neapolitanus and the mechanisms of this poisoning are discussed.Generally these compounds contributed only small proportions of the total cell carbon and tended to be converted to limited numbers of cell components. The thiobacilli thus tend to conserve carbon from these compounds and not to degrade them to carbon dioxide on a large scale when growing in an otherwise autotrophic medium.  相似文献   

18.
Cell suspensions of Methanobacterium thermoautotrophicum were found to reduce CO2 with H2 to CO at a maximal rate of 100 nmol X min-1 X mg protein-1. Half-maximal rates were obtained at a H2 and a CO2 concentration in the gas phase of 10% and 30%, respectively. The CO concentration in the gas phase surpassed the equilibrium concentration by a factor of more than 15 which indicates that CO2 reduction with H2 to CO was energy-driven. This was substantiated by the observation that the cells only formed CO when they also generated methane and that CO formation was completely inhibited by uncouplers. CO formation by cell suspensions and by growing cells was inhibited by cyanide. Neither methane formation nor the electrochemical proton potential were affected by this inhibitor. Cyanide was shown to inactivate specifically the carbon monoxide dehydrogenase present in M. thermoautotrophicum. It is therefore concluded that reduction of CO2 to CO is catalyzed by this enzyme. CO production by growing cells was 5-10-times slower than by resting cells. This is explained by effective CO assimilation in growing cells; when CO assimilation was inhibited by propyl iodide the rate of CO production immediately increased more than tenfold.  相似文献   

19.
The heterofermentative lactic acid bacteria Oenococcus oeni and Leuconostoc mesenteroides are able to grow by fermentation of pyruvate as the carbon source (2 pyruvate --> 1 lactate + 1 acetate + 1 CO(2)). The growth yields amount to 4.0 and 5.3 g (dry weight)/mol of pyruvate, respectively, suggesting formation of 0.5 mol ATP/mol pyruvate. Pyruvate is oxidatively decarboxylated by pyruvate dehydrogenase to acetyl coenzyme A, which is then converted to acetate, yielding 1 mol of ATP. For NADH reoxidation, one further pyruvate molecule is reduced to lactate. The enzymes of the pathway were present after growth on pyruvate, and genome analysis showed the presence of the corresponding structural genes. The bacteria contain, in addition, pyruvate oxidase activity which is induced under microoxic conditions. Other homo- or heterofermentative lactic acid bacteria showed only low pyruvate fermentation activity.  相似文献   

20.
The Gram positive anaerobeAcetobacterium woodii is able to grow autotrophically with a mixture of H2 and CO2 as the energy and carbon source. The question, by which pathway CO2 is assimilated, was studied using long term isotope labeling.Autotrophically growing cultures produced acetate parallel to cell proliferation, and, when U-[14C]acetate was present as tracer, incorporated radioactivity into all cell fractions. The specific radioactivity and the label positions were determined for those representative cell compounds which biosynthetically originated directly from acetyl CoA (N-acetyl groups), pyruvate (alanine), oxaloacetate (aspartate), -ketoglutarate (glutamate), and hexosephosphates (glucosamine). Per mol compound the same amount of labeled acetate was incorporated into N-acetyl groups, alanine (C-2, C-3), aspartate (C-2, C-3), and twice the amount into glutamate (C-2, C-3, C-4, C-5) and into glucosamine. Consequently, the unlabeled carbon atoms of the C3–C6 compounds must have been derived from CO2 by carboxylation subsequent to acetyl CoA synthesis. When 0.2 mM 2-[14C]pyruvate was added to autotrophically growing cultures, also a substantial amount of radioactivity was incorporated. Two important differences in comparison to the acetate experiment were observed: The N-acetyl groups were almost unlabeled and glutamate contained the same specific radioactivity as alanine or aspartate.These data showed that acetyl CoA is the central intermediate for biosynthesis and excluded the operation of the Calvin cycle inA. woodii. The results were consistent with the operation of a different autotrophic CO2 fixation pathway in which CO2 is converted into acetyl CoA by total synthesis via methyltetrahydrofolate; acetyl CoA is then further reductively carboxylated to pyruvate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号