首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This hydroponic experiment was conducted to determine the effects of nitrogen (N) and phosphorus (P) levels and frond-harvesting on the effectiveness of arsenic (As)-hyperaccumulator Chinese brake fern (Pteris vittata L.) to remove As from contaminated groundwater collected from south Florida. Three-month old ferns were grown in 38-L plastic tanks (two ferns per tank) containing 30-L of As-contaminated water (130 μg·L?1 As), which was amended with modified 0.25 strength Hoagland's solution #2. Two N (26 or 52 mg·L?1) and two P levels (1.2 and 2.4 mg·L?1) were tested in one experiment, whereas the effect of frond-harvesting was tested in a separate experiment. Initially, N had little effect on plant As removal whereas low P treatment was more effective than high P and As was reduced to <5 μg·L?1 in 28 d compared to 35 d. For well-established ferns, N and P levels had little effect. Reused fern, with or without harvesting the As-rich fronds, took up arsenic more rapidly so the As concentration in the groundwater declined faster (130 to ~10 μg·L?1 in 8 h). Regardless of the treatments, most As (85–93%) was located in the aboveground tissue (rhizomes and fronds). Frond As concentrations were higher for non-harvested ferns than for ferns where fronds were partially harvested prior to treatment. Conversely, rhizomes accumulated more arsenic in ferns where fronds had been partially harvested. Low-P treatment coupled with reuse of more established ferns with or without harvesting fronds can be used to effectively remove arsenic from contaminated water using P. vittata  相似文献   

2.
Certain plant species have been shown to vigorously accumulate some metals from soil, and thus represent promising and effective remediation alternatives. In order to select the optimum forms of nitrogen (N) fertilizers for the arsenic (As) hyperaccumulator, Pteris vittata L., to maximize As extraction, five forms of N were added individually to different treatments to study the effect of N forms on As uptake of the plants under soil culture in a greenhouse. Although shoot As concentration tended to decrease and As translocation from root to shoot was inhibited, overall As accumulation was greater due to higher biomass when N fertilizer was added. Arsenic accumulation in plants with N fertilization was 100-300% more than in the plants without N fertilization. There were obvious differences in plant biomass and As accumulation among the N forms, i.e., NH4HCO3, (NH4)2S04, Ca(NO3)2, KNO3, urea. The total As accumulation in the plants grown in As-supplied soil, under different forms of N fertilizer, decreased as NH4HCO3>(NH4)2S04 > urea > Ca(NO3)2 >KNO3>CK. The plants treated with N and As accumulated up to 5.3-7.97 mg As/pot and removed 3.7-5.5% As from the soils, compared to approximately 2.3% of As removal in the control. NH4+ -N was apparently more effective than other N fertilizers in stimulating As removal when soil was supplied with As at initiation. No significant differences in available As were found among different forms of N fertilizer after phytoremediation. It is concluded that NH4+ -N was the preferable fertilizer for P. vittata to maximize As removal.  相似文献   

3.
Two hydroponic experiments were conducted to evaluate factors affecting plant arsenic (As) hyperaccumulation. In the first experiment; two As hyperaccumulators (Pteris vittata and P. cretica mayii) were exposed to 1 and 10 mg L(-1) arsenite (AsIII) and monomethyl arsenic acid (MMA) for 4 wk. Total As concentrations in plants (fronds and roots) and solution were determined In the second experiment P. vittata and Nephrolepis exaltata (a non-As hyperaccumulator) were exposed to 5 mgL(-1) arsenate (AsV) and 20 mgL(-1) AsIIIfor 1 and 15 d. Total As and AsIII concentrations in plants were determined Compared to P. cretica mayii, P. vittata was more efficient in arsenic accumulation (1075-1666 vs. 249-627mg kg(-1) As in the fronds) partially because it is more efficient in As translocation. As translocation factor (As concentration ratio in fronds to roots) was 3.0-5.6 for P. vittata compared to 0.1 to 4.8 for P. cretica. Compared to N. exaltata, P. vittata was significantly more efficient in arsenic accumulation (38-542 vs. 4.8-71 mg kg(-1) As in thefronds) as well asAs translocation (1.3-5.6 vs. 0.2-0.5). In addition, P. vittata was much more efficient in As reduction from AsV to AsIII (83-84 vs. 13-24% AsIII in the fronds). Little As reduction occurred after 1-d exposure to AsV in both species indicates that As reduction was not instantaneous even in an As hyperaccumulator. Our data were consistent with the hypothesis that both As translocation and As reduction are important for plant As hyperaccumulation.  相似文献   

4.
Arsenic concentrations in a much larger fraction of U.S. groundwater sources will exceed the maximum contaminant limit when the new 10 microg L(-1) EPA standard for drinking water takes effect in 2006. Thus, it is important to develop remediation technologies that can meet this new standard. Phytoremediation of arsenic-contaminated groundwater is a relatively new idea. In this research, an arsenic-hyperaccumulating fern, commonly known as Chinese Brake fern (Pteris vittata L.), was grown hydroponically to examine its effectiveness in arsenic removal from what is believed to be herbicide-contaminated groundwater. One plant grown in 600 mL of groundwater effectively reduced the arsenic concentration from 46 to less than 10 microg L(-1) in 3 days. Re-used plants continued to take up arsenic from the groundwater, albeit at a slower rate (from 46 to 20 microg L(-1) during the same time). Young fern plants were more efficient in removing arsenic than were older fern plants of similar size. The addition of a supplement of phosphate-free Hoagland nutrition to the groundwater had little effect on arsenic removal, but the addition of phosphate nutrition significantly reduced its arsenic affinity and, thus, inhibited the arsenic removal. This study suggested that Chinese Brake has some potential to remove arsenic from groundwater.  相似文献   

5.
This study examined the phytoextraction potential of two arsenic (As) hyperaccumulators, Pteris vittata L. and Pityrogramma calomelanos var. austroamericana at a historical As-contaminated cattle dip site in northern New South Wales (NSW), Australia. Total As concentration in the surface soil (0-20 cm) showed a better spatial structure than phosphate-extractable As in the surface and sub-surface soil at this site. P. calomelanos var. austroamericana produced greater frond dry biomass (mean = 130 g plant(-1)) than P. vittata (mean = 81 g plant(-1)) after 10 months of growth. Arsenic concentration and uptake in fronds were also significantly higher in P. calomelanos var. austroamericana (means = 887 mg kg(-1) and 124 mg plant(-1)) than in P. vittata (means = 674 mg kg(-1) and 57 mg plant(-1)). Our results showed that under the field conditions and highly variable soil As at the site, P. calomelanos var. austroamericana performed better than P. vittata. We predict that P. calomelanos var. austroamericana would take approximately 100 years to reduce the total As to below 20 mg kg(-1) at the site compared to > or =200 years estimated for P. vittata. However, long-term data are required to confirm these observations under field conditions.  相似文献   

6.
The sporophyte of the fern Pteris vittata is known to hyperaccumulate arsenic (As) in its fronds to >1% of its dry weight. Hyperaccumulation of As by plants has been identified as a valuable trait for the development of a practical phytoremediation processes for removal of this potentially toxic trace element from the environment. However, because the sporophyte of P. vittata is a slow growing perennial plant, with a large genome and no developed genetics tools, it is not ideal for investigations into the basic mechanisms underlying As hyperaccumulation in plants. However, like other homosporous ferns, P. vittata produces and releases abundant haploid spores from the parent sporophyte plant which upon germination develop as free-living, autotrophic haploid gametophyte consisting of a small (<1 mm) single-layered sheet of cells. Its small size, rapid growth rate, ease of culture, and haploid genome make the gametophyte a potentially ideal system for the application of both forward and reverse genetics for the study of As hyperaccumulation. Here we report that gametophytes of P. vittata hyperaccumulate As in a similar manner to that previously observed in the sporophyte. Gametophytes are able to grow normally in medium containing 20 mm arsenate and accumulate >2.5% of their dry weight as As. This contrasts with gametophytes of the related nonaccumulating fern Ceratopteris richardii, which die at even low (0.1 mm) As concentrations. Interestingly, gametophytes of the related As accumulator Pityrogramma calomelanos appear to tolerate and accumulate As to intermediate levels compared to P. vittata and C. richardii. Analysis of gametophyte populations from 40 different P. vittata sporophyte plants collected at different sites in Florida also revealed the existence of natural variability in As tolerance but not accumulation. Such observations should open the door to the application of new and powerful genetic tools for the dissection of the molecular mechanisms involved in As hyperaccumulation in P. vittata using gametophytes as an easily manipulated model system.  相似文献   

7.
Using chemical extraction to evaluate plant arsenic availability in contaminated soils is important to estimate the time frame for site cleanup during phytoremediation. It is also of great value to assess As mobility in soil and its risk in environmental contamination. In this study, four conventional chemical extraction methods (water, ammonium sulfate, ammonium phosphate, and Mehlich III) and a new root-exudate based method were used to evaluate As extractability and to correlate it with As accumulation in P. vittata growing in five As-contaminated soils under greenhouse condition. The relationship between different soil properties, and As extractability and plant As accumulation was also investigated. Arsenic extractability was 4.6%, 7.0%, 18%, 21%, and 46% for water, ammonium sulfate, organic acids, ammonium phosphate, and Mehlich III, respectively. Root exudate (organic acids) solution was suitable for assessing As bioavailability (81%) in the soils while Mehlich III (31%) overestimated the amount of As taken up by plants. Soil organic matter, P and Mg concentrations were positively correlated to plant As accumulation whereas Ca concentration was negatively correlated. Further investigation is needed on the effect of Ca and Mg on As uptake by P. vittata. Moreover, additional As contaminated soils with different properties should be tested.  相似文献   

8.
Aims The functional advantages of arsenic (As) hyperaccumulation by plants are poorly understood. One proposed benefit, termed elemental allelopathy, occurs when hyperaccumulated As is cycled from the plant back into the top layer of soil, allowing As hyperaccumulators to gain an advantage over intolerant species by increasing soil As concentrations ([ As]) underneath their canopy. To date, there are no studies that detail the presence of increased soil [ As] associated with As hyperaccumulators. In this study, we documented variation in the soil [ As] associated with the Chinese brake fern, Pteris vittata L. and also compared the effects of environmentally relevant soil and solution [ As] on competitor plant growth.Methods Four populations of P. vittata were identified in central Florida, USA. P. vittata tissue samples and soil samples were collected at the base of and at 3 m away from ferns in each population (n = 36). Five sample locations were randomly selected from each site, and soils from the base and 3 m away from each fern were collected to examine the effects of naturally occurring soil [ As] on the germination and growth of a potential competitor plant (Oxalis stricta). Solutions with increasing [ As] were also used to examine the threshold for negative effects of [ As] on O. stricta growth. [ As] were measured using inductively coupled plasma mass spectrometry (ICP-MS).Important findings Overall, soil [ As] from the base of ferns was nearly twice that of soil 3 m away indicating that ferns hyperaccumulate As. However, ferns and their associated soil, contained different [ As] depending on their collection site, indicating that these populations accumulate and use [ As] differently. O. stricta growth decreased and germination was delayed as solution and soil [ As] increased. However, the relative distance from the fern that the soil was collected from did not affect growth, which would be expected with elemental allelopathy. Our results show that P. vittata is associated with higher soil [ As] and these concentrations are sufficient to inhibit growth of competitors. However, the absence of a strong inhibitory relationship associated with proximity to the fern across all locations suggests that the possible functional advantages of elemental allelopathy may depend on site specific characteristics.  相似文献   

9.
Soil and water contaminated with arsenic (As) pose a major environmental and human health problem in Bangladesh. Phytoremediation, a plant-based technology, may provide an economically viable solution for remediating the As-polluted sites. The use of indigenous plants with a high tolerance and accumulation capacity for As may be a very convenient approach for phytoremediation. To assess the potential of native plant species for phytoremediation, plant and soil samples were collected from four As-contaminated (groundwater) districts in Bangladesh. The main criteria used for selecting plants for phytoremediation were high bioconcentration factors (BCFs) and translocation factors (TFs) of As. From the results of a screening of 49 plant species belonging to 29 families, only one species of fern (Dryopteris filix-mas), three herbs (Blumea lacera, Mikania cordata, and Ageratum conyzoides), and two shrubs (Clerodendrum trichotomum and Ricinus communis) were found to be suitable for phytoremediation. Arsenic bioconcentration and translocation factors > 1 suggest that these plants are As-tolerant accumulators with potential use in phytoextraction. Three floating plants (Eichhornia crassipes, Spirodela polyrhiza, and Azolla pinnata) and a common wetland weed (Monochoria vaginalis) also showed high BCF and TF values; therefore, these plants may be promising candidates for cleaningup As-contaminated surface water and wetland areas. The BCF of Oryza sativa, obtained from As-contaminated districts was > 1, which highlights possible food-chain transfer issues for As-contaminated areas in Bangladesh.  相似文献   

10.
Selenium (Se) is a non-metallic element, which has the capability to increase the antioxidative capacity and stress tolerance of plants to heavy metals. Plants vary considerably in their physiological response to Se. The reported research investigated the effects of Se on arsenic (As) uptake by As hyperaccumulator Pteris vittata L. and determined possible mechanisms of interaction. Pteris vittata plants were exposed hydroponically to 0, 150 or 300 microM of Na(2)HAsO(4) in the presence of 0, 5 or 10 microM of Na(2)SeO(4) for 5 or 10d. Application of 5 microM Se enhanced As concentration by P. vittata fronds by 7-45%. At 5 microM, Se acted as an antioxidant, inhibiting lipid peroxidation (reduced by 26-42% in the fronds) via increased levels of thiols and glutathione (increased by 24% in the fronds). The results suggest that Se is either an antioxidant or it activates plant protective mechanisms, thereby alleviating oxidative stress and improving arsenic uptake in P. vittata.  相似文献   

11.
The role of arsenic-resistant bacteria (ARB) in arsenic solubilization from growth media and growth enhancement of arsenic-hyperaccumulator Pteris vittata L. was examined. Seven ARB (tolerant to 10 mM arsenate) were isolated from the P. vittata rhizosphere and identified by 16S rRNA sequencing as Pseudomonas sp., Comamonas sp. and Stenotrophomonas sp. During 7-d hydroponic experiments, these bacteria effectively solubilized arsenic from the growth media spiked with insoluble FeAsO? and AlAsO? minerals (from < 5 μg L?1 to 5.04-7.37 mg L?1 As) and enhanced plant arsenic uptake (from 18.1-21.9 to 35.3-236 mg kg?1 As in the fronds). Production of (1) pyochelin-type siderophores by ARB (fluorescent under ultraviolet illumination and characterized with thin layer chromatography) and (2) root exudate (dissolved organic C) by P. vittata may be responsible for As solubilization. Increase in P. vittata root biomass from 1.5-2.2 to 3.4-4.2 g/plant dw by ARB and by arsenic was associated with arsenic-induced plant P uptake. Arsenic resistant bacteria may have potential to enhance phytoremediation of arsenic-contaminated soils by P. vittata.  相似文献   

12.
浮床植物系统对富营养化水体中氮、磷净化特征的初步研究   总被引:75,自引:0,他引:75  
以浮床空心菜(Ipomoea aquatica)、水芹(Oenanthe javanica)和无植物系统为对象,研究了其在富营养化水体中对N、P的去除及其N2O的排放情况.结果表明,浮床植物系统对水体中N、P具有良好的净化效果,植物组织所累积的N、P量分别占各自系统去除量的40.32%~63.87%,说明植物的同化吸收作用是N、P去除的主要途径.换水周期内浮床植物系统中硝化反应进行充分,而反硝化反应相对缓慢,导致系统具有较高的NH4+-N去除率,而产生NO3--N累积.植物的存在降低了系统中N2O的排放通量.生长较好的空心菜系统在换水前后平均N2O排放量最低,为17.14μgN·m-2h-1,空白高达8.08μgN·m-2h-1,水芹为37.38μg N·m-2·h-1.  相似文献   

13.
Plant species capable of hyper-accumulating heavy metals are of considerable interest for phytoremediation, and differ in their ability to accumulate metals from the environment. This work aims to examine (i) arsenic accumulation in three fern species [Chinese brake fern (Pteris vittata L.), slender brake fern (Pteris ensiformis Burm. f.), and Boston fern (Nephrolepis exaltata L.)], which were exposed to 0, 150, or 300 muM of arsenic (Na(2)HAsO(4).7H(2)O), and (ii) the role of anti-oxidative metabolism in arsenic tolerance in these fern species. Arsenic accumulation increased with an increase in arsenic concentration in the growth medium, the most being found in P. vittata fronds showing no toxicity symptoms. In addition, accumulation was highest in the fronds, followed by the rhizome, and finally the roots, in all three fern species. Thiobarbituric acid-reacting substances, indicators of stress in plants, were found to be lowest in P. vittata, which corresponds with its observed tolerance to arsenic. All three ferns responded differentially to arsenic exposure in terms of anti-oxidative defence. Higher levels of superoxide dismutase, catalase, and ascorbate peroxidase were observed in P. vittata than in P. ensiformis and N. exaltata, showing their active involvement in the arsenic detoxification mechanism. However, no significant increase was observed in either guaiacol peroxides or glutathione reductase in arsenic-treated P. vittata. Higher activity of anti-oxidative enzymes and lower thiobarbituric acid-reacting substances in arsenic-treated P. vittata correspond with its arsenic hyper-accumulation and no symptoms of toxicity.  相似文献   

14.
In vivo X-ray analysis utilizing synchrotron radiation was performed to investigate the distribution and oxidation state of arsenic in the gametophytes of two hyperaccumulators, Pteris vittata L. and Pteris cretica L., and an arsenic-accumulating fern, Athyrium yokoscense in the several growth stages from germination. The distribution of arsenic in P. vittata changed through the development of the plant tissues as follows. In two-week-old gametophyte, arsenic was mainly present along the rhizoid. In the one-month-old gametophyte with reproductive organs, arsenic was accumulating uniformly in the sheet of cells, except in the reproductive area. After fertilization, arsenic was observed in the aboveground part of the sporophyte structures. P. cretica and A. yokoscense showed different distributions, respectively. P. cretica showed an accumulation of arsenic in the reproductive area, in contrast to P. vittata, before fertilization, while arsenic was observed in the aboveground part of the sporophyte after fertilization. A. yokoscense showed an accumulation of arsenic along the rhizoids before fertilization, while it was present mainly along the roots of the sporophyte after fertilization. Reduced arsenic (As(iii)) was observed in all stages and in all tissues of P. vittata gametophytes. Further, a reduction of arsenic was commonly observed among the three ferns, although arsenic was bounded to sulfur in A. yokoscense. These findings may be related to their own reproductive process or to detoxification mechanism. They provide basic information for the understanding of arsenic hyperaccumulation in these ferns, leading to further application of these gametophyte systems.  相似文献   

15.
Pteris vittata can tolerate very high soil arsenic concentration and rapidly accumulates the metalloid in its fronds. However, its tolerance to arsenic has not been completely explored. Arbuscular mycorrhizal (AM) fungi colonize the root of most terrestrial plants, including ferns. Mycorrhizae are known to affect plant responses in many ways: improving plant nutrition, promoting plant tolerance or resistance to pathogens, drought, salinity and heavy metal stresses. It has been observed that plants growing on arsenic polluted soils are usually mycorrhizal and that AM fungi enhance arsenic tolerance in a number of plant species. The aim of the present work was to study the effects of the AM fungus Glomus mosseae on P. vittata plants treated with arsenic using a proteomic approach. Image analysis showed that 37 spots were differently affected (21 identified). Arsenic treatment affected the expression of 14 spots (12 up-regulated and 2 down-regulated), while in presence of G. mosseae modulated 3 spots (1 up-regulated and 2 down-regulated). G. mosseae, in absence of arsenic, modulated 17 spots (13 up-regulated and 4 down-regulated). Arsenic stress was observed even in an arsenic tolerant plant as P. vittata and a protective effect of AM symbiosis toward arsenic stress was observed.  相似文献   

16.
Storing spores is a promising method to conserve genetic diversity of ferns ex situ. Inappropriate water contents or damaging effects of triacylglycerol (TAG) crystallization may cause initial damage and deterioration with time in spores placed at -15 degrees C or liquid nitrogen temperatures. We used differential scanning calorimetry (DSC) to monitor enthalpy and temperature of water and TAG phase transitions within spores of five fern species: Pteris vittata, Thelypteris palustris, Dryopteris filix-mas, Polystichum aculeatum, Polystichum setiferum. The analyses suggested that these fern spores contained between 26% and 39% TAG, and were comprised of mostly oleic (P. vittata) or linoleic acid (other species) depending on species. The water contents at which water melting events were first observable ranged from 0.06 (P. vittata) to 0.12 (P. setiferum)gH(2)Og(-1)dry weight, and were highly correlated with water affinity parameters. In spores containing more than 0.09 (P. vittata) to 0.25 (P. setiferum)gH(2)Og(-1)dry weight, some water partitioned into a near pure water fraction that melted at about 0 degrees C. These sharp peaks near 0 degrees C were associated with lethal freezing treatments. The enthalpy of water melting transitions was similar in fern spores, pollen and seeds; however, the unfrozen water content was much lower in fern spores compared to other forms of germplasm. Though there is a narrow range of water contents appropriate for low temperature storage of fern spores, water content can be precisely manipulated to avoid both desiccation and freezing damage.  相似文献   

17.
云南高原湖滨带3种挺水植物对水体N的净化能力及响应   总被引:1,自引:0,他引:1  
岳海涛  田昆  张昆  黄余春  罗丽 《生态科学》2012,31(2):133-137
以云南常见湖滨带挺水植物水葱、芦苇、茭草为待试植物,通过静水培养试验,分析了3种湖滨带挺水植物在TN浓度为10~10.5mg·L-1污水中的生长特征及其与净化能力的相互关系.研究表明,植物的生长、生理反应和净化能力间有较好的相关性,水葱、茭草和芦苇的相对生长速率分别为0.0023/d、0.0012/d和0.0017/d,水葱株高增长率为茭草的1.4倍,芦苇的1.84倍,水葱的生长量为(干重)3.53g,为芦苇的1.76倍,茭草的2.22倍;对N的累积能力分别比芦苇和茭草高1.1倍和1.3倍,对氮的同化利用率显著高于芦苇和茭草.水葱、芦苇、茭草对污水氮的净化率分别为86.59%、76.32%和74.83%,对氮的吸收率分别为23.81%、8.55%、11.30%;电导率和MDA比值分别为1.136,2.214和1.413;0.962,1.629和2.06,水葱均表现出较好的净化效果和较强的抗逆性.结果表明,植物对环境的适应及功能的发挥,一方面取决于自身的生物学特性,另一方面受生长环境的影响,环境胁迫导致其生长不良,不能有效发挥其湖滨水体净化功能.  相似文献   

18.
Aiming at searching for new arsenic (As) hyperaccumulators, field surveys were conducted at 12 As-contaminated sites located in Guangxi and Guangdong Provinces of southern China. Samples of 24 fern species belonging to 16 genera and 11 families as well as their associated soils were collected and As concentrations in plant and soil samples were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The results show that among 24 fern species, Pteris multifida and P. oshimensis can (hyper)accumulate As in their fronds with high concentrations in addition to P. vittata and P. cretica var. nervosa, which have been previously identified as As hyperaccumulators. Total As concentrations in soils associated with P. multifida and P. oshimensis varied from 1262 to 47,235 mg kg(-1), but the DTPA-extractable As concentrations were relatively low, with a maximum of 65 mg kg(-1). Forty-four of 49 samples of P. multifida collected from five sites and 3 of 13 samples of P. oshimensis collected from one site accumulated over 1000 mg As kg(-1) in their fronds and As concentrations in the fronds were higher than those in the petioles and rhizoids. Although As concentrations in the fronds of P. oshimensis (789 mg kg(-1) averaged, range 301-2142 mg kg(-1)) were comparatively lower than those of P. multifida (1977 mg kg9-1), 624-4056 mg kg(-1)), its high aboveground biomass makes it more suitable for phytoremediating As-contaminated soils. Among all the species in Pteris genus studied, Pteris semipinnata accumulated only very low As concentration in its fronds (8 mg kg(-1), 1-18 mg kg(-1)). Further research is needed to study the differences in As uptake and accumulation among fern species in the same or other genera.  相似文献   

19.
Microbial immobilization of nitrogen (N) in litter from one year’s production may cause oscillations in biomass production if it delays N availability the following year. We tested whether shoot and root litter and plant density affect biomass and seed production of populations of wild rice (Zizannia palustris L.) grown in 378 l stock tank mesocosms over four consecutive years. Half the tanks were thinned to a uniform seedling density whereas density in the remaining tanks was allowed to fluctuate ad libitum. Litter treatments included both shoot litter removal, leaving only root litter, and retaining shoot litter intact with root litter. A separate greenhouse fertilizer experiment tested whether N and/or phosphorus (P) limited productivity. Responses to N additions were much stronger than to P additions. Annual production and N availability in the tanks were correlated with each other and followed a concurrent cycle from 2004 to 2008. Furthermore, production in tanks with shoot + root litter did not fluctuate more than tanks with only root litter. Root litter immobilized more nitrogen and for a longer period than shoot litter. Neither litter immobilized P. Density did not affect mean seed weight, total seed production, or mean plant weight, but total seed production declined in years following productive years and was high only following years of low litter production. Root litter may therefore be primarily responsible for the delays in N availability that cause cycles in biomass and seed production. Consequently, both wild rice litter quantity and quality play central roles in production and population dynamics of wild rice stands.  相似文献   

20.
The hyperaccumulator Pteris vittata translocates arsenic (As) from roots to fronds efficiently, but the form of As translocated in xylem and the main location of arsenate reduction have not been resolved. Here, P. vittata was exposed to 5 microM arsenate or arsenite for 1-24 h, with or without 100 microM phosphate. Arsenic speciation was determined in xylem sap, roots, fronds and nutrient solutions by high-performance liquid chromatography (HPLC) linked to inductively coupled plasma mass spectrometry (ICP-MS). The xylem sap As concentration was 18-73 times that in the nutrient solution. In both arsenate- and arsenite-treated plants, arsenite was the predominant species in the xylem sap, accounting for 93-98% of the total As. A portion of arsenate taken up by roots (30-40% of root As) was reduced to arsenite rapidly. The majority (c. 80%) of As in fronds was arsenite. Phosphate inhibited arsenate uptake, but not As translocation. More As was translocated to fronds in the arsenite-treated than in the arsenate-treated plants. There was little arsenite efflux from roots to the external solution. Roots are the main location of arsenate reduction in P. vittata. Arsenite is highly mobile in xylem transport, possibly because of efficient xylem loading, little complexation with thiols in roots, and little efflux to the external medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号