首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
殷勇  程珍凤 《生理学报》1990,42(6):534-539
电刺激大鼠颈髓背外侧束(DLF),在脊髓腰段用微电极记录到—诱发场电位,将其长时程慢电位正波称为 DLF-FP。DLF-FP 的潜伏期为7.22±1.41ms,达峰时间为15.12±5.58ms,时程为93.92±9.06ms。绘制 DLF-FP 等电位图发现:其负电场中心位于背表面下1.0—1.3mm,与外周传入诱发的场电位(P_1-FP)的起源部位基本一致。印防己毒素抑制DLF-FP,士的宁加强 DLF-FP。在一定时间范围内,先后刺激腓肠神经和 DLF,两者所诱发的场电位具有总和和抑制现象。这些结果表明 DLF-FP 是初级传入末梢去极化的反映,可能和刺激外周神经诱发的场电位共用脊髓环路。  相似文献   

2.
The effect of hypoxia and application of manganese, cobalt, and magnesium ions on electrical responses of the frog olfactory bulb to adequate stimulation and to direct electrical stimulation of the olfactory nerve were studied. The slow potential evoked by adequate stimulation and the associated inhibition of the afferent input of the olfactory bulb were found to be much more resistant to inhibition of synaptic transmission by all methods used than the postsynaptic components of the orthodromic response and associated postsynaptic inhibition. A slow potential was recorded even when synaptic transmission in the olfactory bulb was completely blocked by magnesium ions. It is concluded that the slow potential of the olfactory bulb and inhibition of its afferent input are nonsynaptic in nature. It is postulated that the slow potential reflects mainly depolarization of glial cells in the glomerular layer of the bulb evoked by accumulation of potassium ions. The possible mechanisms of inhibition of the afferent input are discussed.  相似文献   

3.
The dorsal cord and dorsal root potentials were recorded in immobilized thalamic cats during fictitious scratching evoked by mechanical stimulation of the ear. Depolarization of primary afferents was shown to be simulated by the central scratching generator. Antidromic spike discharges appeared at the peak of the primary afferent depolarization waves in certain afferent fibers. Similar discharges arise in the resting state in response to stimulation of limb mechanoreceptors. It is suggested that during real scratching primary afferent depolarization and antidromic spikes evoked by it may effectively modulate the level of the afferent flow to spinal neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 2, pp. 173–176, March–April, 1978.  相似文献   

4.
Postsynaptic potentials of 93 motoneurons of the masseter muscle evoked by stimulation of different branches of the trigeminal nerve were studied. Stimulation of the most excitable afferent fibers of the motor nerve of the masseter muscle evoked monosynaptic EPSPs with a latent period of 1.2–2.0 msec, changing into action potentials when the strength of stimulation was increased. A further increase in the strength of stimulation produced an antidromic action potential in the motoneurons with a latent period of 0.9 msec. In some motoneurons polysynaptic EPSPs and action potentials developed following stimulation of the motor nerve to the masseter muscle. The ascending phase of synaptic and antidromic action potentials was subdivided into IS and SD components, while the descending phase ended with definite depolarization and hyperpolarization after-potentials. Stimulation of cutaneous branches of the trigeminal nerve, and also of the motor nerve of the antagonist muscle (digastric) evoked IPSPs with a latent period of 2.7–3.5 msec in motoneurons of the masseter muscle. These results indicate the existence of functional connections between motoneurons of the masseter muscle and its proprioceptive afferent fibers, and also with proprioceptive afferent fibers of the antagonist muscle and cutaneous afferent fibers.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 262–268, November–December, 1969.  相似文献   

5.
A surface-negative slow wave (SW) with a latent period of 50–60 ms, an amplitude of up to 3 mV, and a duration of 0.5–1.5 sec follows the postsynaptic components in the potential of the midbrain tectum (MBT) of a curarized frog (Rana temporaria L.) evoked by electrical stimulation of the optic nerve. The SW develops as a result of the arrival of a synchronous afferent volley along amyelinic fibers; it is generated as a result of depolarization of radially oriented cellular elements; the periventricularly located parts of these structures serve as the source of the current. In the case of rhythmical stimulation, the SW is summed to a value exceeding 10 mV, while at the beginning of stimulation with a frequency of 10–40/sec, the SW is facilitated. After the injection of picrotoxin, selective sensitivity of the SW to this substance was not found. An SW also develops from direct stimulation of the MBT. Comparison of the results of recording neuronal activity shows that the SW is connected with direct afferent inhibition. It is assumed that the SW is generated by elements of the ependymoglia.A. N. Severtsov Institute of Evolutionary Animal Morphology and Ecology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 2, pp. 145–153, March–April, 1971.  相似文献   

6.
The effects of stimulation of the dorsal funiculus on dorsal surface potentials (DSPs) of the spinal cord evoked by stimulation of a peripheral nerve and on antidromic action potentials (AAPs) evoked by stimulation of terminal branches of primary afferent fibers and recorded from the afferent nerve or dorsal root, were investigated in acute experiments on spinal cats and on cats anesthetized with pentobarbital and chloralose. Stimulation of the dorsal funiculus led to biphasic inhibition of the N1-component of the DSP with maxima at the 15th–30th and 60th–80th milliseconds between the conditioning and testing stimuli. Maximal reinforcement of the AAP was found with these intervals. Bilateral division of the dorsal funiculi between the point of application of the conditioning stimuli and the point of recording the DSP abolished the first wave of inhibition of the DSP and the reinforcement of the AAP. After total transection of the cord above the site of conditioning stimulation the picture was unchanged. It is concluded that the initial changes in DSP and AAP are due to activation of the presynaptic inhibition mechanism by antidromic impulses traveling along nerve fibers running in the dorsal funiculus. Repeated inhibition of the DSP, like reinforcement of the AAP, can possibly be attributed to activation of similar inhibitory mechanisms through the propriospinal neurons of the spinal cord.Dnepropetrovsk State University. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 401–405, July–August, 1973.  相似文献   

7.
We investigated inhibition of the N1-component of the spinal cord dorsal potential (CDP) evoked by experimental stimulation of the n. peroneus in spinal cats. Stimulation was carried out following two conditioning stimuli administered at different time intervals to the same or different cutaneous nerves. The interval between the last conditioning stimulus and the experimental one remained constant (20 msec). It is demonstrated that there is no dependence between weakening of inhibitory action of the second conditioning stimulus and inhibition of the dorsal horn interneurons excited by it that generate the N1-component of the CDP. It is hypothesized that mechanisms which act on the principle of negative feedback are present in the vincinity of the synaptic junctions of cutaneous afferent fibers with neurons of the substantia gelationsa, and that these mechanisms restrict the development of presynaptic inhibition during inflow of a series of afferent impulses into the cord.Dnepropetrovsk State University. Translated from Neirofiziologia, Vol. 1, No. 3, pp. 253–261, November–December, 1969.  相似文献   

8.
In cats anesthetized with chloralose nociceptive heating of the skin of the foot to 44–60°C led to a two- to fourfold increase in amplitude of primary cortical responses to direct stimulation of neurons of the spinocervical tract receiving information from the heated area of skin, but did not affect primary responses evoked by stimulation of axons of these neurons in the dorsolateral funiculus, and actually inhibited the response to stimulation of the nerve innervating the heated area of skin. Inhibition was accompanied by depolarization of central terminal of low-threshold fibers of this nerve: During heating the amplitude of the antidromic discharges evoked in the nerve by stimulation of its presynaptic endings in the spinal cord was increased two- to threefold. After abolition of presynaptic depolarization with picrotoxin (0.2–0.7 mg/kg, intravenously) or as a result of asphyxia, nociceptive heating acquired the ability to facilitate primary responses arising as a result of stimulation of the nerve also. The amplitude of the responses was increased under these circumstances by 3–20 times. It is concluded that acute nociceptive stimulation causes such powerful presynaptic inhibition of impulse transmission from low-threshold fibers of the cutaneous nerve that it virtually abolishes the facilitating effect of nociceptive impulses on sensory neurons of the spinal cord. It is suggested that it is this inhibitory mechanism which prevents the development of hyperalgesia during acute nociceptive stimulation.Institute of General Pathology and Pathological Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 6, pp. 621–627, November–December, 1981.  相似文献   

9.
The contribution of antidromic excitation of motoneurons to cord dorsum potentials (CDP) was studied in the spinal cord of anesthetized cats. It was shown that stimulation of ventral roots (VR) or peripheral nerves following deafferentiation of a number of segments by crosscutting of dorsal roots on the dorsal surface evokes appreciable positive-negative CDP (VR-CDP). Under intact conditions, VR effects of antidromic stimulation of efferent fibers brings appreciable input to the initial "fast" CDP component (the "afferent" peak); input values for the main mixed nerves of the hindlimb are presented. After conditioning stimulation of a mixed nerve, VR-CDP undergo inhibition with two maximums, associated with blocking of the effects of antidromic excitation of efferents by orthodromic mono- and polysynaptic reflex discharges of motoneurons. The hypothesis that intactness of efferents in nerves under stimulation can be determined from an analysis of initial CDP components is stated.Scientific-Research Institute of Biology, Dnepropetrovsk State University, Dnepropetrovsk. Translated from Neirofiziologiya, Vol. 23, No. 6, pp. 655–661, November–December, 1991.  相似文献   

10.
Experiments on anesthetized spinal cats showed that ammonium acetate, injected intravenously (2–4 mmoles/kg) inhibits the depolarization of the central endings of primary afferent fibers activated by stimulation of afferent nerves. Inhibition of primary afferent depolarization is transient in character and develops parallel with depression of postsynaptic inhibition of monosynaptic reflexes. The depression produced by the action of ammonium was not due to blocking of negative postsynaptic potentials of the dorsal surface of the spinal cord or blocking of reflex electrical discharges in the ventral spinal roots. It is suggested that depression of primary afferent depolarization is due to a decrease in the emf for synaptic ion currents producing depolarization.Allergologic Research Laboratory, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 9, No. 1, pp. 52–60, January–February, 1977.  相似文献   

11.
Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory interneurons.  相似文献   

12.
Potentials evoked in nuclei of the reticular formation by electrodermal stimulation of the limbs were investigated in acute experiments on unanesthetized, immobilized rats during cooling of the somatosensory cortex in the area of representation of one forelimb. Evoked potentials in the reticular formation were found to depend on the degree of cold inhibition of the cortical primary response to the same stimulation. The peak time of the main negative wave increased from 40–50 to 60–80 msec with a simultaneous decrease in its amplitude or its total disappearance in the case of deep cooling of the cortex. Cooling of the cortex had a similar although weaker effect on the earlier wave of the evoked potential with a peak time of 14 msec, recorded in the ventral reticular nucleus. In parallel recordings of potentials evoked by stimulation of other limbs they remained unchanged at these same points of the reticular formation or were reduced in amplitude while preserving the same temporal parameters. Cooling of the cortex thus selectively delays the development and reduces the amplitude of the response to stimulation of the limb in whose area of representation transformation of the afferent signal into a corticofugal volley is blocked. Consequently the normal development of both late and early components of the potential evoked in the reticular formation by somatic stimulation requires an additional volley, descending from the cortex, and formed as a result of transformation of the same afferent signal in the corresponding point of the somatosensory cortex.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 32–38, January–February, 1981.  相似文献   

13.
K. V. Baev 《Neurophysiology》1984,16(3):271-278
This paper summarizes information obtained in the experimental study of the dynamics of polarization of central primary afferent endings and modifications of segmental responses to afferent stimuli during fictitious locomotion and fictitious scratching in immobilized, decorticated, decerebrate, and spinal cats. Fictitious locomotion was accompanied by tonic hyperpolarization, fictitious scratching by tonic depolarization of central primary afferent endings. Against the background of these long-lasting changes in primary afferent depolarization, it exhibited periodic changes in the rhythm of efferent activity. Periodic changes of depolarization were virtually in phase in different ipsilateral segments of the lumbosacral enlargement. Data on groups of afferent fibers in whose central endings tonic and phasic changes of polarization took place. The appearance of fictitious locomotion was accompanied by a tonic increase, and of fictitious scratching by tonic inhibition of several evoked segmental responses. These tonic changes were a background against which segmental responses were modulated in step with the working rhythm of the locomotion and scratching generators. Many of the changes in evoked segmental responses were shown to be based on modulation of polarization of central endings of primary afferents by locomotion and scratching generators. It is concluded that active tonic and phase-dependent selection of incoming afferent information is effected through modulation of presynaptic inhibition of the generator. The role of this selection in peripheral collection of activity of locomotion and scratching generators is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 343–353, May–June, 1984.  相似文献   

14.
The possibility and degree of recovery of motor and sensory functions in cats were studied after one-stage or two-stage bilateral division of the posterior columns and spinocervical tracts at the cervical level. Blocking the afferent inflow along these systems led to severe and prolonged disturbances of sensation and motor activity and was accompanied by a sharp decrease in nociceptive sensation. Weak (6–8 V) electrical stimulation of the skin of the limbs, which evoked a primary response of maximal amplitude in intact waking animals, evoked no electrical response in the somatosensory cortex of the chordotomized animals. However, on increasing the intensity of stimulation by 2, 3, or more times, low-amplitude negative waves with a spike latency of about 15 msec, together with slow late waves, were recorded in foci of maximal activity of the cortex. Recovery of motor activity and, to some extent, of proprioception was observed 2–4 months after injury; responses to tactile stimulation were not restored. In the course of compensatory reconstruction evoked activity in the somatosensory cortex did not recover. It is concluded that the recovery of motor activity in cats after injury to the afferent systems of the spinal cord can take place despite a considerable defect of somatic sensation.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 3, pp. 281–288, May–June, 1973.  相似文献   

15.
Studies have been made on the parameters cord dorsum potentials (CDP) during stimulation of sensorimotor cortex in rats during first month of their postnatal life. First CDP were recorded from the 10th day, their latency being equal to about 80 msec, amplitude--65-70 microV, duration--more than 200 msec. During postnatal life of rats, the latent period decreases twice, the amplitude increases more than 3-fold, whereas the duration remains almost unchanged. These data indicate maturation of the descending pathways to the spinal cord, the increase in the propagation rate along these pathways and formation of segmentary mechanisms responsible for the generation of CDP. The effect of stimulation of the sensorimotor cortex on depolarization of primary afferent was also investigated. It was found that from the 2nd week of postnatal, life, formation of supraspinal control of afferent impulsation takes place.  相似文献   

16.
Summary Intracellular recordings were obtained from the hair cells and afferent neurones of the angular acceleration receptor system of the statocyst of the squid,Alloteuthis subulata. Electrical stimulation of the efferent fibres in the crista nerve (minor) evoked responses in all of the secondary hair cells recorded from (n=211). 48% of the secondary air cells responded with a small depolarization, 15% with a hyperpolarization, and 37% with a depolarization followed by a hyperpolarization. The depolarizations and hyperpolarizations had mean stimulus to response delays of 6.7 ms and 24 ms, and reversal potentials of about –1 mV and –64 mV, respectively. Both types of potential increased in amplitude, up to a point, when the stimulus shock was increased and facilitation and/or summation effects could be obtained by applying multiple shocks. These data, together with the fact that both responses could be blocked by bath application of cobalt or cadmium, indicate that the secondary hair cells receive both inhibitory and excitatory efferent inputs and that these are probably mediated via chemical synapses. No efferent responses were seen in the primary hair cells but both depolarizing and hyperpolarizing efferent responses were obtained from the afferent neurones.  相似文献   

17.
In cats, we studied the influences of stimulation of the periaqueductal gray (PAG) and locus coeruleus (LC) on postsynaptic processes evoked in neurons of the somatosensory cortex by stimulation of nociceptive (intensive stimulation of the tooth pulp) and non-nociceptive (moderate stimulations of the infraorbital nerve and ventroposteromedial nucleus of the thalamus) afferent inputs. Twelve cells activated exclusively by nociceptors and 16 cells activated by both nociceptive and non-nociceptive influences (hereafter, nociceptive and convergent neurons, respectively) were recorded intracellularly. In neurons of both groups, responses to nociceptive stimulation (of sufficient intensity) looked like an EPSP-spike-IPSP (the latter, of significant duration, up to 200 msec) complex. Electrical stimulation of the PAG (which could itself evoke activation of the cortical neurons under study) resulted in long-term suppression of synaptic responses evoked by excitation of nociceptors (inhibition reached its maximum at a test interval of 600 to 800 msec). We observed a certain parallelism between conditioning influences of PAG activation and effects of systemic injections of morphine. Isolated stimulation of LC by a short high-frequency train of stimuli evoked primary excitatory responses (complex EPSPs) in a part of the examined cortical neurons, while in other cells high-amplitude and long-lasting IPSP (up to 120 msec) were observed. Independently of the type of the primary response to PAG stimulation, the latter resulted in long-term (several seconds) suppression of the responses evoked in cortical cells by stimulation of the nociceptive inputs. The mechanisms of modulatory influences coming from opioidergic and noradrenergic brain systems to somatosensory cortex neurons activated due to excitation of high-threshold (nociceptive) afferent inputs are discussed.Neirofiziologiya/Neurophysiology, Vol. 37, No. 1, pp. 61–73, January–February, 2005.  相似文献   

18.
When somatosensory input via electrical stimulation of a peripheral nerve precedes a transcranial magnetic stimulation (TMS) pulse over the primary motor cortex (M1) the corticospinal output is substantially reduced, a phenomenon known as short-latency afferent inhibition (SAI). The present study investigated SAI during rest and during pre-movement, phasic and tonic components of movement. Participants were required to perform an index finger flexion reaction time task in response to an auditory cue. In a series of experiments, SAI was evoked from the mixed, median nerve at the wrist or the cutaneous, digital nerve stimulation of the index finger. To assess the spinal versus cortical origin of movement-related modulation of SAI, F-wave amplitudes were measured during rest and the three movement components. Results indicated that SAI was reduced during all movement components compared to rest, an effect that occurred for both nerves stimulated. Pre-movement SAI reduction was primarily attributed to reduced cortical inhibition, while increased spinal excitability additionally contributed to reduced SAI during tonic and phasic components of movement. SAI was differentially modulated across movement components with mixed but not cutaneous nerve stimulation. These findings reveal that SAI is reduced during movement and this reduction begins as early as the preparation to move. Further, these data suggest that the degree of SAI reduction during movement may be specific to the volume and/or composition of afferent input carried by each nerve.  相似文献   

19.
Field potentials evoked in the graunular layer of the cerebellar paramedian lobule of unanesthetized cats in response to stimulation of the sensomotor cortex and limb nerves contained slow negative waves, appearing after a long latent period, which were generated by granule cells. In the case of nerve stimulation this component was recorded both inside and outside the projection zone of the corresponding limb. Cortical stimulation by single stimuli or series of stimuli not more than 1.8–2.5 times above threshold strength led to the appearance of evoked potentials only inside the corresponding projection zone. The long-latency component of field potentials evoked by cerebral stimulation followed high frequencies of repetitive stimulation and was less sensitive to the action of barbital anesthesia than the analogous component of potentials evoked by nerve stimulation. In the case of combined cerebral and nerve stimulation the long-latency components underwent summation. It is concluded that mossy fibers of slowly-conducting spino- and cerebrocerebellar tracts innervate different granule cells in the cerebellar cortex.Institute of Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 379–385, July–August, 1982.  相似文献   

20.
Responses of 375 primary somatosensory cortical neurons located in the projection area of the vibrissae to electrical stimulation of the infraorbital nerve and also to adequate stimulation of the vibrissae were investigated in unanesthetized cats immobilized with tubocurarine. Stimulation of the nerve and vibrissae most frequently evoked synaptic responses in the neurons, in the form of a short EPSP followed by an IPSP or, less frequently, as a primary IPSP; during extracellular recordings corresponding changes were observed in spike activity. In response to stimulation of the vibrissae, initial inhibition was found more often than to stimulation of the nerve (in 45 and 16% of neurons respectively). The difference between the minimal values of latent periods of IPSP and EPSP evoked by stimulation of the infraorbital nerve was 0.8 msec in different neurons, and the difference between the mean values 1.4 msec. Directional sensitivity of the cortical neurons was demonstrated (to a change in the direction of deflection of the vibrissae). Neurons located close together could differ in the character of their directional sensitivity during stimulation of the same vibrissae. It is concluded that short-latency inhibition arising in the primary projection area of the cat somatosensory cortex is predominantly afferent and not recurrent. The probable mechanisms of directional sensitivity of the neurons studied are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSSR, Kiev. Translated from Neirofiziologia, Vol. 11, No. 6, pp. 550–559, November, 1979.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号