首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Vesicular monoamine transporter-2 (VMAT2) is a viable target for development of pharmacotherapies for psychostimulant abuse. Lobeline (1) is a potent antagonist at α4β21 nicotinic acetylcholine receptors, has moderate affinity (Ki = 5.46 μM) for VMAT2, and is being investigated currently as a clinical candidate for treatment of psychostimulant abuse. A series of carboxylic acid and sulfonic acid ester analogs 220 of lobeline were synthesized and evaluated for interaction with α4β21 and α71 neuronal nicotinic acetylcholine receptors (nAChRs), the dopamine transporter (DAT), serotonin transporter (SERT) and VMAT2. Both carboxylic acid and sulfonic acid esters had low affinity at α71 nAChRs. Similar to lobeline (Ki = 4 nM), sulfonic acid esters had high affinity at α4β21 (Ki = 5–17 nM). Aromatic carboxylic acid ester analogs of lobeline (24) were 100–1000-fold less potent than lobeline at α4β21 nAChRs, whereas aliphatic carboxylic acid ester analogs were 10–100-fold less potent than lobeline at α4β21. Two representative lobeline esters, the 10-O-benzoate (2) and the 10-O-benzenesulfonate (10) were evaluated in the 36Rb+ efflux assay using rat thalamic synaptosomes, and were shown to be antagonists with IC50 values of 0.85 μM and 1.60 μM, respectively. Both carboxylic and sulfonic acid esters exhibited a range of potencies (equipotent to 13–45-fold greater potency compared to lobeline) for inhibiting DAT and SERT, respectively, and like lobeline, had moderate affinity (Ki = 1.98–10.8 μM) for VMAT2. One of the more interesting analogs, p-methoxybenzoic acid ester 4, had low affinity at α4β21 nAChRs (Ki = 19.3 μM) and was equipotent with lobeline, at VMAT2 (Ki = 2.98 μM), exhibiting a 6.5-fold selectivity for VMAT2 over α4β2 nAChRs. Thus, esterification of the lobeline molecule may be a useful structural modification for the development of lobeline analogs with improved selectivity at VMAT2.  相似文献   

2.
We previously showed that fluorination of the carborane-containing selective estrogen receptor modulator (SERM) BE360 altered the agonist/antagonist activity balance and the estrogen receptor (ER) α/β subtype selectivity. Here, we designed and synthesized a series of fluorinated carboranyl phenols as candidate ERβ-selective ligands. Introduction of a fluorine atom onto the carborane cage commonly reduced the binding affinity for ERα, to an extent that depended on the other substituents present. The B-fluorinated m-carboranyl phenol 4a showed fourfold more potent ERβ-binding affinity than the parent non-fluorinated compound 7. 1-Iodo-9-fluoro-m-carboranyl phenol 4f showed high ERβ-binding affinity with an ERβ/ERα selectivity ratio of 8.2. Among the compounds tested, 6 showed the highest ERβ selectivity (10.1-fold) and the highest ER-agonistic activity (EC50: 5.1 × 10?10 M) in MCF-7 cell proliferation assay.  相似文献   

3.
A group of novel tricyclic Δ2-isoxazolines (4b, 5b, 7ab, and 8ab) and 3-oxo-isoxazolidines (6ab and 9ab), structurally related to cytisine or norferruginine, was prepared through 1,3-dipolar cycloadditions involving suitable olefins and bromonitrile oxide. The target compounds were assayed at α4β2 and α7 neuronal acetylcholine receptors (nAChRs). The results of competition binding experiments indicated for the new derivatives a reduction of the affinity at the α4β2 subtype in comparison with the reference molecules, coupled with an overall negligible affinity at the α7 subtype. The binding mode of the bromo-Δ2-isoxazolines 4b and 7b, which were the highest affinity ligands in the series (Ki = 0.92 and 0.75 μM, respectively), was analyzed by applying a recently developed model of the α4β2 nAChRs.  相似文献   

4.
Early studies led to the identification of 3β-(4-methoxyphenyl)tropane-2β-carboxylic acid methyl ester (5) with high affinity at the DAT (IC50 = 6.5 nM) and 5-HTT (Ki = 4.3 nM), while having much less affinity at the NET (Ki = 1110 nM). In the present study, we replaced the 4′-methoxy group of the 3β-phenyl ring with a bioisosteric 4′-methylthio group to give 7a. We also synthesized a number of 3β-(4-alkylthiophenyl)tropanes 7be, 3β-(4-methylsulfinylphenyl) and 3β-(4-methylsulfonylphenyl)tropane analogues 7fh as well as the 3β-(4-alkylthiophenyl)nortropane derivatives 811 to further characterize the structure–activity relationship of this type of compound for binding at monoamine transporters. With exception of the 4′-methylsulfonyl analogue 7h, all the tested compounds possessed high binding affinities at the 5-HTT. The Ki values ranged from 0.19 nM to 49 nM. The 3β-(4-methylthiophenyl)tropane 7a and its N-(3-fluoropropyl) analogue 9a and N-allyl analogue 10a are the most selective compounds for the 5-HTT over the NET (NET/5-HTT = 314–364) in the series. However, none of the compounds showed selectivity similar to 5 for both the DAT and 5-HTT relative to the NET. This study provided useful SAR information for rational design of potent and selective monoamine transporter inhibitors.  相似文献   

5.
The synthesis and in vitro preclinical profile of a series of 5-heteroaryl substituted analogs of the antipsychotic drug sertindole are presented. Compounds 1-(4-fluorophenyl)-3-(1-methylpiperidin-4-yl)-5-(pyrimidin-5-yl)-1H-indole (Lu AA27122, 3i) and 1-(4-fluorophenyl)-5-(1-methyl-1H-1,2,4-triazol-3-yl)-3-(1-methylpiperidin-4-yl)-1H-indole (3l) were identified as high affinity α1A-adrenoceptor ligands with Ki values of 0.52 and 0.16 nM, respectively, and with a >100-fold selectivity versus dopamine D2 receptors. Compound 3i showed almost equal affinity for α1B- (Ki = 1.9 nM) and α1D-adrenoceptors (Ki = 2.5 nM) as for α1A, as well as moderate affinity for 5-HT1B (Ki = 13 nM) and 5-HT6 (Ki = 16 nM) receptors, whereas 3l showed >40-fold selectivity toward all other targets tested. Based on in vitro assays for assessment of permeability rates and extent, it is predicted that both compounds enter the brain of rats, non-human primates, as well as humans, and as such are good candidates to be carried forward for further evaluation as positron emission tomography (PET) ligands.  相似文献   

6.
A series of N-(2-methoxyphenyl)homopiperazine analogs was prepared and their affinities for dopamine D2, D3, and D4 receptors were measured using competitive radioligand binding assays. Several ligands exhibited high binding affinity and selectivity for the D3 dopamine receptor compared to the D2 receptor subtype. Compounds 11a, 11b, 11c, 11f, 11j and 11k had Ki values ranging from 0.7 to 3.9 nM for the D3 receptor with 30- to 170-fold selectivity for the D3 versus D2 receptor. Calculated log P values (log P = 2.6–3.6) are within the desired range for passive transport across the blood–brain barrier. When the binding and the intrinsic efficacy of these phenylhomopiperazines was compared to those of previously published phenylpiperazine analogues, it was found that (a) affinity at D2 and D3 dopamine receptors generally decreased, (b) the D3 receptor binding selectivity (D2:D3 Ki value ratio) decreased and, (c) the intrinsic efficacy, measured using a forskolin-dependent adenylyl cyclase inhibition assay, generally increased.  相似文献   

7.
Megastigmane glycosides (15) together with seven (612) related known compounds were isolated from the whole plants of Gynostemma pentaphyllum. The structures were elucidated by means of spectroscopic methods, including 2D NMR, HR-ESIMS, and circular dichroism (CD), as well as chemical transformations to be (3R, 4R, 5S, 6S, 7E)-3,4,6-trihydroxymegastigmane-7-en-9-one-3-O-β-d-glucopyranoside (gynostemoside A, 1), (3S, 4S, 5R, 6R, 7E, 9R)-3,4,6,9-tetrahydroxymegastigmane-7-en-3-O-β-d-glucopyranoside (gynostemoside B, 2), (3S, 4S, 5S, 6S, 7E, 9R)-3,4,9-trihydroxymegastigmane-7-en-9-O-β-d-glucopyranoside (gynostemoside C, 3), (3S, 4S, 5S, 6S, 7E, 9R)-3,4,9-trihydroxymegastigmane-7-en-3-O-β-d-glucopyranoside (gynostemoside D, 4), and (3S, 4S, 5S, 6S, 7E, 9R)-3,4,9-trihydroxymegastigmane-7-en-4-O-β-d-glucopyranoside (gynostemoside E, 5), respectively.  相似文献   

8.
Cannabinoid CB-1 receptors have been the focus of extensive studies since the first clinical results of rimonabant (SR141716) for the treatment of obesity and obesity-related metabolic disorders were reported in 2001. To further evaluate the properties of CB receptors, we have designed and efficiently prepared a series of oxadiazole-diarylpyrazole 4-carboxamides. Six of the new compounds which displayed high in vitro CB1 binding affinities were assayed for binding to CB2 receptor. Noticeably, 5-(4-bromophenyl)-3-(5-tert-butyl-1,3,4-oxadiazol-2-yl)-1-(2,4-dichlorophenyl)-N-phenyl-1H-pyrazole-4-carboxamide (12q) and 5-(4-bromophenyl)-3-(5-tert-butyl-1,3,4-oxadiazol-2-yl)-1-(2,4-dichlorophenyl)-N-(pyridin-2-yl)-1H-pyrazole-4-carboxamide (12r) demonstrated good binding affinity and decent selectivity for CB1 receptor (IC50 = 1.35 nM, CB2/CB1 = 286 for 12q; IC50 = 1.46 nM, CB2/CB1 = 256 for 12r).  相似文献   

9.
Cannabinoid CB1 receptors have been the avenue of extensive studies since the first clinical results of rimonabant (SR141716) for the treatment of obesity and obesity-related metabolic disorders were reported in 2001. To further evaluate the properties of CB receptors, we have designed and efficiently prepared a series of substituted pyrimidines based on chemical structure of Merck’s taranabant, a cannabinoid CB1 receptor inverse agonist. Noticeably, N4-((2S,3S)-3-(3-bromophenyl)-4-(4-chlorophenyl)butan-2-yl)-N6-butylpyrimidine-4,6-diamine (13b) demonstrated good binding affinity and decent selectivity for CB1 receptor (IC50 = 16.3 nM, CB2/CB1 = 181.6).  相似文献   

10.
The structurally related peptides neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP) are endogenous agonists of the NPY receptor (YR) family, which in humans comprises four functionally expressed subtypes, designated Y1R, Y2R, Y4R and Y5R. Nonpeptide antagonists with high affinity and selectivity have been described for the Y1R, Y2R and Y5R, but such compounds are still lacking for the Y4R. In this work, the structures of the high affinity selective (R)-argininamide-type Y1R antagonists BIBP3226 and BIBO3304 were linked via the guanidine or urea moieties to give homo-dimeric argininamides with linker lengths ranging from 31 to 41 atoms. Interestingly, the twin compounds proved to be by far less selective for the Y1R than the R-configured monovalent parent compounds. The decrease in selectivity ratio was most pronounced for Y1R versus Y4R subtype, resulting in comparable affinities of bivalent ligands for Y1R and Y4R (e.g. UR-MK177 ((R,R)-49): Ki = 230 nM (Y1R) and 290 nM (Y4R)). With a Ki value of 130 nM and a Kb value of 20 nM, UR-MK188 ((R,R)-51) was superior to all Y4R antagonists known to date. The S,S-configured optical antipodes of UR-MK177 and UR-MK188 (UR-MEK381 ((S,S)-49) and UR-MEK388 ((S,S)-51)) were synthesized to investigate the stereochemical discrimination by the different receptor subtypes. Whereas preference for R,R-configured argininamides was characteristic of the Y1R, stereochemical discrimination by the Y4R was not observed. This may pave the way to selective Y4R antagonists.  相似文献   

11.
Thirty-six naturally occurring compounds, including four C10-acetylenic glycosides and a lignan, were isolated from the whole plants of Saussurea cordifolia. Their structures were elucidated by means of spectroscopic and chemical methods to be 4,6-decadiyne-1-O-β-d-apiofuranosyl-(1  6)-β-d-glucopyranoside (1), 4,6-decadiyne-1-O-α-l-rhamnopyranosyl-(1  6)-β-d-glucopyranoside (2), (8E)-decaene-4, 6-diyn-1-O-α-l-rhamnopyranosyl-(1  6)-β-d-glucopyranoside (3), (8Z)-decaene-4,6-diyn-1-O-β-d-apiofuranosyl-(1  6)-β-d-glucopyranoside (4), and (2R, 3S, 4S)-4-(4-hydroxy-3-methoxybenzyl)-2-(5-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-tetrahydrofuran-3-ol (5).  相似文献   

12.
Syntheses, biological evaluation, and structure–activity relationships for a series of novel 5-styryl and 5-phenethyl analogs of dimebolin are disclosed. The novel derivatives and dimebolin share a broad spectrum of activities against therapeutically relevant targets. Among all synthesized derivatives, 2,8-dimethyl-5-[(Z)-2-phenylvinyl]-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole and its 5-phenethyl analog are the most potent blockers of 5-HT7, 5-HT6, 5-HT2C, Adrenergic α2 and H1 receptors. The general affinity rank order towards the studied receptors was Z-3(2) > 4(2) ? 4(3) ? dimebolin, all of them having highest affinities to 5-HT7 receptors.  相似文献   

13.
3,7-Diazabicyclo[3.3.1]nonane (bispidine) based nicotinic acetylcholine receptor (nAChR) ligands have been synthesized and evaluated for nAChRs interaction. Diverse spacer motifs were incorporated between the hydrogen bond acceptor (HBA) part and a variety of substituted (hetero)aryl moieties. Bispidine carboxamides bearing spacer motifs often showed high affinity in the low nanomolar range and selectivity for the α4β21 nAChR. Compounds 15, 25, and 47 with Ki values of about 1 nM displayed the highest affinities for α4β21 nAChR. All evaluated compounds are partial agonists or antagonists at α4β21, with reduced or no effects on α3β41 with the exception of compound 15 (agonist), and reduced or no effect at α7 and muscle subtypes.  相似文献   

14.
A convergent strategy was followed to modify systematically carbazole based CB2 receptor ligands. The length of the N-(fluoroalkyl) group (n in 7), the length of the alkanamide (m in 7) and the substitution pattern of the phenyl moiety (X and Y in 7) were varied systematically. The highest CB2 affinity was found for the 2-fluoroethyl substituted carbazole derivative 20a (Ki = 5.8 nM) containing the propionamide and the 2-bromo-4-fluorophenyl moiety. According to docking studies 20a fits nicely into the binding pocket of the CB2 receptor, but elongation of the fluoroethyl side chain leads to a different binding mode of the ligands. The high CB2 affinity together with the high selectivity over the CB2 subtype qualifies the fluoroethyl derivative 20a to be developed as a PET tracer.  相似文献   

15.
Cannabinoid CB-1 receptors have been the focus of extensive studies since the first clinical results of rimonabant (SR141716) for the treatment of obesity and obesity-related metabolic disorders were reported in 2001. To further evaluate the properties of CB receptors, we have designed and efficiently prepared a series of pentacycle derivatives. Five of the new compounds which displayed high in vitro rCB1 binding affinities were assayed for binding to hCB2 receptor. Noticeably, 2-(5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-4-(5-methyl-1,3,4-thiadiazol-2-yl)-1H-pyrazol-3-yl)-5-(1-(trifluoromethyl)cyclopropyl)-1,3,4-oxadiazole (16l) demonstrated good binding affinity and decent selectivity for rCB1 receptor (IC50 = 1.72 nM, hCB2/rCB1 = 142).  相似文献   

16.
A new dihydrochalcone, 2‘,4‘-dihydroxy-3‘-methoxy-3,4-methylenedioxy-8-hydroxymethylene dihydrochalcone 1 and two new steroidal saponins, (25S)-ruscogenin-1-O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside 2, (25S)-ruscogenin-3-O-α-l-rhamnopyranosyl-(1  4)-β-d-glucopyranoside 3, together with three known steroidal saponins (25S)-ruscogenin-3-O-β-d-glucopyranoside 4, (25S)-ruscogenin-1-O-α-l-rhamnopyranosyl-(1  2)-[β-d-xylopyranosyl-(1  3)]-α-l-arabinopyranoside 5 and (25R)-26-O-β-d-glucopyranosyl-furost-5-ene-1β,3β,22α,26-tetrol-1-O-α-L-rhamnopyranosyl-(1  2)-[β-d-xylopyranosyl-(1  3)]-α-l-arabinopyranoside 6 were isolated from the aerial parts of Sansevieria cylindrica. The structures of the new compounds were established by UV, IR, EI-MS, HR-ESI–MS as well as 1D (1H,13C and DEPT-135) and 2D (HSQC, HMBC and TOCSY) NMR spectral analysis. The isolated compounds 1-6 were assayed for in vitro cytotoxicities against the three human tumor cell lines HT116, MCF7 and HepG2. Compound 1 showed a moderate cytotoxicity against MCF7. Compounds 2, 3 and 6 exhibited moderate cytotoxicities against the three used cell lines and compound 5 showed marked cytotoxicities against all used cell lines.  相似文献   

17.
Homology models of nicotinic acetylcholine receptors (nAChRs) suggest that subtype specificity is due to non-conserved residues in the complementary subunit of the ligand-binding pocket. Cytisine and its derivatives generally show a strong preference for heteromeric α4β21 nAChRs over the homomeric α7 subtype, and the structural modifications studied do not cause large changes in their nAChR subtype selectivity. In the present work we docked cytisine, N-methylcytisine, and several pyridone ring-substituted cytisinoids into the crystallographic structure of the Lymnaea stagnalis acetylcholine binding protein (AChBP) co-crystallized with nicotine (1UW6). The graphical analysis of the best poses showed that cytisinoids have weak interactions with the side chains of the non-conserved amino acids in the complementary subunit justifying the use of PDB 1UWB as a surrogate for nAChR. Furthermore, we found a high correlation (R2 = 0.96) between the experimental pIC50 values at α4β21 nAChR and docking energy (S) of the best cytisinoid poses within the AChBP. Due to the quality of the correlation we suggest that this equation might be used as a predictive model to propose new cytisine-derived nAChRs ligands. Our docking results also suggest that further structural modifications of these cytisinoids will not greatly alter their α4β21/α7 selectivity.  相似文献   

18.
The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki = 0.06 μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs.  相似文献   

19.
Taking advantage of click chemistry, a library of N-arylpiperazinylmethyl triazoles bearing fluoro substituted appendages was synthesized and the target compounds were investigated for dopamine and serotonin receptor binding. With the aim to bias their hydrophilicity and to optimize their D4 receptor affinity and selectivity, a concise series of triazoles containing fluoroalkyl, fluoroalkoxy, fluoroalkoxyphenyl, and deoxyfluoroglucosyl substituents was studied. The D4 receptor affinity and selectivity could be tuned by altering the chemical moiety attached to the triazole unit. Among the test compounds, the fluoroethoxyphenyl derivative 15b showed weak partial agonism at D4 and a Ki value of 14 nM, while its fluoropropoxyphenyl homologue 16a turned out to act as a neutral D4 antagonist (Ki = 5.1 nM). Both, 15b and 16a revealed an excellent balance between D4 receptor affinity and subtype selectivity, providing lead candidates for the development of 18F-labeled radioligands for D4 receptor imaging studies by positron emission tomography (PET).  相似文献   

20.
A series of 3-arylnortrop-2-enes and 3α-arylmethoxy-3β-arylnortropanes were synthesized and evaluated for binding affinity at monoamine transporters. The 3-(3,4-dichlorophenyl)nortrop-2-ene (6e) exhibited high affinity for the SERT (Ki = 0.3 nM). The 3α-arylmethoxy-3β-arylnortropanes were generally SERT selective with the 3α-(3.4-dichlorophenylmethoxy)-3βphenylnortrop-2-ene (7c) possessing subnanomolar potency (Ki = 0.061 nM). However, 3α-(3,4-dichlorophenylmethoxy)-3β-phenylnortrop-2-ene (7b) exhibited high affinity at all three transporters [(DAT Ki = 22 nM), (SERT Ki = 6 nM) and (NET Ki = 101 nM)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号