首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the discovery of phenoxymethylbenzamide derivatives as a novel class of glycine transporter type-2 (GlyT-2) inhibitors. We found hit compound 1 (human GlyT-2, IC50 = 4040 nM) in our library and converted its 1-(1-(naphthalen-2-ylmethyl)piperidin-4-yl)pyrrolidin-3-yl group to an 1-(N,N-dimethylaminopropyl)piperidyl group and its tert-butyl group to a trifluoromethyl group to obtain N-(1-(3-(dimethylamino)propyl)piperidin-4-yl)-4-((4-(trifluoromethyl)phenoxy)methyl)benzamide (20). Compound 20 showed good inhibitory activity against human GlyT-2 (IC50 = 15.3 nM) and exhibited anti-allodynia effects in a mouse neuropathic pain model.  相似文献   

2.
A novel class of potent CCR3 receptor antagonists were designed and synthesized starting from N-{1-[(6-fluoro-2-naphthyl)methyl]piperidin-4-yl}benzamide (1),which was found by subjecting our chemical library to high throughput screening (HTS). The CCR3 inhibitory activity of the synthesized compounds against eotaxin-induced Ca(2+) influx was evaluated using CCR3-expressing preB cells. Systematic chemical modifications of 1 revealed that the 6-fluoro-2-naphthylmethyl moiety was essential for CCR3 inhibitory activity in this new series of CCR3 antagonists. Further structural modifications of the benzamide and piperidine moieties of 1 led to the identification of exo-N-{8-[(6-fluoro-2-naphthyl)methyl]-8-azabicyclo[3.2.1]oct-3- yl}biphenyl-2-carboxamide [corrected] (31) as a potent CCR3 antagonist with an IC(50) value of 0.020 microM.  相似文献   

3.
To develop PET tracers for imaging of neuroinflammation, new carbon-11-labeled sEH/PDE4 dual inhibitors have been synthesized. The reference standard N-(4-methoxy-2-(trifluoromethyl)benzyl)benzamide (1) and its corresponding desmethylated precursor N-(4-hydroxy-2-(trifluoromethyl)benzyl)benzamide (2) were synthesized from (4-methoxy-2-(trifluoromethyl)phenyl)methanamine and benzoic acid in one and two steps with 84% and 49% overall chemical yield, respectively. The standard N-(4-methoxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide (MPPA, 4) and its precursor N-(4-hydroxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide (5) were synthesized from methyl 4-piperidinecarboxylate, propionyl chloride and (4-methoxy-2-(trifluoromethyl)phenyl)methanamine in two and three steps with 62% and 34% overall chemical yield, respectively. The target tracers N-(4-[11C]methoxy-2-(trifluoromethyl)benzyl)benzamide ([11C]1) and N-(4-[11C]methoxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide ([11C]MPPA, [11C]4) were prepared from their corresponding precursors 2 and 5 with [11C]CH3OTf through O-[11C]methylation and isolated by HPLC combined with SPE in 25–35% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (AM) at EOB was 370–740 GBq/μmol with a total synthesis time of 35–40-minutes from EOB.  相似文献   

4.
A series of indole, 7-azaindole, benzofuran, and benzothiophene compounds have been prepared and evaluated for affinity at D2-like dopamine receptors. These compounds share structural elements with the classical D2-like dopamine receptor antagonists haloperidol, N-methylspiperone and benperidol. Two new compounds, 4-(4-iodophenyl)-1-((4-methoxy-1H-indol-3-yl)methyl)piperidin-4-ol (6) and 4-(4-iodophenyl)-1-((5-methoxy-1H-indol-3-yl)methyl)piperidin-4-ol (7), were found to have high affinity to and selectivity for D2 versus D3 receptors. Changing the aromatic ring system from an indole to other heteroaromatic ring systems reduced the D2 binding affinity and the D2 versus D3 selectivity.  相似文献   

5.
The chemokine CC receptor subtype 2 (CCR2) has attracted intensive interest for drug development in diverse therapeutic areas, including chronic inflammatory diseases, diabetes, neuropathic pain, atherogenesis and cancer. By employing a cut-and-sew scaffold hopping strategy, we identified an active scaffold of 3,4-dihydro-2,6-naphthyridin-1(2H)-one as the central pharmacophore to derive novel CCR2 antagonists. Systematic structure–activity relationship study with respect to the ring size and the substitution on the naphthyridinone ring gave birth to 1-arylamino-6-alkylheterocycle-6,7,8,9-tetrahydro-5H-pyrido[4,3-c]azepin-5-ones as a brand new chemotype of CCR2 antagonists with nanomolar inhibitory activity. The best antagonism activity in this series was exemplified by compound 13a, which combined the optimal substitutions of 3,4-dichlorophenylamino at C-1 and 3-(4-(N-methylmethylsulfonamido)piperidin-1-yl)propyl at N-6 position, leading to an IC50 value of 61?nM and 10-fold selectivity for CCR2 over CCR5. Efficient and general synthesis was established to construct the innovative core structure and derive the compound collections. This is the first report on our designed 6,7,8,9-tetrahydro-5H-pyrido[4,3-c]azepin-5-one as novel CCR2 antagonist scaffold and its synthesis.  相似文献   

6.
Direct anti-tuberculosis screening of commercially available compound libraries identified a novel piperidinol with interesting anti-tuberculosis activity and drug like characteristics. To generate a structure activity relationship about this hit a 22 member optimization library was generated using parallel synthesis. Products of this library 1-((R)-3-(4-chlorophenoxy)-2-hydroxypropyl)-4-(4-chloro-3-(trifluoromethyl) phenyl)piperidin-4-ol and 1-((S)-3-(4-(trifluoromethyl) phenoxy)-2-hydroxypropyl)-4-(4-chloro-3-(trifluoromethyl) phenyl) piperidin-4-ol demonstrated good anti-tuberculosis activity. Unfortunately, side effects were observed upon in vivo anti-tuberculosis testing of these compounds precluding their further advancement, which may be in part due to the secondary pharmacology associated with the aryl piperidinol core.  相似文献   

7.
We report the discovery of a potent, selective, and orally bioavailable dual CCR2 and CCR5 antagonist (3S,4S)-N-[(1R,3S)-3-isopropyl-3-({4-[4-(trifluoromethyl)pyridin-2-yl]piperazin-1-yl}carbonyl)cyclopentyl]-3-methoxytetrahydro-2H-pyran-4-amine (19). After evaluation in 28-day toxicology studies, compound 19 (INCB10820/PF-4178903) was selected as a clinical candidate.  相似文献   

8.
A new series of transient receptor potential vanilloid type 1 (TRPV1) antagonists were designed and synthesized from N-(3-hydroxyphenyl)-2-(piperidin-1-ylmethyl)biphenyl-4-carboxamide hydrochloride (8). SAR studies identified (R)-N-(1-methyl-2-oxo-1,2,3,4-tetrahydro-7-quinolyl)-2-[(2-methylpyrrolidin-1-yl)methyl]biphenyl-4-carboxamide hydrochloride (ASP8370, 7), as a compound with high aqueous solubility, satisfactory stability in human liver microsomes, and reduced CYP3A4 inhibition. ASP8370 was selected as a clinical development candidate with significant ameliorative effects on neuropathic pain. SAR studies also revealed the structural mechanisms underlying the switching between TRPV1 antagonism and agonism.  相似文献   

9.
Several indole derivatives, that were highly potent ligands of GluN2B-subunit-containing N-methyl-d-aspartate (NMDA) receptor, also demonstrated antioxidant properties in ABTS method. In particular, the 2-(4-benzylpiperidin-1-yl)-1-(5-hydroxy-1H-indol-3-yl)ethanone (1) proved to be a dual-effective neuroprotective agent. With the aim to increase the antioxidant properties we added a catechol moiety onto piperidine moiety. The designed hybrid derivative 3,4-dihydroxy-N-[1-[2-(5-hydroxy-1H-indol-3-yl)-2-oxoethyl]piperidin-4-yl]benzamide (10) was the most effective antioxidant agent (>94.1 ± 0.1% of inhibition at 17 μM) and showed GluN2B/NMDA receptor affinity at low micromolar concentration (IC50 0.66 μM). By means of computational studies we explored the effect of the presence of this antioxidant fragment during the recognition process to binding pocket.  相似文献   

10.
A new series of CCR2 antagonists has been discovered that incorporates intramolecular hydrogen bonding as a strategy for rigidifying the scaffold. The structure-activity relationship was established through initial systematic modification of substitution pattern and chain length, followed by independent optimization of three different substituents (benzylamine, carboxamide, and benzamide). Several of the acyclic compounds display 10-30 nM binding affinity for CCR2. Moreover, these antagonists are able to block both MCP-1-induced Ca(2+) flux and monocyte chemotaxis, and are selective for binding to CCR2 over CCR1 and CCR3.  相似文献   

11.
A substituted 4-aminopiperidine was identified as showing activity in an MCH assay from an HTS effort. Subsequent structural modification of the scaffold led to the identification of a number of active MCH antagonists. 3,5-Dimethoxy-N-(1-(naphthalen-2-ylmethyl)piperidin-4-yl)benzamide (5c) was among those with the highest binding affinity to the MCH receptor (K(i)=27nM), when variations were made at benzoyl and naphthylmethyl substitution sites from the initial HTS hit. Further optimization via piperidine ring contraction resulted in enhanced MCH activity in a 3-aminopyrrolidine series, where (R)-3,5-dimethoxy-N-(1-(naphthalen-2-ylmethyl)-pyrrolidin-3-yl)benzamide (10i) was found to be an excellent MCH antagonist (K(i)=7nM).  相似文献   

12.
A series of arylsulfonamide derivatives of (aryloxy)ethyl pyrrolidines and piperidines was synthesized to develop new α1-adrenoceptor antagonists with uroselective profile. Biological evaluation for α1- and α2-adrenorecepor showed that tested compounds 1337 displayed high-to-moderate affinity for the α1-adrenoceptor (Ki = 34–348 nM) and moderate selectivity over α2-receptor subtype. Compounds with highest affinity and selectivity for α1-adrenoceptor were evaluated in vitro for their intrinsic activity toward α1A- and α1B-adrenoceptor subtypes. All compounds behaved as antagonists at both α1-adrenoceptor subtypes, displaying 2- to 6-fold functional preference to α1A-subtype. Among them, N-{1-[2-(2-methoxyphenoxy)ethyl]piperidin-4-yl}isoquinoline-4-sulfonamide (25) and 3-chloro-2-fluoro-N-{[1-(2-(2-isopropoxyphenoxy)ethyl)piperidin-4-yl]methyl}benzene sulfonamide (34) displayed the highest preference to α1A-adrenoceptor. Finally, compounds 25 and 34 (2–5 mg/kg, iv), in contrast to tamsulosin (1–2 mg/kg, iv), did not significantly decrease systolic and diastolic blood pressure in normotensive anesthetized rats to determine their influence on blood pressure.  相似文献   

13.
Novel benzofuran-2-carboxamide ligands, which are selective for sigma receptors, have been synthesized via a microwave-assisted Perkin rearrangement reaction and a modified Finkelstein halogen-exchange used to facilitate N-alkylation. The ligands synthesized are the 3-methyl-N-phenyl-N-(3-(piperidin-1-yl)propyl)benzofuran-2-carboxamides (KSCM-1, KSCM-5 and KSCM-11). The benzofuran-2-carboxamide structure was N-arylated and N-alkylated to include both N-phenyl and N-(3-(piperidin-1-yl)propyl substituents, respectively. These new carboxamides exhibit high affinity at the sigma-1 receptor with Ki values ranging from 7.8 to 34 nM. Ligand KSCM-1 with two methoxy substituents at C-5 and C-6 of the benzofuran ring, and Ki = 27.5 nM at sigma-1 was found to be more selective for sigma-1 over sigma-2.  相似文献   

14.
We describe the systematic optimization, focused on the improvement of CV-TI, of a series of CCR2 antagonists. This work resulted in the identification of 10 (((1S,3R)-1-isopropyl-3-((3S,4S)-3-methoxy-tetrahydro-2H-pyran-4-ylamino)cyclopentyl)(4-(5-(trifluoromethyl)pyridazin-3-yl)piperazin-1-yl)methanone) which possessed a low projected human dose 35-45 mg BID and a CV-TI = 3800-fold.  相似文献   

15.
Removal of the basic piperazine nitrogen atom, introduction of a solubilising end group and partial reduction of the triazolopyridazine moiety in the previously-described lead androgen receptor downregulator 6-[4-(4-cyanobenzyl)piperazin-1-yl]-3-(trifluoromethyl)[1,2,4]triazolo[4,3-b]pyridazine (1) addressed hERG and physical property issues, and led to clinical candidate 6-(4-{4-[2-(4-acetylpiperazin-1-yl)ethoxy]phenyl}piperidin-1-yl)-3-(trifluoromethyl)-7,8-dihydro[1,2,4]triazolo[4,3-b]pyridazine (12), designated AZD3514, that is being evaluated in a Phase I clinical trial in patients with castrate-resistant prostate cancer.  相似文献   

16.
We describe the discovery and advancement of a novel series of TRPA1 antagonist having an aryl-N-(3-(alkylamino)-5-(trifluoromethyl)phenyl)benzamide scaffold. The physical and in vitro DMPK profiles are discussed.  相似文献   

17.
Our laboratory has identified several acrylamide derivatives with potent CCR3 inhibitory activity. In the present study, we evaluated the in vitro metabolic stability (CLint; mL/min/kg) of these compounds in human liver microsomes (HLMs), and assessed the relationship between their structures and CLint values. Among the compounds identified, N-{(3R)-1-[(6-fluoro-2-naphthyl)methyl]pyrrolidin-3-yl}-2-[1-(2-hydroxybenzoyl)piperidin-4-ylidene]acetamide (30j) was found to be a potent inhibitor (IC50 = 8.4 nM) with a high metabolic stability against HLMs.  相似文献   

18.
Gao M  Wang M  Miller KD  Zheng QH 《Steroids》2011,76(13):1505-1512
The androgen receptor (AR) is an attractive target for the treatment and molecular imaging of prostate cancer. New carbon-11-labeled propanamide derivatives were first designed and synthesized as selective androgen receptor modulator (SARM) radioligands for prostate cancer imaging using the biomedical imaging technique positron emission tomography (PET). The target tracers, (S)-N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-3-(2-[11C]methoxyphenoxy)-2-methylpropanamide ([11C]8a), (S)-2-hydroxy-3-(2-[11C]methoxyphenoxy)-2-methyl-N-(4-nitro-3-(trifluoromethyl)phenyl)propanamide ([11C]8e), (S)-N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-3-(4-[11C]methoxyphenoxy)-2-methylpropanamide ([11C]8c) and (S)-2-hydroxy-3-(4-[11C]methoxyphenoxy)-2-methyl-N-(4-nitro-3-(trifluoromethyl)phenyl)propanamide ([11C]8g), were prepared by O-[11C]methylation of their corresponding precursors, (S)-N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-3-(2-hydroxyphenoxy)-2-methylpropanamide (9a), (S)-2-hydroxy-3-(2-hydroxyphenoxy)-2-methyl-N-(4-nitro-3-(trifluoromethyl)phenyl)propanamide (9b), (S)-N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-3-(4-hydroxyphenoxy)-2-methylpropanamide (9c) and (S)-2-hydroxy-3-(4-hydroxyphenoxy)-2-methyl-N-(4-nitro-3-(trifluoromethyl)phenyl)propanamide (9d), with [11C]CH3OTf under basic conditions and isolated by a simplified C-18 solid-phase extraction (SPE) method in 55 ± 5% (n = 5) radiochemical yields based on [11C]CO2 and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 23 min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 277.5 ± 92.5 GBq/μmol (n = 5).  相似文献   

19.
The reference standard AZD8931{2-(4-((4-((3-chloro-2-fluorophenyl)amino)-7-methoxyquinazolin-6-yl)oxy)piperidin-1-yl)-N-methylacetamide} (11a) was synthesized from methyl 4,5-dimethoxy-2-nitrobenzoate or ethyl 4,5-dimethoxy-2-nitrobenzoate and 2-chloro-N-methylacetamide in 11 steps with 2–5% overall chemical yield. The precursor N-desmethyl-AZD8931{2-(4-((4-((3-chloro-2-fluorophenyl)amino)-7-methoxyquinazolin-6-yl)oxy)piperidin-1-yl)acetamide} (11b) was synthesized from methyl 4,5-dimethoxy-2-nitrobenzoate or ethyl 4,5-dimethoxy-2-nitrobenzoate and 2-bromoacetamide in 11 steps with 2–4% overall chemical yield. The target tracer [11C]AZD8931 {2-(4-((4-((3-chloro-2-fluorophenyl)amino)-7-methoxyquinazolin-6-yl)oxy)piperidin-1-yl)-N-[11C]methylacetamide} ([11C]11a) was prepared from N-desmethyl-AZD8931 (11b) with [11C]CH3OTf under basic condition (NaH) through N-[11C]methylation and isolated by HPLC combined with solid-phase extraction (SPE) in 40–50% radiochemical yield based on [11C]CO2 and decay corrected to end of bombardment (EOB) with 370–1110 GBq/μmol specific activity at EOB.  相似文献   

20.
A systematic examination of the central aromatic portion of the lead (2S)-N-[3,5-bis(trifluoromethyl)benzyl]-2-(4-fluorophenyl)-4-(1'H-spiro[indene-1,4'-piperidin]-1'-yl)butanamide (9) led to the discovery of a novel class of CCR2 receptor antagonists, which carry small alicyclic groups such as cyclopropyl, cylobutyl, or cyclopropylmethyl attached at C2 of the carbon backbone. The most potent compound discovered, namely (2S)-N-[3,5-bis(trifluoromethyl)benzyl]-2-cyclopropyl-4-[(1R,3'R)-3'-methyl-1'H-spiro[indene-1,4'-piperidin]-1'-yl]butanamide (29), showed very high binding affinity (IC50 = 4 nM, human monocyte) and excellent selectivity toward other related chemokine receptors. The excellent pharmacokinetic profile of this new lead compound allows for extensive in vivo evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号