首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 276 毫秒
1.
The calcium-dependent regulatory protein (CDR) purified from bovine brain was iodinated with Na[125I]I using the lactoperoxidase-glucose oxidase system. The iodinated protein retained its ability to stimulate the Ca2+-sensitive CDR-depleted cyclic nucleotide phosphodiesterase from bovine heart. Stimulation of the phosphodiesterase by 125I-CDR was Ca2+-dependent and the labeled protein had a Ka for activation of cyclic nucleotide phosphodiesterase that was 4 times greater than unmodified CDR. 125I-CDR formed a Ca2+-dependent complex with the partially purified cyclic nucleotide phosphodiesterase which was detectable by autorradiography following electrophoresis of the complex on nondenaturing gels. This technique was used to detect CDR binding components in crude homogenates prepared from bovine heart and brain.  相似文献   

2.
Purification of (Ca2+-Mg2+)-ATPase from rat liver plasma membranes   总被引:1,自引:0,他引:1  
The Ca2+-stimulated, Mg2+-dependent ATPase from rat liver plasma membranes was solubilized using the detergent polyoxyethylene 9 lauryl ether and purified by column chromatography using Polybuffer Exchanger 94, concanavalin A-Sepharose 4B, and Sephadex G-200. The molecular weight of the enzyme, estimated by gel filtration in the presence of the detergent on a Sephadex G-200 column, was 200,000 +/- 15,000. The enzyme was purified at least 300-fold from rat liver plasma membranes and had a specific activity of 19.7 mumol/mg/min. Polyacrylamide gel electrophoresis under nondenaturing conditions of the purified enzyme indicated that the enzymatic activity correlated with the major protein band. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, one major band in the molecular weight range of 70,000 +/- 5,000 was seen. The isoelectric point of the purified enzyme was 6.9 +/- 0.2 as determined by analytical isoelectric focusing. The enzyme was activated by Ca2+ with an apparent half-saturation constant of 87 +/- 2 nM for Ca2+. Calmodulin and trifluoperazine at the concentration of 1 microgram/ml and 100 microM, respectively, had no effect on the enzymatic activity.  相似文献   

3.
Sorbitol dehydrogenase (EC 1.1.1.14) was isolated from bovine brain and purified 3,000-fold to apparent homogeneity, as judged by polyacrylamide gel electrophoresis. The purified enzyme had a specific activity of 36 units/mg of protein; a molecular weight of 39,000 for each of the four identical subunits and 155,000 for the intact enzyme were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel exclusion chromatography, respectively. The presence of one Zn2+ per subunit was confirmed by atom absorption spectroscopy; inactivation of the enzyme by metal-chelating agents points to the essential role that Zn2+ plays in the catalytically competent enzyme. The enzyme is also inactivated by thiol-blocking reagents; with respect to inactivation by sodium pyrophosphate, sorbitol dehydrogenase is different from closely related alcohol dehydrogenase.  相似文献   

4.
Spermine in micromolar concentrations decreased the basal activity of a guanosine 3',5'-monophosphate (cGMP) phosphodiesterase from bovine brain but had no effect in the presence of Ca2+ plus the calcium-dependent regulatory protein (CDR) which increased the activity of the enzyme 4- to 6-fold. Similar effects of spermine were observed on the enzyme at several stages of purification. Spermidine and putrescine were also inhibitory but higher concentrations were required. In the absence of Ca2+ and CDR, the enzyme exhibited two apparent Km values for cGMP (2.5 and 20 microM) which were unaltered by spermine. In the presence of Ca2+ and CDR (when spermine had no effect on activity), a single Km (3.5 microM) was observed. Enzyme purified by chromatography on CDR-Sepharose was rapidly inactivated during incubation at 30 degrees C in 5 mM potassium phosphate buffer (pH 7.0) with EDTA and ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA). Spermine (20 microM) partially stabilized enzyme activity under these conditions, although it was somewhat less effective than 2 mM MgCl2. The inhibitory effects of spermine (or other polyamines) on basal phosphodiesterase activity, which can be overcome by Ca2+ and CDR, could be important in the regulation of cellular cyclic nucleotide content.  相似文献   

5.
Purification of phospholipase D from citrus callus tissue   总被引:2,自引:0,他引:2  
Phospholipase D in extracts of soluble proteins from callus cultures derived from cotyledons of Citrus sinensis (L.) Osbeck is activated by Ca2+ and anionic detergents and has a pH optimum of 6.5. The enzyme was purified 703-fold over the crude protein extract with a yield of 15% by ammonium sulfate precipitation, ion exchange chromatography, gel filtration, hydrophobic interaction chromatography, and preparative acrylamide gel electrophoresis. Preparative electrophoresis was carried out using conventional slab gel equipment and electroelution of the sliced gel. Analytical sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified phospholipase revealed two bands of the same staining intensity running at 94.2K and 90.5K.  相似文献   

6.
A rabbit lung cyclic nucleotide phosphodiesterase (PDE) prepared by successive chromatography on DEAE-cellulose and G-200 Sephadex columns in the presence of EGTA was activated by Ca2+ and contained calmodulin (CaM), suggesting that the enzyme exists as a stable CaM X PDE complex (Sharma, R. K., and Wirch, E. (1979) Biochem. Biophys. Res. Commun. 91, 338-344). An enzyme with similar properties was demonstrated to exist in bovine lung extract. C1, a monoclonal antibody previously shown to react with the 60-kDa subunit of bovine brain PDE isozymes (Sharma, R. K., Adachi, A.-M., Adachi, K., and Wang, J. H.) (1984) J. Biol. Chem. 259, 9248-9254), cross-reacted with the lung enzyme. Purification of the lung enzyme by C1 antibody immunoaffinity chromatography rendered the enzyme dependent on exogenous CaM for Ca2+ stimulation. Further purification was achieved by CaM affinity chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the purified enzyme showed a predominant polypeptide of Mr 58,000 and a minor band of about 50,000. The purified enzyme could be reconstituted into a PDE X CaM complex upon incubation with CaM in the presence of either Ca2+ or EGTA. The reconstituted protein complex did not dissociate in buffers containing 0.1 mM EGTA. Analysis of the purified and reconstituted lung phosphodiesterase by Sephacryl S-300 gel filtration indicated that the lung enzyme is a dimeric protein and that the reconstituted enzyme contained two molecules of calmodulin. Analysis of the reconstituted phosphodiesterase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis also showed it to contain equimolar calmodulin and the enzyme subunit. The CaM antagonists, fluphenazine, compound 48/80, and calcineurin at concentrations abolishing CaM stimulation of bovine brain PDE had little effect on the activity of reconstituted bovine lung phosphodiesterase.  相似文献   

7.
Extracts of bovine neurointermediate pituitary secretory granules and frozen bovine neurointermediate pituitary contain multiple forms of peptidylglycine alpha-amidating monooxygenase (PAM) activity differing in apparent molecular weight and in charge. Metal chelate affinity chromatography, substrate affinity chromatography, and gel filtration resulted in the purification of two forms of amidation activity from frozen bovine neurointermediate pituitary: PAM-A, apparent molecular weight 54,000, was purified 7,000-fold and PAM-B, apparent molecular weight 38,000, was purified 21,000-fold. Enzyme activity of similar molecular weights was observed in the starting material. Purified PAM-A and PAM-B correspond to two of the three charge forms present in crude extracts, and both exhibited optimal activity at alkaline pH. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of PAM-B revealed the presence of two bands with apparent molecular weights of 42,000 and 37,000; autoradiography of 125I-labeled PAM-B revealed only the same two bands, and 125I-labeled PAM-B co-eluted with enzyme activity during gel filtration. PAM-A was still heterogeneous based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The properties of purified PAM-A and PAM-B were very similar to those of amidation activity in crude extracts: activity was reduced upon removal of molecular oxygen; activity was stimulated by the addition of CuSO4 and eliminated by the addition of diethyldithiocarbamate; activity was stimulated by the addition of ascorbate, with optimal levels of ascorbate increasing as the concentration of peptide substrate was increased. In the presence of 1.25 mM ascorbate, PAM-B exhibited a Km of 7.0 microM for D-Tyr-Val-Gly and a Vmax of 84 nmol/micrograms/h.  相似文献   

8.
The soluble form of guanylate cyclase from rat lung has been purified approximately 23,000-fold to homogeneity by isoelectric precipitation, GTP-Sepharose chromatography, and preparative gel electrophoresis. A single protein-staining band is observed after analytical gel electrophoresis on either 4 or 7.5% polyacrylamide gels. The final purified enzyme has a specific activity of about 700 nmol of cyclic GMP formed/min/mg of protein at 37 degrees C in the presence of 4.8 mM MnCl2 and 100 micrometer GTP. Bovine serum albumin appears to slightly increase guanylate cyclase activity, but mainly stabilizes the purified enzyme; in its presence, specific activities in excess of 1 mumol of cyclic GMP formed/min/mg of enzyme protein can be obtained. When Mg2+ or Ca2+ are substituted for Mn2+, specific activities decrease to approximately 21 and 40 nmol of cyclic GMP formed/min/mg of protein, respectively. The apparent Michaelis constant for MnGTP in the presence of 4.8 mM MnCl2 is 10.2 micrometer. Kinetic patterns on double reciprocal plots as a function of free Mn2+ are concave downward. The native enzyme has a molecular weight of approximately 151,000 as determined on Sephacryl S-200; sodium dodecyl sulfate-polyacrylamide gel electrophoresis results in two protein-staining bands with approximate molecular weights of 79,400 and 74,000. Thus, it appears that the soluble form of guanylate cyclase from rat lung exists as a dimer.  相似文献   

9.
The oxygen-labile, activating enzyme for iron protein from the photosynthetic bacterium, Rhodospirillum rubrum, was purified 11,800-fold using a combination of chromatophore washing, DE52-cellulose chromatography, hydroxylapatite chromatography, reactive red-120 cross-linked agarose chromatography, reactive red-120 cross-linked agarose chromatography, and Sephadex G-75 gel filtration. Activating enzyme appeared homogeneous on silver-stained sodium dodecyl sulfate-polyacrylamide gels, and the staining intensity of the activating-enzyme band was correlated with the activating-enzyme activity observed in in vitro assays. Either formaldehyde fixation or higher acrylamide concentration was required to accurately assess the purity of activating enzyme on silver-stained gels. Activating enzyme was stable for 30 days at 4 degrees C. Dithiothreitol was a necessary component for the stability of partially purified activating enzyme. NaCl inhibited the coupled assay for activating enzyme. The pI of activating enzyme was determined to be 6.5. Activating enzyme is composed of a minimum of 336 amino acids and a minimum calculated Mr is 32,032. The Mr of activating enzyme was estimated to be 21,700 by analytical gel filtration and 32,800 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An absorption maximum at 280 nm was observed for the activating enzyme.  相似文献   

10.
A novel photoreactive calmodulin (CaM) derivative was developed and used to label the purified CaM-sensitive adenylate cyclase from bovine cortex. 125I-CaM was conjugated with the heterobifunctional cross-linking agent p-nitrophenyl 3-diazopyruvate (DAPpNP). Spectral data indicated that diazopyruvoyl (DAP) groups were incorporated into the CaM molecule. Iodo-CaM-DAPs behaved like native CaM with respect to (1) Ca2+-dependent enhanced mobility on sodium dodecyl sulfate-polyacrylamide gels and (2) Ca2+-dependent stimulation of adenylate cyclase activity. 125I-CaM-DAP photochemically cross-linked to CaM-binding proteins in a manner that was both Ca2+ dependent and CaM specific. Photolysis of forskolin-agarose-purified adenylate cyclase from bovine cortex with 125I-CaM-DAP produced a single cross-linked product which migrates on sodium dodecyl sulfate-polyacrylamide gels with an apparent molecular weight of approximately 140,000.  相似文献   

11.
Rat brain tryptophan 5-monooxygenase was activated by incubation with ATP, Mg2+, calmodulin, and micromolar concentrations of Ca2+. The activating activity was resolved into two distinct peaks upon gel filtration on Sepharose CL-6B: one, Ca2+-, calmodulin-dependent protein kinase, and the other, a heat-labile activator protein. The activator protein was purified to apparent homogeneity from rat brain by a procedure involving calmodulin-Sepharose 4B, Sephadex G-150, and phenyl-Sepharose CL-4B column chromatography. The molecular weight of the activator protein was determined to be 70,000 by sedimentation equilibrium and by gel filtration on Sephadex G-150. The protein gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the molecular weight of which was estimated to be 35,000, indicating that the protein might be composed of two identical subunits. Analysis of cross-linked activator protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis also suggested that the protein might be a dimer of identical subunits. Some other molecular properties of the activator protein were: sedimentation coefficient, 4.3 S; Stokes radius, 3.6 nm; diffusion coefficient, 6.0 x 10(-7) cm2/s; frictional ratio, 1.32; and partial specific volume, 0.73 cm3/g. The activator protein activated tyrosine 5-monooxygenase as well as tryptophan 5-monooxygenase in the presence of ATP, Mg2+, Ca2+, calmodulin, and Ca2+-, calmodulin-dependent protein kinase.  相似文献   

12.
Phosphatidylinositol kinase was solubilized and purified from porcine liver microsomes to apparent homogeneity. The purification procedure includes: solubilization of microsomes by 2% Triton X-100, ammonium sulfate precipitation (20-35% saturation), Reactive blue agarose chromatography, DEAE-Sephacel chromatography and two consecutive hydroxyapatite chromatographies. A total of 4900-fold purification with 8% recovery of enzyme activity was achieved. The molecular weight of the enzyme as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 55000. The enzyme is stimulated in a decreasing order by Mg2+, Fe2+, Mn2+, Fe3+ and Co2+. Ca2+ inhibited Mg2+-stimulated activity with an I50 of 0.4 mM. Apparent Km values for phosphatidylinositol and ATP are 120 and 60 microM, respectively. The enzyme is inhibited by adenosine (I50 = 70 microM), ADP (I50 = 120 microM) and quercetin (I50 = 100 microM). The enzyme is also sensitive to sulfhydryl inhibitors. Using the purified enzyme as an immunogen, we have successfully prepared antibodies for phosphatidylinositol kinase in rabbits. The antibodies appear to recognize an antigen of Mr 55000 on SDS-polyacrylamide gel electrophoresis from various porcine tissues in Western blot analysis.  相似文献   

13.
A novel Ca2+-dependent protein kinase from Paramecium tetraurelia   总被引:3,自引:0,他引:3  
The ciliated protozoan Paramecium tetraurelia contained two protein kinase activities that were dependent on Ca2+. We purified one of the enzymes to homogeneity by Ca2+-dependent affinity chromatography on phenyl-Sepharose and ion exchange chromatography. The purified enzyme contained polypeptides of 50 and 55 kDa, with the 50-kDa species predominant. From its Stokes radius (32 A) and sedimentation coefficient (3.9 S), we calculated a native molecular weight of 51,000, suggesting that the active form is a monomer. Its specific activity was 65-130 nmol X min-1 X mg-1 and the Km for ATP was 17-35 microM, depending on the exogenous substrate used. Kinase activity was completely dependent upon Ca2+; half-maximal activation occurred at approximately 1 microM free Ca2+ at pH 7.2. Phosphatidylserine and diacylglycerol did not stimulate activity, nor did the addition of purified Paramecium calmodulin. The enzyme phosphorylated casein and histones, forming primarily phosphoserine and phosphothreonine, respectively. It also catalyzed its own phosphorylation in a Ca2+-dependent reaction; the half-maximal rate of autophosphorylation occurred at approximately 1-1.5 microM free Ca2+, and both the 50- and 55-kDa species were autophosphorylated. After separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and renaturation in situ, the 50-kDa protein retained its Ca2+-dependent ability to phosphorylate casein, suggesting that Ca2+ interacts directly with this polypeptide. This was confirmed by direct binding studies; when the enzyme was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis transferred to nitrocellulose, and renatured, there was 45Ca2+-binding in situ to both the 50- and 55-kDa polypeptides. The Paramecium enzyme appears to be a new and unique type of Ca2+-dependent protein kinase.  相似文献   

14.
The effect of purified calmodulin on the calcium-dependent phosphorylation of human erythrocyte membranes was studied. Under the conditions employed, only one major peak of phosphorylation was observed when solubilized membrane proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of this phosphorylated protein band was estimated to be 130000 and in the presence of purified red blood cell calmodulin, the rate of phosphorylation of this band was increased. These data suggest that calmodulin activation of (Ca2+ + Mg2+)-ATPase could be a partial reflection of an increased rate of phosphorylation of the (Ca2+ + Mg2+)-ATPase of human erythrocyte membranes.  相似文献   

15.
Purification and properties of ornithine decarboxylase from rat liver   总被引:6,自引:0,他引:6  
Ornithine decarboxylase was purified to homogeneity, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and polyacrylamide gel electrofocusing, about 710,000-fold with a 35% yield from the liver cytosol of thioacetamide-treated rats. The final specific activity was approximately 24,400 nmol/min/mg of protein. The apparent molecular weight of the enzyme determined by gel filtration analyses on Sephacryl S-200 was 55,000 in the presence of 0.25 M NaCl and 145,000 in its absence. The minimum molecular weight of the enzyme was determined to be 54,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point of the enzyme was estimated as 5.7 in the presence of 8 M urea. Some catalytic properties of the enzyme were also studied.  相似文献   

16.
A calmodulin-sensitive adenylate cyclase has been purified to apparent homogeneity from bovine cerebral cortex using calmodulin-Sepharose followed by forskolin-Sepharose and wheat germ agglutinin-Sepharose. The final product appeared as one major polypeptide of approximately 135,000 daltons on sodium dodecyl sulfate-polyacrylamide gels. This polypeptide was a major component of the protein purified through calmodulin-Sepharose. The catalytic subunit was stimulated 3-4-fold by calmodulin (CaM) with a turnover number greater than 1000 min-1 and was directly inhibited by adenosine. The catalytic subunit of the enzyme interacted directly with 125I-CaM on a sodium dodecyl sulfate-polyacrylamide gel overlay system, and this interaction was Ca2+ concentration dependent. In addition, the catalytic subunit was shown to directly bind 125I-labeled wheat germ agglutinin using a sodium dodecyl sulfate-polyacrylamide gel overlay technique, and N-acetylglucosamine inhibited binding of the lectin to the catalytic subunit. Calmodulin did not inhibit binding of wheat germ agglutinin to the catalytic subunit, and the binding of calmodulin was unaffected by wheat germ agglutinin. These data illustrate that the catalytic subunit of the calmodulin-sensitive adenylate cyclase is a glycoprotein which interacts directly with calmodulin and that adenosine can inhibit the enzyme without intervening receptors or G coupling proteins. It is concluded that the catalytic subunit of adenylate cyclase is a transmembrane protein with a domain accessible from the outer surface of the cell.  相似文献   

17.
Periplasmic glycerophosphodiester phosphodiesterase (EC 3.1.4.2) of Escherichia coli was purified seven-fold to near homogeneity from the cold osmotic shock fraction of a strain harboring a multicopy plasmid carrying the glpQ gene. The enzyme had a minimum subunit molecular weight of 40,000 as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native size of the enzyme was 70,000 as assessed by gel filtration chromatography and 75,000 as assessed by nondenaturing gradient polyacrylamide gel electrophoresis, indicating that the native state of the enzyme is dimeric. The enzyme hydrolyzed the deacylation products of all glycerophospholipids tested including glycerophosphocholine, glycerophosphoethanolamine, glycerophosphoglycerol, glycerophosphoinositol, and glycerophosphoserine. The enzyme did not release glycerol or sn-glycerol 3-phosphate from phosphatidyl-DL-glycerol or lysophosphatidyl-DL-glycerol present in Triton X-100 micelles. The enzyme functioned optimally at pH 7.8. The enzyme was totally inactivated by dilution into 1 mM ethylenediaminetetraacetate or ethylene glycol bis(beta-aminoethyl ether)-N,N-tetraacetic acid. Activity was restored by the addition of Ca2+ or Cd2+, and was partially restored by the addition of Mn2+ or Cu2+. Co2+, Mg2+, Zn2+, and Fe2+ did not restore activity. The presence of calcium ions decreased the Km of the enzyme for the substrate, glycerophosphoglycerol, and increased the Vmax.  相似文献   

18.
A kininogenase from bovine erythrocyte membranes has been purified 140-fold by affinity chromatography on pepstatin A-Agarose followed by ion exchange chromatography on CM Cellulose. The purified enzyme showed an apparent molecular weight of 31,000 daltons as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. ItspH optimum is 7.5, and it was totally inhibited by soybean trypsin inhibitor, phenylmethylsulfonylfluoride, aprotinin, pepstatin, and dithiotreitol, suggesting the presence of a disulfide bond(s) whose integrity is(are) essential for maintaining the native three-dimensional structure. The referred enzyme was able to release kinin from a substrate partially purified from rat plasma. The kininogenase was activated by Zn2+, Ca2+, and cysteine-HCl.  相似文献   

19.
A Ca2+-dependent cyclic nucleotide phosphodiesterase has been partially purified from extracts of porcine brain by column chromatography on Sepharose 6 B containing covalently linked protamine residues, ammonium sulfate salt fractionation, and ECTEOLA-cellulose column chromatography. The resultant preparation contained a single form of cyclic nucleotide phosphodiesterase activity by the criteria of isoelectric focusing, gel filtration chromatography on Sephadex G-200, and electrophoretic migration on polyacrylamide gels. When fully activated by the addition of Ca2+ and microgram quantities of a purified Ca2+-binding protein (CDR), the phosphodiesterase hydrolyzed both adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP), with apparent Km values of 180 and 8 μm, respectively. Approximately 15% of the total enzymic activity was present in the absence of added CDR and Ca2+. This activity exhibited apparent Km values for the two nucleotides identical to those observed for the maximally activated enzyme. Competitive substrate kinetics and heat destabilization studies demonstrated that both cyclic nucleotides were hydrolyzed by the same phosphodiesterase. The purified enzyme was identical to a Ca2+-dependent phosphodiesterase present in crude extract by the criteria of gel filtration chromatography, polyacrylamide-gel electrophoresis, and kinetic behavior.Apparent Km values of the Ca2+-dependent phosphodiesterase for cyclic AMP and cyclic GMP were lowered more than 20-fold as CDR quantities in the assay were increased to microgram amounts, whereas the respective maximal velocities remained constant. The apparent Km for Mg2+ was lowered more than 50-fold as CDR was increased to microgram amounts. Half-maximal activation of the phosphodiesterase occurred with lower amounts of CDR as a function of either increasing degrees of substrate saturation or increasing concentrations of Mg2+. At low cyclic nucleotide substrate concentrations i.e., 2.5 μm, cyclic GMP was hydrolyzed at a fourfold greater velocity than cyclic AMP. At high substrate concentrations (millimolar range) cyclic AMP was hydrolyzed at a threefold greater rate than cyclic GMP.  相似文献   

20.
Purification of D-myo-inositol 1,4,5-trisphosphate 3-kinase from rat brain   总被引:7,自引:0,他引:7  
The ATP-dependent, calmodulin-sensitive 3-kinase responsible for the conversion of D-myo-inositol 1,4,5-trisphosphate to D-myo-inositol 1,3,4,5-tetrakisphosphate has been purified 2,700-fold from rat brain to a specific activity of 2.3 mumol/min/mg protein. A method of purification is described involving chromatography on phosphocellulose, Orange A dye ligand, calmodulin agarose, and hydroxylapatite columns. Neither the highly purified enzyme nor enzyme eluting from the phosphocellulose column were activated by Ca2+. However, enzyme in the 100,000 x g supernatant from rat brain was activated by Ca2+ over the range from 10(-7) to 10(-6) M and Ca2+ sensitivity of the purified enzyme was restored by the addition of calmodulin. The enzyme has a catalytic subunit Mr of 53,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Size exclusion chromatography of the purified enzyme on a Superose 12 column gave a Mr value of 70,000, indicating that the purified enzyme was present as a monomer. In contrast, the 100,000 x g supernatant and the purified enzyme after addition of calmodulin and 10(-6) M Ca2+ chromatographed on size exclusion chromatography with a Mr of 150,000-160,000. These results imply that the native enzyme is a dimeric structure of two catalytic subunits plus calmodulin. The purified enzyme showed a Km of 0.21 +/- 0.08 microM for D-myo-inositol 1,4,5-trisphosphate and had a pH optimum of 8.5. Addition of calmodulin increased both the Km and the Vmax of the purified enzyme about 2-fold. The high affinity of the 3-kinase for D-myo-inositol 1,4,5-trisphosphate together with its activation by Ca2+/calmodulin suggests that this enzyme may exert an important regulatory role in inositol phosphate signaling by promoting the formation of additional inositol polyphosphate isomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号