首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 332 毫秒
1.
The ovaries of the snow scorpionfly, Boreus hyemalis (Mecoptera : Boreidae) are panoistic and comprise 7–8 ovarioles. Each ovariole consists of a terminal filament, elongated vitellarium, and ovariole stalk (=pedicel) only ; in adult specimens, functional germaria are absent. Five consecutive stages of oogenesis i.e., early, mid- and late previtellogenesis, vitellogenesis, and choriogenesis have been distinguished in imagines. Oocyte nuclei (=germinal vesicles) of previtellogenic oocytes contain numerous polymorphic multiple nucleoli (or nucleolar masses), endobodies, and chromatin aggregations. Next to the nuclear envelope, large accumulations of nuage material are localized. The ooplasm of late previtellogenic oocytes is differentiated into transparent (perinuclear) and opaque (peripheral) regions. Ultrastructural investigations have revealed that within the latter, abundant ribosomes as well as mitochondria, elements of endoplasmic reticulum, Golgi complexes, annulate lamellae, symbiotic bacteroids, lipid droplets and distinctive accumulations of membrane-free clathrin-like cages are present. Early- and mid previtellogenic oocytes are invested with flat somatic cells that gradually transform into a follicular epithelium. In the vicinity of 3-cell junctions, neighbouring follicular cells are joined by narrow intercellular bridges. During late previtellogenesis, numerous microvilli develop on the oocyte surface. They interdigitate with morphologically similar but less frequent microvilli of the follicular cells. Concurrently, first endocytotic vesicles appear in the cortical ooplasm. In the context of presented results, the phylogenetic relationships between mecopterans (boreids) and fleas are discussed.  相似文献   

2.
Summary Oocyte-follicle cell gap junctions inTribolium occur in all oogenetic stages studied. During early previtellogenesis the junctions are found exclusively between lateral membranes of oocyte microvilli and the membrane of prefollicle cells. In late previtellogenesis and vitellogenesis the junctions are located between the tips of oocyte microvilli and the flat membranes of the follicle cells. During previtellogenesis gap junctions are infrequent, whereas in the phase of yolk accumulation their number increases considerably, exceeding 17 junctions/m2 of the follicle cell membrane. It could be shown by microinjection of a fluorescent dye that gap junctions are in a functional state during vitellogenesis. Possible roles of heterologous gap junctions in oogenesis are discussed.  相似文献   

3.
In the ovaries of the oviparous morph of the aphid, Megoura viciae, resting oocytes are located in the basal region of each germarium. During previtellogenic egg development, electron-dense spheres appear in the ooplasm. During vitellogenesis a brush border develops at the oolemma, and numerous protein and lipid-like spheres accumulate in the egg cytoplasm. Follicle cells are of two morphologically distinct types, termed 'type 1' and 'type 2' follicle cells. Unlike the more numerous 'type 1' cell, 'type 2' cells do not become patent. The acellular tunica propria exterior to follicle cell apices remains intact throughout egg development. During late vitellogenesis symbiont invasion of eggs takes place via 'receptor' cells encircling the pedicel at the posterior egg pole. These cells shrink and/or degenerate to create intercellular spaces that facilitate symbiont transmission. The end of vitellogenesis is marked by vitelline membrane formation and secretion of the chorionic layers, at which time the next egg in the ovariole undergoes final stages of previtellogenic growth and enters vitellogenesis.  相似文献   

4.
Developing ovarian follicles of Bacillus rossius have been examined ultrastructurally in an attempt to understand how inception of vitel-logenesis is controlled. Early vitellogenic follicles are characterized by a thick cuboidal epithelium that is highly interlocked with the oocyte plasma membrane. Gap junctional contacts are present both at the follicle cell/oocyte interface and in between adjacent follicle cells. In addition, microvilli of follicle cells protrude deeply into the cortical ooplasm of these early vitellogenic oocytes. With the onset of vitellogenesis, wide intercellular spaces appear in the follicle cell epithelium and at the follicle cell/oocyte interface. Gap junctions become progressively reduced both on the follicle cell surface and on the oocyte plasma membrane. Microvilli from the two cell types no longer interlock. From a theoretical standpoint each of the two structural differentiations present at the follicle cell/oocyte interface—gap junctions and follicle cell microvilli—could potentially trigger inception of vitellogenesis. Gap junctions might permit the passage of a regulatory molecule, transferring from follicle cells to oocyte, which would control the assembly of coated pits on the oocyte plasma membrane. Alternatively cell interaction via microvilli might induce the appearance of coated pits, thus creating a membrane focus for vitellogenin receptors. Both possibilities are discussed in relation to current literature.  相似文献   

5.
Summary The ultrastructure of the follicle cells during previtellogenesis and early vitellogenesis have been studied. In previtellogenesis follicle cells are columnar with numerous bundles of microtubules located along the lateral plasma membranes. Oocyte-follicle cell gap junctions are not found in this stage. At the onset of vitellogenesis, the bundles of microtubules disappear and are replaced by an apically located ring of microtubules. The modification of microtubular cytoskeleton is not followed by the development of intercellular spaces between the follicle cells. Concurrently, numerous gap junctions are formed between specialized follicle cell processes and oocyte microvilli, which are arranged in characteristic cone-shaped aggregations. It is suggested that cytoskeletal changes and formation of heterologous gap junctions, occurring at the onset of vitellogenesis, are induced by juvenile hormone.  相似文献   

6.
The cell contacts between follicle cells, and follicle cells and oocytes of egg-laying populations of Helisoma duryi and non-egg-laying populations of H. trivcolvis have been studied. Scanning electron microscopy reveals that four to six follicle cells envelop a single developing oocyte. Thin sections and lanthanum impregnations demonstrate apical zonulae adherentes followed by winding pleated-type septate junctions between follicle cells. Gap junctions and septate junctions have been found between follicle cells and vitellogenic oocytes. Freeze-fracture replicas show relatively wide sinuous rows of septate junctional particles, and nemerous large gap junctional particle aggregates on the P-face between vitellogenic oocytes and follicle cells. Septate and gap junctions between immature or nonvitellogenic oocytes and follicle cells are fewer compared to those in vitellogenic oocytes. Similarly, the junctional complexes are less developed in non-egg-laying H. trivolvis compared to those in egg-laying H. duryi. It is possible that intimate interaction between follicle cells and a developing oocyte is necessary for the maturation of the oocyte. The junctional complexes could be involved in the interaction of the follicle cells and the oocyte, and they must disassemble at the onset of ovulation. Rhombic particle arrays and nonjunctional ridges of particles have been found in the basal part of the oolemma.  相似文献   

7.
The structure of the granulosa in reptilian sauropsids varies between groups. We investigated the follicle development in the desert lizard Scincus mitranus. In the germinal bed, oogonia, and primary oocytes were identified and found to be interspersed between the epithelial cells. Previtellogenesis was divided into three stages: early, transitional, and late previtellogenic stages. During the early previtellogenic stage (diplotene), the oocyte is invested by small epithelia cells that formed a complete single layer, which may be considered as a young follicle. The transitional previtellogenic stage was marked by proliferation and differentiation of the granulosa layer from a homogenous layer consisting of only small cells to a heterogeneous layer containing three cell types: small, intermediate, and large cells. The late previtellogenic stage was marked by high-synthetic activity of large cells and the initiation of cytoplasmic bridges between large granulosa cells and the oocyte. Small cells were the only type of granulosa cells that underwent division. Thus, these cells may be stem cells for the granulosa cell population and may develop into intermediate and subsequently large cells. The intermediate cells may be precursors of large cells, as suggested by their ultrastructure. The ultrastructure of the large granulosa was indicative of their high synthetic activity. Histochemical analysis indicated the presence of cholesterol and phospholipids in the cytoplasm of large cells, the zona pellucida, among the microvilli, in the bridges region, and in the cortical region of the oocyte cytoplasm. These materials may be transferred from large cells into the oocyte through cytoplasmic bridges and provide nutritive function to large cells rather than functioning in steroidogenesis or vitellogenesis.  相似文献   

8.
In this work we carried out an ultrastructural analysis of the cell interface between oocyte and follicle cells during the oogenesis of the amphibian Ceratophrys cranwelli, which revealed a complex cell-cell interaction. In the early previtellogenic follicles, the plasma membrane of the follicle cells lies in close contact with the plasma membrane of the oocyte, with no interface between them. In the mid-previtellogenic follicles the follicle cells became more active and their cytoplasm has vesicles containing granular material. Their apical surface projects cytoplasmic processes (macrovilli) that contact the oocyte, forming gap junctions. The oocyte surface begins to develop microvilli. At the interface both processes delimit lacunae containing granular material. The oocyte surface has endocytic vesicles that incorporate this material, forming cortical vesicles that are peripherally arranged. In the late previtellogenic follicle the interface contains fibrillar material from which the vitelline envelope will originate. During the vitellogenic period, there is an increase in the number and length of the micro- and macrovilli, which become regularly arranged inside fibrillar tunnels. At this time the oocyte surface exhibits deep crypts where the macrovilli enter, thus increasing the follicle cell-oocyte junctions. In addition, the oocyte displays coated pits and vesicles evidencing an intense endocytic activity. At the interface of the fully grown oocyte the fibrillar network of the vitelline envelope can be seen. The compact zone contains a fibrillar electron-dense material that fills the spaces previously occupied by the now-retracted microvilli. The macrovilli are still in contact with the surface of the oocyte, forming gap junctions.  相似文献   

9.
东方扁虾卵子发生的超微结构   总被引:2,自引:0,他引:2  
根据卵细胞的形态、内部结构特征及卵母细胞与滤泡细胞之间的关系,东方扁虾的卵子发生可划分为卵原细胞、卵黄发生前卵母细胞、卵黄发生卵母细胞和成熟卵母细胞等四个时期。卵原细胞胞质稀少,胞器以滑面内质网为主。卵黄发生前卵母细胞核明显膨大,特称为生发泡;在靠近核外膜的胞质中可观察到核仁外排物。卵黄发生卵母细胞逐渐为滤泡细胞所包围;卵黄合成旺盛,胞质中因而形成并积累了越来越多的卵黄粒。东方扁虾卵母细胞的卵黄发生是二源的。游离型核糖体率先参与内源性卵黄合成形成无膜卵黄粒。粗面内质网是内源性卵黄形成的主要胞器。滑面内质网、线粒体和溶酶体以多种方式活跃地参与卵黄粒形成。卵周隙内的外源性物质有两个来源:滤泡细胞的合成产物和血淋巴携带、转运的卵黄蛋白前体物。这些外源性物质主要通过质膜的微吞饮作用和微绒毛的吸收作用这两种方式进入卵母细胞,进而形成外源性卵黄。内源性和外源性的卵黄物质共同参与成熟卵母细胞中富含髓样小体的卵黄粒的形成。卵壳的形成和微绒毛的回缩被认为是东方扁虾卵母细胞成熟的形态学标志。    相似文献   

10.
The structure of aphid ovaries, including ovipare and virginopare morphs of five species, was investigated by light and electron microscopy. Aphids contain telotrophic meroistic ovarioles. The amount and distribution of cytoplasmic components of nurse cells, nutritive cords, and young oocytes are nearly identical to those known from scale insects and heteropterans. Each ovariole has a constant number of nurse cells and oocytes. In ovaries of ovipare morphs, the nurse cell nuclei enlarge by endomitosis (n = 28n?210n), whereas in virginopare morphs the nurse cell nuclei remain small (n = 22n?24n). Furthermore, in virginoparae the previtellogenic growth of oocytes is highly reduced, and vitellogenesis and chorionogenesis are blocked totally. Embryogenesis starts immediately after the shortened previtellogenic growth. In each ovariole, all germ cell descendants belong to one germ cell cluster that follows the 2n rule. The cluster normally contains 25 = (32) cells, but other mostly smaller numbers also occur. In contrast to polytrophic meroistic ovarioles, more than one cell of each cluster will develop into an oocyte. In Drepanosiphum platanoides, 16 (2n?1) nurse cells and 16 (2n?1) oocytes exist in each cluster, whereas, in Metopolophium dirhodum, 8 (2n?2) oocytes and 24 (2n?1 + 2n?2) nurse cells are normally found. In many ovarioles of Macrosiphum rosae, 21 nurse cells nourish 11 oocytes. Models of germ cell cluster formation in aphid ovaries are discussed.  相似文献   

11.
马娜  花保祯 《昆虫学报》2010,53(11):1220-1226
卵巢管结构及卵子发生过程在探讨昆虫系统发育关系中有重要意义, 深入研究长翅目昆虫卵巢管结构及卵子发生可为确定其在全变态类昆虫中的系统发育地位提供依据。本文利用光学显微镜和扫描、透射电子显微镜技术研究了刘氏蝎蛉Panorpa liui Hua卵巢管超微结构及卵子发生过程。结果表明:蝎蛉卵巢由12根多滋式卵巢小管组成, 每个卵巢小管分为端丝、生殖区和生长区。根据滋养细胞、卵母细胞及滤泡细胞的变化, 卵子发生过程可分为5个阶段:卵黄发生前早期、卵黄发生前中期、卵黄发生前后期、卵黄发生期及卵壳形成期。在卵黄发生期, 滋养细胞为卵母细胞提供养分后逐渐消亡, 而此时的卵母细胞可通过滤泡之间的细胞间隙从血淋巴中获取营养。在卵壳形成期间, 3种不同类型的滤泡细胞参与形成不同区域的卵壳, 从而形成不同花饰的卵壳表面。据此推测, 与其他目的滋养细胞数目相比, 每个卵室中2次有丝分裂形成3个滋养细胞可能是比较原始的特征, 表明长翅目昆虫可能是全变态类群中近基部的分支。  相似文献   

12.
The organization of the zona pellucida in the lizard Tarentola mauritanica was studied at the transmission electron microscope. Evidence is provided in support of the hypothesis that follicle cells and the oocyte work together to synthesize and release components that give rise to the zona .
The components of the zona consist of fibrils and amorphous electron-dense material, which are first observed in young previtellogenic oocytes. These components seem to be released by coated vesicles that are formed by the Golgi complex in both the oocyte and the follicle cells. The material relased by the coated vesicles forms patches around the microvilli that project from the oocyte and the folds of follicle cells. During the following previtellogenic stages, the patches merge together to form a continuous coat around the oocyte. The coat persists until the end of vitellogenesis.  相似文献   

13.
The developing ovaries of S. quercus contain a limited number of oogonial cells which undergo a series of incomplete mitotic divisions resulting in the formation of clusters of cystocytes. Ovaries of viviparous generations contain 6 to 9 clusters, containing 32 cystocytes each, whereas ovaries of oviparous generations contain 5 clusters containing 45-60 cystocytes. During further development, clusters become surrounded by a single layer of follicular cells, and within each cluster the cystocytes differentiate into oocytes and trophocytes (nurse cells). Concurrently, cysts transform into ovarioles. The anterior part of the ovariole containing the trophocytes becomes the tropharium, whereas its posterior part containing oocytes transforms into the vitellarium. The vitellaria of viviparous females are composed of one or two oocytes, which develop until previtellogenesis. The nuclei of previtellogenic oocytes enter cycles of mitotic divisions which lead to the formation of the embryo. Ovarioles of oviparous females contain a single oocyte which develops through three stages: previtellogenesis, vitellogenesis and choriogenesis. The ovaries are accompanied by large cells termed bacteriocytes which harbor endosymbiotic microorganisms.  相似文献   

14.
An analysis of differentiating oocytes of the gastropod, Ilyanassa obsoleta, has been made by techniques of light and electron microscopy. Early previtellogenic oocytes are limited by a smooth surfaced oolemma and are associated with each other by maculae adhaerentes. Previtellogenic oocytes are also distinguished by a large nucleus containing randomly dispersed aggregates of chromatin. Within the ooplasm are Golgi complexes, mitochondria and a few cisternae of the rough endoplasmic reticulum. When vitellogenesis begins, the oolemma becomes morphologically specialized by the formation of microvilli. One also notices an increase in the number of organelles and inclusions such as lipid droplets. During vitellogenesis there is a dilation of the saccules of the Golgi complexes and cisternae of the endoplasmic reticulum. Associated with the Golgi complexes are small protein-carbohydrate yolk precursors encompassed by a membrane. These increase in size by fusing with each other. The “mature” yolk body is a membrane-bounded structure with a central striated core and a granular periphery. At maturity a major portion of the ooplasmic constituents such as as mitochondria and lipid droplets occupy the animal region while the bulk of the population of yolk bodies are situated in the vegetal hemisphere. The follicle cells incompletely encompass the developing oocyte. In addition to the regularly occurring organelles, follicle cells are characterized by the presence of large quantities of rough endoplasmic reticulum and Golgi complexes whose saccules are filled with a dense substance. Associated with the Golgi saccules are secretory droplets of varied size. Amongst the differentiating oocytes and follicle cells are Leydig cells. These cells are characterized by a large vacuole containing glycogen. A possible function for the follicle and Leydig cells is discussed.  相似文献   

15.
The ultrastructure of the ovary and the developing oocytes of the polychaete Kefersteinia cirrata have been described. The paired ovaries occur in all segments from the 11th to the posterior. Each consists of several finger-like lobes around an axial genital blood vessel. Oogenesis is well synchronised, young oocytes start to develop in September and vitellogenesis begins in January and is completed by May.

The young oocytes are embedded among the peritoneal cells of the blood vessel wall which have accumulations of glycogen and other storage products. Each oocyte becomes associated with a follicle cell with abundant rough endoplasmic reticulum. Yolk synthesis involves the accumulation of electron dense granules along the cisternae of the abundant rough endoplasmic reticulum. Active Golgi complexes are present and are involved in the production of cortical alveoli. The oocyte has branched microvilli, which contact the follicle cells or blood sinuses between the follicle cells and peritoneal cells. In post-spawning individuals the lysosome system of the follicle cells is hypertrophied and the cells play a role in oocyte breakdown and resorption.  相似文献   

16.
McPherson SM  E H 《Tissue & cell》1993,25(3):399-421
The oocyte cortex undergoes dramatic changes during oogenesis in Rhodnius prolixus. Despite numerous studies examining oogenesis in the telotrophic ovariole, none has investigated the ultrastructural details of the oocyte cortex, in particular, the lateral cortical cytoskeleton. Indirect immunofluorescent staining of sections, rhodamine phalloidin staining of whole mounts and scanning and transmission EM of permeabilized and unpermeabilized preparations revealed the dynamic changes of the oocyte cortex from early previtellogenesis through to late vitellogenesis. During early previtellogenesis, oocytes 50-150 mum in length have a smooth oolemma, with no discernible cortical cytoskeleton. During mid to late previtellogenesis (oocytes 150-350 mum in length) a tightly woven network of microfilaments and microtubules forms, excluding mitochondria and Golgi complexes from the lateral cortex. At the onset of vitellogenesis, the follicuiar epithelium becomes patent, and there is an increase in microvilli covering the lateral oocyte surface. The microfilament cores form a discrete pattern that corresponds to the imprint of the follicle cells on the oocyte surface. While the lateral microfilament cytoskeleton becomes more elaborate, the lateral microtubule cytoskeleton diminishes, remaining sparse throughout vitellogenesis. The oocyte cortical cytoskeleton undergoes dramatic changes during oogenesis. These cortical dynamics are intricately related to the cellular and molecular processes that occur during oogenesis.  相似文献   

17.
We studied the ultrastructural organization of the ovarian follicles in a placentotrophic Andean lizard of the genus Mabuya. The oocyte of the primary follicle is surrounded by a single layer of follicle cells. During the previtellogenic stages, these cells become stratified and differentiated in three cell types: small, intermediate, and large globoid, non pyriform cells. Fluid‐filled spaces arise among follicular cells in late previtellogenic follicles and provide evidence of cell lysis. In vitellogenic follicles, the follicular cells constitute a monolayered granulosa with large lacunar spaces; the content of their cytoplasm is released to the perivitelline space where the zona pellucida is formed. The oolemma of younger oocytes presents incipient short projections; as the oocyte grows, these projections become organized in a microvillar surface. During vitellogenesis, cannaliculi develop from the base of the microvilli and internalize materials by endocytosis. In the juxtanuclear ooplasm of early previtellogenic follicles, the Balbiani's vitelline body is found as an aggregate of organelles and lipid droplets; this complex of organelles disperses in the ooplasm during oocyte growth. In late previtellogenesis, membranous organelles are especially abundant in the peripheral ooplasm, whereas abundant vesicles and granular material occur in the medullar ooplasm. The ooplasm of vitellogenic follicles shows a peripheral band constituted by abundant membranous organelles and numerous vesicular bodies, some of them with a small lipoprotein core. No organized yolk platelets, like in lecithotrophic reptiles, were observed. Toward the medullary ooplasm, electron‐lucent vesicles become larger in size containing remains of cytoplasmic material in dissolution. The results of this study demonstrate structural similarities between the follicles of this species and other Squamata; however, the ooplasm of the mature oocyte of Mabuya is morphologically similar to the ooplasm of mature oocytes of marsupials, suggesting an interesting evolutionary convergence related to the evolution of placentotrophy and of microlecithal eggs. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Summary Late stages of oogenesis in Acerentomon gallicum Jonescu have been studied by means of light and electron microscopy. Each of the two ovaries of this species consists of a single panoistic ovariole. Late previtellogenic and early vitellogenic oocytes are enclosed in an electron opaque layer, the so-called primary sheath. The precursors for this sheath are most likely synthesized by follicle cells. The yolk develops through autosynthesis, with free ribosomes, dictyosomes and lamellar bodies being involved in the process. Mature yolk spheres contain proteins and polysaccharides. Besides the organelles that take part in vitellogenesis, mitochondria and cisternal stacks of the rough endoplasmic reticulum occur in the ooplasm.This work was supported by Government Problem Grant ii-1.3.13  相似文献   

19.
The ovaries of aphids belonging to the families Eriosomatidae, Anoeciidae, Drepanosiphidae, Thelaxidae, Aphididae, and Lachnidae were examined at the ultrastructural level. The ovaries of these aphids are composed of several telotrophic ovarioles. The individual ovariole is differentiated into a terminal filament, tropharium, vitellarium, and pedicel (ovariolar stalk). Terminal filaments of all ovarioles join together into the suspensory ligament, which attaches the ovary to the lobe of the fat body. The tropharium houses individual trophocytes and early previtellogenic oocytes termed arrested oocytes. Trophocytes are connected with the central part of the tropharium, the trophic core, by means of broad cytoplasmic processes. One or more oocytes develop in the vitellarium. Oocytes are surrounded by a single layer of follicular cells, which do not diversify into distinct subpopulations. The general organization of the ovaries in oviparous females is similar to that of the ovaries in viviparous females, but there are significant differences in their functioning: (1) in viviparous females, all ovarioles develop, whereas in oviparous females, some of them degenerate; (2) the number of germ cells per ovariole is usually greater in females of the oviparous generation than in females of viviparous generations; (3) in oviparous females, oocytes in the vitellarium develop through three stages (previtellogenesis, vitellogenesis, and choriogenesis), whereas in viviparous females, the development of oocytes stops after previtellogenesis; and (4) in the oocyte cytoplasm of oviparous females, lipid droplets and yolk granules accumulate, whereas in viviparous females, oocytes accrue only lipid droplets. Our results indicate that a large number of germ cells per ovariole represent the ancestral state within aphids. This trait may be helpful in inferring the phylogeny of Aphidoidea.  相似文献   

20.
Voigt  Hanno  Hülsmann  Stephan 《Hydrobiologia》2001,449(1-3):253-259
Ovaries from mature giant red shrimp Aristaeomorpha foliacea were investigated histochemically and ultrastructurally. Four growing stages of the oocytes were distinguished: premeiosis stage, previtellogenetic stage, early vitellogenic stage and late vitellogenic stage. In addition, occasional resorptive oocytes were found. Oogonia and premeiotic oocytes were found in germinative zones. Previtellogenic and vitellogenic oocytes were localized in maturative zones. As vitellogenesis proceeded, oocytes showed a progressive development in the number of lipid droplets as well as in the extension of RER, constituted of dilated cisternae, uniformely scattered throughout the cytoplasm. The RER produced yolk granules and a lampbrush-like substance. The latter was released under the oolemma and constituted a characteristic cortical zone. The oolemma did not develop microvilli or micropinocytotic vesicles to incorporate yolk precursors. Thus, the protein yolk appeared to be of endogenous origin. Few somatic cells were found around the oocytes, but they never gave place to a continuous epithelial layer around oocytes, thus it is not possible to speak of ovarian follicle. The cytoplasm of these mesodermal-oocyte associated cells (MOAC) was characterized by a typical steroidogenic apparatus. Few resorptive immature oocytes were found inside late vitellogenic oocytes. Since the ovaries were packed with late vitellogenic oocytes and the few immature oocytes were hardly detectable, oocyte maturation occurred in a synchronous way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号