首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequences analysis revealed Grass carp reovirus (GCRV) s10 was 909 nucleotides coding a 34 kDa protein denoted as VP7, which was determined to be a viral outer capsid protein (OCP). To obtain expressed OCP in vitro, a full length VP7 gene was produced by RT-PCR amplification, and the amplified fragment was cloned into T7 promoted prokaryotic expression vector pRSET. The recombinant plasmid, which was named as pR/GCRV-VP7, was then transformed into E.coli BL21 host cells. The data indicated that the expressed recombinant was in frame with the N-terminal fusion peptide. The over-expressed fusion protein was produced by inducing with IPTG, and its molecular weight was about 37kDa, which was consistent with its predicted size. In addition, the fusion protein was produced in the form of the inclusion body with their yield remaining steady at more than 60% of total bacterial protein. Moreover, the expressed protein was able to bind immunologically to anti-his-tag monoclonal antibody (mouse) and anti-GCRV serum (rabbit). This work provides a research basis for further structure and function studies of GCRV during entry into cells  相似文献   

2.
Grass carp reovirus (GCRV) is a tentative member of the Aquareovirus genus in the family Reoviridae. The mature virion comprises 11 dsRNA genomes enclosed by two concentric icosahedral proteins shells that is comprised of five core proteins and two outer capsid proteins. The genome sequence and 3D structure demonstrate there is a higher level of sequence homology in structural proteins between GCRV and mammalian orthoreoviruses (MRV) compared to other members of the family. To understand the pathogenesis of GCRV infection, the outer capsid protein VP5, a homology of the μ1 protein of MRV, was expressed in E.coli. It was found that the recombinant VP5 was highly expressed, and the expressed His-tag fusion protein was involved in the formation of the inclusion body. Additionally, specific anti-VP5 serum was prepared from purified protein and western blot demonstrated that the expressed protein was able to bind immunologically to rabbit anti GCRV particle serum and the immunogenicity was determined by ELISA assay. Additional experiments in investigating the functional properties of VP5 will further elucidate the role of the GCRV outer capsid protein VP5 during entry into host cells, and its interaction among viral proteins and host cells during the infection process.  相似文献   

3.
草鱼呼肠孤病毒(Grass carp reovirus, GCRV)是导致该病的主要病原, 研究将Ⅰ型草鱼呼肠孤病毒GCRV-873株的外衣壳蛋白VP7基因进行原核表达, 获得高度纯化VP7重组蛋白, 通过免疫BALB/c小鼠, 首次制备筛选得到高效价单克隆抗体。结果显示, GCRV-I vp7基因可在原核表达系统中高效表达, 主要以包涵体形式存在, 大小约为40 kD。免疫小鼠后筛选到了5株IgG类型阳性杂交瘤细胞株, 其中3株亚型为IgG1, 2株亚型为IgG2a。Western Blot实验和直接免疫荧光实验显示, 该抗体可特异识别GCRV-873, 并且ELISA检测原核重组蛋白的效价高达204800, 亲和常数为4.04×109。研究制备的VP7蛋白单克隆抗体, 为GCRV-I病毒诊断技术开发及病毒感染机制的深入研究提供实验基础。  相似文献   

4.
VP39是草鱼呼肠孤Ⅲ型病毒(GCRV GenotypeⅢ, GCRV-Ⅲ)S9基因编码的蛋白,为研究VP39蛋白在GCRV-Ⅲ感染草鱼细胞过程中行使的生物学功能,将克隆VP39基因序列并构建原核表达载体pET32a-VP39,通过原核表达得到VP39-HIS融合蛋白;利用VP39蛋白溶液免疫小鼠,制备鼠抗VP39多克隆抗体,通过Western Blot对抗体进行评估;利用制备的多克隆抗体探究GCRV-Ⅲ感染细胞过程中VP39蛋白表达动力学;利用噬菌体展示技术筛选与VP39蛋白特异性结合的多肽序列并进行分析。SDS-PAGE电泳结果显示, VP39-HIS融合蛋白可良好溶于PBS中,蛋白大小约为39 kD; Western Blot检测表明实验所制备的VP39多克隆抗体在1:10000稀释比例下,既能识别原核表达的VP39-HIS融合蛋白,也能识别GCRV-Ⅲ感染CIK细胞后表达的VP39蛋白,具有良好的效价与特异性;在病毒侵染过程中, VP39前期表达量较少,在中后期大量表达;噬菌体展示技术筛选出两条多肽与VP39蛋白有高度亲和性,经过在NCBI上比对后发现草鱼基因组中有7个基因与筛...  相似文献   

5.
Grass carp reovirus(GCRV),a disaster agent to aquatic animals,belongs to Genus Aquareovirus of family Reoviridea.Sequence analysis revealed GCRV genome segment 8(s8) was 1 296 bp nucleotides in length encoding an inner capsid protein VP6 of about 43kDa.To obtain in vitro non-fusion expression of a GCRV VP6 protein containing a molecular of fluorescence reporter,the recombinant baculovirus,which contained the GCRVs8 and eGFP(enhanced green fluorescence protein) genes,was constructed by using the Bac-to-Bac insect expression system.In this study,the whole GCRVs8 and eGFP genes,amplified by PCR,were constructed into a pFastBacDual vector under polyhedron(PH) and p10 promoters,respectively.The constructed dual recombinant plasmid(pFbDGCRVs8/eGFP) was transformed into DH10Bac cells to obtain recombinant Bacmid(AcGCRVs8/eGFP) by transposition.Finally,the recombinant bacluovirus(vAcGCRVs8/eGFP) was obtained from transfected Sf9 insect cells.The green fluorescence that was expressed by transfected Sf9 cells was initially observed 3 days post transfection,and gradually enhanced and extended around 5 days culture in P1(Passage1) stock.The stable high level expression of recombinant protein was observed in P2 and subsequent passage budding virus(BV) stock.Additionally,PCR amplification from P1 and amplified P2 BV stock further confirmed the validity of the dual-recombinant baculovirus.Our results provide a foundation for expression and assembly of the GCRV structural protein in vitro.  相似文献   

6.
Grass carp reovirus (GCRV), a disaster agent to aquatic animals, belongs to Genus Aquareovirus of family Reoviridea. Sequence analysis revealed GCRV genome segment 8 (s8) was 1 296 bp nucleotides in length encoding an inner capsid protein VP6 of about 43kDa. To obtain in vitro non-fusion expression of a GCRV VP6 protein containing a molecular of fluorescence reporter, the recombinant baculovirus, which contained the GCRVs8 and eGFP (enhanced green fluorescence protein) genes, was constructed by using the Bac-to-Bac insect expression system. In this study, the whole GCRVs8 and eGFP genes, amplified by PCR, were constructed into a pFastBacDual vector under polyhedron (PH) and p10 promoters, respectively. The constructed dual recombinant plasmid (pFbDGCRVs8/eGFP) was transformed into DH10Bac cells to obtain recombinant Bacmid (AcGCRVs8/eGFP) by transposition. Finally, the recombinant bacluovirus (vAcGCRVs8/eGFP) was obtained from transfected Sf9 insect cells. The green fluorescence that was expressed by transfected Sf9 cells was initially observed 3 days post transfection, and gradually enhanced and extended around 5 days culture in P1(Passage1) stock. The stable high level expression of recombinant protein was observed in P2 and subsequent passage budding virus (BV) stock. Additionally, PCR amplification from P1 and amplified P2 BV stock further confirmed the validity of the dual-recombinant baculovirus. Our results provide a foundation for expression and assembly of the GCRV structural protein in vitro. Undergraduate training student from College of Life Sciences, Wuhan University.  相似文献   

7.
获得稳定、高效的具有良好抗原性的蓝舌病毒(Bluetongue virus,BTV)vp7基因重组抗原。将BTV编码群特异性抗原VP7的S7基因片段克隆至pMD18-T质粒载体中,构建S7克隆重组质粒,进行核苷酸序列分析。与已报道的多株BTV编码VP7的基因比较后发现,所测定毒株的核苷酸序列与BTV10型的S7基因同源性高达98.7%,推测的氨基酸同源性为99.3%,证实为BTV的S7基因。然后亚克隆插入pBAD/Thio TOPO表达载体,转化LGM194细胞,经抗性培养、PCR、限制性内切酶分析、测序鉴定,筛选获得BTV S7基因片段正向插入、有正确读码框的阳性克隆,成功构建了BTV群特异性抗原VP7的重组表达载体。经L-araboinose诱导表达,可稳定、高效地表达VP7蛋白抗原。SDS-PAGE、ELISA试验表明,表达蛋白为融合蛋白,具有反应原性,分子量约54.5kD,重组蛋白的获得率为1.52mg/g湿菌,其表达产量约占菌体总蛋白的12%左右,相当于93.5mg/L菌液。融合蛋白中含有BTV VP7特异性蛋白抗原,可作为c-ELISA包被抗原,为蓝舌病的免疫血清学诊断试剂的制备和分子生物学研究打下了坚实基础。  相似文献   

8.
9.
《Journal of Asia》2019,22(4):1167-1172
Porcine parvovirus (PPV) is a significant causative agent of porcine reproductive failure, causing serious economic losses in the swine industry. PPV is a nonenveloped virus, and its capsid is assembled from three viral proteins (VP1, VP2, and VP3). The major capsid protein, VP2, is the main target for PPV neutralizing antibodies and vaccine development. In this study, PPV-VP2 protein was expressed in silkworm larvae, and its antigenicity and production were compared with those in B. mori cells (Bm5). The recombinant VP2 protein was expressed successfully in silkworm larvae and Bm5 cells with a size of approximately 64 kDa. The formation of virus-like particles (VLPs) by recombinant PPV-VP2 was confirmed through transmission electron microscopy. The recombinant PPV-VP2 protein assembled into spherical particles with diameters ranging from 20 to 22 nm. The antigenicity of PPV-VLPs was comparatively analyzed between Bm5 cells and silkworm larvae by ELISA, hemagglutination and hemagglutination inhibition assays. Consequently, it was confirmed that the PPV-VLPs produced in the silkworm larvae were more antigenic than VLPs produced in Bm5 cells. Therefore, it is expected that economical and effective vaccine development will be possible by mass production of PPV-VLPs in silkworm larvae.  相似文献   

10.
草鱼呼肠孤病毒是引起草鱼出血病的主要病原,隶属于呼肠孤病毒科水生呼肠孤病毒属。序列分析表明,GCRVS2片段长为3877核苷酸,编码一个分子量为138kDa的蛋白VP2,具有RNA聚合酶性质。为进一步了解该病毒RNA聚合酶特性,本研究在对GCRV RNA聚合酶基因(GCRV—RdRp)保守区(约1.5kb)重组质粒pR/RRp高效表达的基础上,分别构建了编码GCRV RNA聚合酶保守区N端与C端部分基因的pR/RRpN及pR/RRpC重组表达载体,并在原核细胞中获得成功表达。筛选的重组表达菌株经IPTG诱导培养,得到分子量分别为98kDa、103kDa的目的表达融合蛋白。Western blot分析表明,该表达产物与兔抗GCRV—VP2血清呈阳性反应。通过ProBond柱亲和层析,纯化了融合有6个组氨酸的重组表达产物,并获得约90%纯的目的蛋白。上述结果为GCRV RNA聚合酶特性分析提供了依据。  相似文献   

11.
非洲猪瘟病毒VP73基因克隆及在大肠杆菌中的高效表达   总被引:2,自引:0,他引:2  
参照Genebank中非洲猪瘟VP73基因序列,人工合成的VP73全基因克隆至pMD 18-T克隆载体质粒中,采用PCR扩增得到1188 bp的VP73基因;将VP73基因片段亚克隆插入pBAD/Thio表达载体,经测序鉴定,筛选获得VP73基因正向插入、有正确读码框的阳性克隆,成功构建了非洲猪瘟病毒VP73基因重组表达载体。经L-Arabinose诱导表达,可稳定、高效地表达VP73蛋白抗原。SDS-PAGE结果表明,以终浓度为0.002 %的L-Arabinose进行诱导,4 h后表达量最高,表达蛋白为融合蛋白,分子量约60 kDa,表达产量约占菌体总蛋白的30%。Western blotting和ELISA检测表明,表达的融合蛋白能与非洲猪瘟阳性血清发生特异性反应,说明表达获得的产物为非洲猪瘟病毒VP73融合蛋白,且具有良好的反应原性,这为应用该表达蛋白抗原制备ASFV免疫血清学诊断试剂和疫苗研究奠定了基础。  相似文献   

12.
利用噬菌体展示技术淘选草鱼呼肠孤病毒的单链抗体   总被引:1,自引:0,他引:1  
草鱼呼肠孤病毒(GCRV)是引起我国大面积草鱼幼鱼出血病暴发的主要病原,其外衣壳蛋白VP5和VP7在病毒入侵宿主细胞过程中起着至关重要的作用。研究以原核表达的VP7、全长VP5、VP5的N端片段及C端片段为靶蛋白,利用已构建的噬菌体展示单链抗体文库进行淘选。经过3轮淘选后,共获得7个针对VP7、VP5、VP5N和VP5C的单链抗体。经过验证,识别原核表达的VP7的两个单链抗体能够成功识别天然GCRV病毒。此结果对于进一步研究GCRV与宿主细胞的相互作用机理奠定了基础。    相似文献   

13.
The bluetongue virus (BTV) minor protein VP4, with molecular mass of 76 kDa, is one of the seven structural proteins and is located within the inner capsid of the virion. The protein has a putative leucine zipper near the carboxy terminus of the protein. In this study, we have investigated the functional activity of this putative leucine zipper by a number of approaches. The putative leucine zipper region (amino acids [aa] 523 to 551) was expressed initially as a fusion protein by using the pMAL vector of Escherichia coli, which expresses a maltose binding monomeric protein. The expressed fusion protein was purified by affinity chromatography, and its size was determined by gel filtration chromatography. Proteins of two sizes, 51 and 110 kDa, were recovered, one equivalent to the monomeric form and the other equivalent to the dimeric form of the fusion protein. To prove that the VP4-derived sequence was responsible for dimerization of this protein, a mutated fusion protein was created in which a VP4 leucine residue (at aa 537) within the zipper was replaced by a proline residue. Analyses of the mutated protein demonstrated that the single mutation indeed prevented dimerisation of the protein. The dimeric nature of VP4 was further confirmed by using purified full-length BTV-10 VP4 recovered from recombinant baculovirus-expressing BTV-10 VP4-infected insect cells. Using chemical cross-linking and gel filtration chromatography, we documented that the native VP4 indeed exists as a dimer in solution. Subsequently, Leu537 was replaced by either a proline or an alanine residue and the full-length mutated VP4 was expressed in the baculovirus system. By sucrose density gradient centrifugation and gel filtration chromatography, these mutant forms of VP4 were shown to lack the ability to form dimers. The biological significance of the dimeric forms of VP4 was examined by using a functional assay system, in which the encapsidation activity of VP4 into core-like particles (CLPs) was studied (H. LeBlois, T. French, P. P. C. Mertens, J. N. Burroughs, and P. Roy, Virology 189:757–761, 1992). We demonstrated conclusively that dimerization of VP4 was essential for encapsidation by CLPs.  相似文献   

14.
15.
通过RT-PCR扩增获得PfDNV结构蛋白基因VP1含磷脂酶A2(PLA2)功能区片段,将其连接到pMD18-T载体上并亚克隆到原核表达载体pET28a和pET26b,构建阅读框架正确的重组表达载体pET28a-PLA和pET26b-PLA,转化大肠杆菌BL21-codonplus(DE3)-RIL,经IPTG诱导,SDS-PAGE显示得到了目的融合蛋白,以抗组氨酸的单克隆抗体对经Ni-NTA亲和层析柱纯化的目的蛋白进行了westernblot鉴定,结果表明成功表达PfDNV结构蛋白PLA2,对于研究该酶的生物学特性及其在病毒对细胞侵染过程中的功能奠定了基础。  相似文献   

16.
Grass carp reovirus (GCRV), a double stranded RNA virus that infects aquatic animals, often with disastrous effects, belongs to the genus Aquareovirus and family Reoviridea. Similar to other reoviruses, genome replication of GCRV in infected cells occurs in cytoplasmic inclusion bodies, also called viral factories. Sequences analysis revealed the nonstructural protein NS80, encoded by GCRV segment 4, has a high similarity with uNS in MRV(Mammalian orthoreoviruses), which may be associated with viral factory formation. To understand the function of the uNS80 protein in virus replication, the initial expression and identification of the immunogenicity of the GCRV NS80 protein inclusion forming-related region (335.742) was investigated in this study. It is shown that the over-expressed fusion protein was produced by inducing with IPTG at 28oC. In addition, serum specific rabbit antibody was obtained by using super purified recombinant NS80(335.742) protein as antigen. Moreover, the expressed protein was able to bind to anti-his-tag monoclonal antibody (mouse) and NS80(335-742) specific rabbit antibody. Further western blot analysis indicates that the antiserum could detect NS80 or NS80C protein expression in GCRV infected cells. This data provides a foundation for further investigation of the role of NS80 in viral inclusion formation and virion assembly.  相似文献   

17.
利用PCR技术,从传染性法氏囊病病毒(IBDV)Gx,Gt毒株中分别扩增出VP5基因,将其克隆到表达载体pET30a、pET28a中。经PCR、酶切和序列分析鉴定获得重组质粒命名为pET28a-GtVP5、pET30a-GxVP5。将pET30a-GxVP5、pET28a-GtVP5分别转化宿主菌BL21(DE3),在IPTG诱导下均成功表达约24 kDa的Gx-VP5及23kDa的Gt-VP5融合蛋白,并都以包涵体形式存在。将Gx-VP5纯化后的蛋白免疫8周龄BALB/c雌鼠,ELISA分析表明制备的抗血清效价在1:25600以上,Western blot分析VP5表达产物能与抗6×His mAb及抗IBDV多克隆抗血清发生反应,具有良好的免疫反应特异性。  相似文献   

18.
以猪水泡病病毒RNA为模板,应用反转录聚合酶链式反应(RT-PCR)技术,扩增了849bp的VP1基因,通过T-A克隆技术,将VP1基因片段克隆至pMD18-T克隆载体质粒中,构建SVDVVP1基因克隆重组质粒,进行核苷酸序列分析。然后亚克隆插入pBAD/ThioTOPO表达载体,经测序鉴定,筛选获得VP1基因正向插入、有正确读码框的阳性克隆,成功构建了猪水泡病病毒VP1基因重组表达载体。经L-Arabinose诱导表达,可稳定、高效地表达VP1蛋白抗原。SDS-PAGE结果表明,以终浓度为0.002%的L-阿拉伯醛糖进行诱导,5h后表达可达到高峰,表达蛋白为融合蛋白,质量约47.13kDa,表达产量约占菌体总蛋白的16%。Westernblotting检测表明,诱导的蛋白能与猪水泡病阳性血清发生特异性反应。融合蛋白中含有猪水泡病病毒VP1蛋白抗原,为应用该表达蛋白抗原制备SVD免疫血清学诊断试剂和新型疫苗构建奠定基础。  相似文献   

19.
The outer capsid protein of rotavirus, VP7, is a major neutralization antigen and is considered a necessary component of any subunit vaccine developed against rotavirus infection. For this reason, significant effort has been directed towards producing recombinant VP7 that maintains the antigenic characteristics of the native molecule. Using a relatively new expression system, the simple eukaryote Dictyostelium discoideum, we have cloned the portion of simian rotavirus SA11 genome segment 9, encoding the mature VP7 protein, downstream of a native D. discoideum secretion signal sequence in a high-copy-number extrachromosomal vector. The majority of the recombinant VP7 expressed by transformants was intracellular and was detected by Western immunoblot following gel electrophoresis as two or three bands with an apparent molecular mass of 35.5 to 37.5 kDa. A small amount of VP7 having an apparent molecular mass of 37.5 kDa was secreted. Both the intracellular VP7 and the secreted VP7 were N glycosylated and sensitive to endoglycosidase H digestion. Under nonreducing electrophoresis conditions, over half the intracellular VP7 migrated as a monomer while the remainder migrated with an apparent molecular mass approximately twice that of the monomeric form. In an enzyme-linked immunosorbent assay, intracellular VP7 reacted with both nonneutralizing and neutralizing antibodies. The monoclonal antibody recognition pattern paralleled that found with VP7 expressed in either vaccinia virus or herpes simplex virus type 1 and confirms that D. discoideum-expressed VP7 is able to form the major neutralization domains present on viral VP7. Because D. discoideum cells are easy and cheap to grow, this expression system provides a valuable alternative for the large-scale production of recombinant VP7 protein.  相似文献   

20.
牛乳铁蛋白肽(bovine lactoferrincin,LfcinB)来源于牛乳铁蛋白(bovine lactoferrin),是目前已知所有乳铁蛋白肽中活性最高的。前期研究表明,可以通过大肠杆菌表达体系和毕赤酵母表达体系表达有活性的LfcinB,但得到的产物难以纯化,产量也不理想,所以研究构建新型的LfcinB表达体系有很重要的意义。苏云金芽胞杆菌(Bacillus thuringiensis, Bt)能在芽胞形成的同时产生一种δ-内毒素组装成的杀虫晶体,在发酵完成后细胞裂解,将芽胞和晶体释放到培养基中。基于Bt的这种优势,将LfcinB与分子量为35kDa的Cry60Ba晶体蛋白作融合表达。通过PCR扩增和酶切连接,将LfcinB基因连接到 cry60Ba 的下游,构建融合基因并转入无晶体Bt菌株中表达,得到了工程菌4Q7/pPFT60Ba-LfcinB。利用GYS培养发酵48h,再经过超声破碎、包涵体纯化,SDS-PAGE分析表明,工程菌表达了一条38kDa左右的蛋白质条带。将纯化的融合蛋白盐酸水解后进行SDS-PAGE分析,得到近似于3kDa的蛋白质条带,挖取目的条带进行胶内酶解和质谱分析,质谱结果显示,挖取的目的条带样品为LfcinB蛋白的特异性肽段,说明在酸水解过后,融合蛋白Cry60Ba-LfcinB中的Cry60Ba和LfcinB分离开,得到单独的LfcinB蛋白。由此可见,利用晶体蛋白在苏云金芽胞杆菌中进行融合表达可能作为一种新型有效的LfcinB的高效表达体系,为采用基因工程的方法大量生产具有活性的牛乳铁蛋白肽LfcinB蛋白奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号