首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The cell-wall polysaccharides of Arabidopsis thaliana leaves have been isolated, purified, and characterized. The primary cell walls of all higher plants that have been studied contain cellulose, the three pectic polysaccharides homogalacturonan, rhamnogalacturonan I and rhamnogalacturonan II, the two hemicelluloses xyloglucan and glucuronoarabinoxylan, and structural glycoproteins. The cell walls of Arabidopsis leaves contain each of these components and no others that we could detect, and these cell walls are remarkable in that they are particularly rich in phosphate buffer-soluble polysaccharides (34% of the wall). The pectic polysaccharides of the purified cell walls consist of rhamnogalacturonan I (11%), rhamnogalacturonon II (8%), and homogalacturonan (23%). Xyloglucan (XG) accounts for 20% of the wall, and the oligosaccharide fragments generated from XG by endoglucanase consist of the typical subunits of other higher plant XGs. Glucuronoarabinoxylan (4%), cellulose (14%) and protein (14%) account for the remainder of the wall. Except for the phosphate buffer-soluble pectic polysaccharides, the polysaccharides of Arabidopsis leaf cell walls occur in proportions similar to those of other plants. The structure of the Arabidopsis cell-wall polysaccharides are typical of those of many other plants.  相似文献   

2.
Plant cell walls consist of carbohydrate, protein, and aromatic compounds and are essential to the proper growth and development of plants. The carbohydrate components make up ∼90% of the primary wall, and are critical to wall function. There is a diversity of polysaccharides that make up the wall and that are classified as one of three types: cellulose, hemicellulose, or pectin. The pectins, which are most abundant in the plant primary cell walls and the middle lamellae, are a class of molecules defined by the presence of galacturonic acid. The pectic polysaccharides include the galacturonans (homogalacturonan, substituted galacturonans, and RG-II) and rhamnogalacturonan-I. Galacturonans have a backbone that consists of α-1,4-linked galacturonic acid. The identification of glycosyltransferases involved in pectin synthesis is essential to the study of cell wall function in plant growth and development and for maximizing the value and use of plant polysaccharides in industry and human health. A detailed synopsis of the existing literature on pectin structure, function, and biosynthesis is presented.  相似文献   

3.
Three-day-cultured cells of Vinca rosea L. (in the cell division phase) and 5-day-cultured cells (in the cell expansion phase) prelabelled with d -[U-14C] glucose were incubated in a medium containing unlabelled glucose. After various periods of chase, extra-cellular polysaccharides (ECP) and cell walls were isolated, and cell walls were fractionated into pectic substances, hemicellulose, and cellulose fractions. After acid hydrolysis, the radioactive constituents in the pectic substances and hemicellulose fractions were analyzed. Active turnover was observed in arabinose and galactose in the hemicellulose fraction of cell walls, while the constituents of the pectic substances, and xylose and glucose in the hemicellulose fraction did not undergo active turnover. The proportion of radioactivities of arabinose and galactose in total radioactivity of ECP increased markedly after chasing. These results indicate that arabinogalactan was synthesized, deposited in the cell wall, degraded rapidly, and made soluble in the medium as a part of ECP.  相似文献   

4.
Turnover of cell wall polysaccharides of a Vinca rosea suspension culture   总被引:1,自引:0,他引:1  
Turnover of cell wall components was examined in two growth phases of a batch suspension culture of Vinca rosea L. Three-day-cultured cells (cell division phase) and 5-day-cultured cells (cell expansion phase) were incubated with d -[U-14C]glucose. After various periods of incubation, extra-cellular polysaccharides (ECP) and cell walls were isolated, and then the cell walls were fractionated to pectic substance, hemicellulose, and cellulose fractions. The results of the measurement of radioactivities and amounts of total carbohydrate in the ECP and cell wall fractions indicated that synthesis of pectic substance was more active in the cell division phase than in the cell expansion phase. From the results of the pulse-chase experiments, in which cells prelabelled by incubation with d -[U-14C]glucose for 3 h were incubated in a medium containing unlabelled glucose for various periods, the gross degradation, net synthesis, and gross synthesis of cell wall components were estimated. Active degradation and synthesis were observed in the hemicellulose fraction, indicating that active turnover occurred in the hemicellulose fraction, while little degradation was found in the pectic substance and cellulose fractions.  相似文献   

5.
Jensen , William A. (U. California, Berkeley.) The composition of the developing primary wall in onion root tip cells. II. Cytochemical localization. Amer. Jour. Bot. 47(4) : 287—295. Illus. 1960.–The composition of the developing cell wall in the first 2 mm. of the onion root tip was studied using a cytochemical technique that permitted the detection of hemicellulose and the noncellulosic polysaccharides as well as the pectic substances and cellulose. The technique is based on the combination of a differential extraction procedure with the periodic acid-Schiff reaction for carbohydrates. The data obtained indicate that the cells of the apical initials are low in all wall substances but that all of the wall materials are present to some extent. Early in cell development, differences appear in the composition of the walls of the various tissues. The cortical cells are relatively high in the noncellulosic polysaccharides and cellulose while relatively low in the pectic substances and hemicellulose. Very early in development the protoderm is similar to the cortex, but differences develop during the radial enlargement of the cells. During this stage the walls of the protodermal cells are low in the noncellulosic polysaccharides and cellulose and high in pectic substances and hemicellulose. As elongation progresses, these differences are lost and the 2 tissues become very similar. The vascular cell walls are low in the noncellulosic polysaccharides and cellulose and are high in pectic substances and hemicellulose early in development. Later, hemicellulose becomes relatively more important. When the cell wall materials are sequentially extracted, no change in the general morphology of the cell occurs until only the noncellulosic polysaccharides and the cellulose remained. When the noncellulosic polysaccharides are then removed, the cells remain intact but are 30% less in diameter. This suggests that while cellulose is of critical importance, the noncellulosic polysaccharides may play a major role in determining the physical characteristics of the wall.  相似文献   

6.
BACKGROUND AND AIMS: Projections of cell wall material into the intercellular spaces between parenchymatic cells have been observed since the mid-19th century. Histochemical staining suggested that these intercellular protuberances are probably pectic in nature, but uncertainties about their origin, composition and biological function(s) have remained. METHODS: Using electron and light microscopy, including immunohistochemical methods, the structure and the presence of some major cell wall macromolecules in the intercellular pectic protuberances (IPPs) of the cortical parenchyma have been studied in a specimen of the Asplenium aethiopicum complex. KEY RESULTS: IPPs contained pectic homogalacturonan, but no evidence for pectic rhamnogalacturonan-I or xylogalacturonan epitopes was obtained. Arabinogalactan-proteins and xylan were not detected in cell walls, middle lamellae or IPPs of the cortical parenchyma, whereas xyloglucan was only found in its cell walls. Extensin (hydroxyproline-rich glycoproteins) LM1 and JIM11 and JIM20 epitopes were detected specifically in IPPs but not in their adjacent cell walls or middle lamellae. CONCLUSIONS: It is postulated that IPPs do not originate exclusively from the middle lamellae because extensins were only found in IPPs and not in surrounding cell walls, intercellular space linings or middle lamellae, and because IPPs and their adjacent cell walls are discontinuous.  相似文献   

7.
Summary The first stages of cell wall formation were followed in the root meristems of maize and French bean. Most of the primary wall components (hemicellulose, cellulose and highly methylated pectins) were laid down simultaneously along the cell plate. During young cell wall maturation within the meristem itself, significant topochemical alterations, coupled with the addition of new polysaccharides, produced complete redistribution of wall material leading to the progressive appearance of a proper middle lamella. Thus the formation of a pectic middle lamella does not precede the deposition of primary walls. It is delayed until the new partition joins to the mother cell wall.Abbreviations DMSO dimethylsulphoxide - EDTA ethylene diaminetetraacetic acid - PATAg periodic acid-thiocarbohydrazide-silver proteinate  相似文献   

8.
Although the Dasycladalean alga Acetabularia acetabulum has long been known to contain mannan-rich walls, it is not known to what extent wall composition varies as a function of the elaborate cellular differentiation of this cell, nor has it been determined what other polysaccharides accompany the mannans. Cell walls were prepared from rhizoids, stalks, hairs, hair scars, apical septa, gametophores and gametangia, subjected to nuclear magnetic resonance and Fourier transform infrared spectroscopy, and analyzed for monosaccharide composition and linkage, although material limitations prevented some cell regions from being analyzed by some of the methods. In diplophase, walls contain a para-crystalline mannan, with other polysaccharides accounting for 10-20% of the wall mass; in haplophase, gametangia have a cellulosic wall, with mannans and other polymers representing about a quarter of the mass. In the walls of the diplophase, the mannan appears less crystalline than typical of cellulose. The walls of both diploid and haploid phases contain little if any xyloglucan or pectic polysaccharides, but appear to contain small amounts of a homorhamnan, galactomannans and glucogalactomannans, and branched xylans. These ancillary polysaccharides are approximately as abundant in the cellulose-rich gametangia as in the mannan-rich diplophase. In the diplophase, different regions of the cell differ modestly but reproducibly in the composition of the cell wall. These results suggest unique cell wall architecture for the mannan-rich cell walls of the Dasycladales.  相似文献   

9.
Cell walls of a storage organ (potato tubers) showed autolysis-likeactivity. After 20 h of incubation in water at 35°C, thepurified cell walls released approximately 10% of the cell walldry weight as pectic polysaccharides containing about 40% ofthe total galacturonic acid present in the cell walls. Virtuallyno neutral polysaccharides were found in the soluble fraction.The pectic polysaccharides were heterogeneous in galacturonicacid content and had a very large molecular size. The releaseof pectic polymers was caused neither by enzymatic reactionsnor by ß-elimination, but by a chelation of Ca2+ and/orother metal ions during the cell wall isolation. Ultrastructuralobservations clearly showed that these pectic polysaccharideswere released not from the middle lamella, but from the primarycell wall adjacent to the plasma membrane. These results indicatethat nearly half of cell wall pectic polysaccharides are heldin the primary wall only by Ca2+- and/or other metal-bridgesand that these pectic polymers are not associated with the middlelamella. (Received March 20, 1989; Accepted October 3, 1989)  相似文献   

10.
The partial purification and characterization of cell wall polysaccharides isolated from suspension-cultured Douglas fir (Pseudotsuga menziesii) cells are described. Extraction of isolated cell walls with 1.0 m LiCl solubilized pectic polysaccharides with glycosyl-linkage compositions similar to those of rhamnogalacturonans I and II, pectic polysaccharides isolated from walls of suspension-cultured sycamore cells. Treatment of LiCl-extracted Douglas fir walls with an endo-α-1,4-polygalacturonase released only small, additional amounts of pectic polysaccharide, which had a glycosyl-linkage composition similar to that of rhamnogalacturonan I. Xyloglucan oligosaccharides were released from the endo-α-1,4-polygalacturonase-treated walls by treatment with an endo-β-1,4-glucanase. These oligosaccharides included hepta- and nonasaccharides similar or identical to those released from sycamore cell walls by the same enzyme, and structurally related octa- and decasaccharides similar to those isolated from various angiosperms. Finally, additional xyloglucan and small amounts of xylan were extracted from the endo-β-1,4-glucanase-treated walls by 0.5 n NaOH. The xylan resembled that extracted by NaOH from dicot cell walls in that it contained 2,4- but not 3,4-linked xylosyl residues. In this study, a total of 15% of the cell wall was isolated as pectic material, 10% as xyloglucan, and less than 1% as xylan. The noncellulosic polysaccharides accounted for 26% of the cell walls, cellulose for 23%, protein for 34%, and ash for 5%, for a total of 88% of the cell wall. The cell walls of Douglas fir were more similar to dicot (sycamore) cell walls than to those of graminaceous monocots, because they had a predominance of xyloglucan over xylan as the principle hemicellulose and because they possessed relatively large amounts of rhamnogalacturonan-like pectic polysaccharides.  相似文献   

11.
Analysis of cell wall polysaccharide composition of embryogenic and non-embryogenic calli obtained from hypocotyl and petiole explants from Medicago arborea L. revealed significant differences. For calli induced from both hypocotyls and petioles, levels of total sugars, pectins, and hemicelluloses were higher in embryogenic than in non-embryogenic calli. Whereas in the residual cellulose fraction, the highest levels of sugar were detected in non-embryogenic calli. When comparing the two donor sources of callus explants, the highest total sugar levels were detected in embryogenic calli induced from petioles, mainly in the pectin fraction and to a lesser extent in the hemicellulose fraction. Moreover, analysis of uronic acids revealed higher levels in embryogenic calli, primarily in the pectin fraction. Analysis of those sugars associated with cell walls of calli suggested that these polysaccharides consisted of pectic polysaccharides and glucans, and that their levels were higher in embryogenic than non-embryogenic calli.  相似文献   

12.
We have localized two cell-wall-matrix polysaccharides, the main pectic polysaccharide, rhamnogalacturonan I (RG-I), and the hemicellulose, xyloglucan (XG), in root-tip and leaf tissues of red clover (Trifolium pratense L.) using immunoelectron microscopy. Our micrographs show that in both leaf and root tissues RG-I is restricted to the middle lamella, with 80–90% of the label associated with the expanded regions of the middle lamella at the corner junctions between cells. Xyloglucan, however, is nearly exclusively located in the cellulose-microfibril-containing region of the cell wall. Thus, these cell-wall-matrix polysaccharides are present in distinct and complementary regions of the cell wall. Our results further show that during cell expansion both RG-I and XG are present within Golgi cisternae and vesicles, thus confirming that the Golgi apparatus is the main site of synthesis of the non-cellulosic cell-wall polysaccharides. No label is seen over the endoplasmic reticulum, indicating that synthesis of these complex polysaccharides is restricted to the Golgi. The distribution of RG-I and XG in root-tip cells undergoing cell division was also examined, and it was found that while XG is present in the Golgi stacks and cell plate during cytokinesis, RG-I is virtually absent from the forming cell plate.Abbreviations ER endoplasmic reticulum - RG-I rhamnogalacturonan I - XG xyloglucan  相似文献   

13.
Monoclonal antibodies (2F4), specific for a conformational epitope of homopolygalacturonic acid induced by calcium ions, were used to compare the nature and the distribution of the pectic polysaccharides in cell walls of compact and friable sugar-beet (Beta vulgaris L. var. altissima) calli, at the electron-microscope level. Labelings performed before or after de-esterification pretreatments of callus sections enabled three major types of pectic polysaccharides to be distinguished within compact calli: (i) acidic pectins, probably with few acetyl ester groups, detected without any de-esterification treatment in expanded areas of cell separation but never on middle lamellae between tightly associated cells; (ii) highly methyl-esterified pectins with an expected low acetyl ester content, recognized by the 2F4 antibodies after pectin methylesterase de-esterification, and mostly located on intercellular junctions and on middle lamellae in the central zones of the calli; (iii) highly methyl-esterified and largely acetylated pectins, only localized after alkaline de-esterification, in all primary walls of the compact calli. By contrast, all pectins of friable calli were highly methyland acetyl-esterified. This was consistent with an average degree of methyl-esterification of about 60% measured in both calli, and a higher average degree of acetylation for the friable callus line (85%) compared to the compact one (60%). Accordingly, the pectic fraction (acid-soluble) predominant in both calli was acetyl-esterified to 85% in friable callus and to 22% in compact callus cell walls. Friability of sugar-beet callus is thus correlated with an increase in acetylation of its pectin. Labelings of the Golgi apparatus indicate that the pectic polymers of both callus types are synthesized in dictyosomes in a highly methyl-esterified form and are probably subsequently acetyl-esterified.Abbreviations AIR alcohol-insoluble residue - DA degree of acetylation - DM degree of methyl-esterification - MAbs monoclonal antibodies - PME pectin methylesterase Many thanks are due to Mrs. Ch. Devignon (Unité interfacultaire de microscopie électronique, FUNDP, Namur, Belgium) for her technical assistance. F.L. gratefully acknowledges Dr. J.-F. Thibault (Laboratoire de Biochimie et Technologie des glucides, INRA, Nantes, France) for allowing her to stay in his laboratory and Dr. C. Renard for her help with biochemical analyses and her comments on the results. Appreciation is also expressed to P. Vandersmissen (Unité Cell, I.C.P., Bruxelles, Belgium) and to P. Cambier and C. Vinals (FUNDP) for their contribution. The work reported here was supported in part by grants from IRSIA and CGRI, Belgium, to F.L.  相似文献   

14.
Roberts RM  Loewus F 《Plant physiology》1966,41(9):1489-1498
Prolonged growth of cell cultures of sycamore (Acer pseudoplatanus L.) on agar medium containing myo-inositol-2-(3)H resulted in incorporation of label predominately into uronosyl and pentosyl units of cell wall polysaccharides. Procedures normally used to distinguish between pectic substance and hemicellulose yielded carbohydrate-rich fractions with solubility characteristics ranging from pectic substance to hemicellulose yet the uronic acid and pentose composition of these fractions was decidedly pectic. Galacturonic acid was the only uronic acid present in each fraction. Subfractionation of alkali-soluble (hemicellulosic) polysaccharide by neutralization followed by ethanol precipitation gave 3 fractions, a water-insoluble, an ethanol-insoluble, and an ethanol-soluble fraction, each progressively poorer in galacturonic acid units and progressively richer in arabinose units; all relatively poor in xylose units.Apparently, processes involved in biosynthesis of primary cell wall continued to produce pectic substance during cell enlargement while processes leading to biosynthesis of typically secondary cell wall polysaccharide such as 4-0-methyl glucuronoxylan were not activated.  相似文献   

15.
Formation of macromolecular lignin in ginkgo cell walls. In the lignifying process of xylem cell walls, macromolecular lignin is formed by polymerization of monolignols on the pectic substances, hemicellulose and cellulose microfibrils that have deposited prior to the start of lignification. Observation of lignifying secondary cell walls of ginkgo tracheids by field emission scanning electron microscopy suggested that lignin-hemicellulose complexes are formed as tubular bead-like modules surrounding the cellulose microfibrils (CMFs), and that the complexes finally fill up the space between CMFs. The size of one tubular bead-like module in the middle layer of the secondary wall (S2) was tentatively estimated to be about 16+/-2 nm in length, about 25+/-1 nm in outer diameter, with a wall thickness of 4+/-2 nm; the size of the modules in the outer layer of the secondary wall (S1) was larger and they were thicker-walled than that in the middle layer (S2). Aggregates of large globular modules were observed in the cell corner and compound middle lamella. It was suggested that the structure of non-cellulosic polysaccharides and mode of their association with CMFs may be important factors controlling the module formation and lignin concentration in the different morphological regions of the cell wall.  相似文献   

16.
Degradative enzymes have been used to obtain defined fragments of the isolated cell walls of suspension-cultured sycamore cells. These fragments have been purified and structurally characterized. Fragments released from endopolygalacturonase-pretreated cell walls by a purified endoglucanase and the fragments extracted from these walls by urea and alkali provide evidence for a covalent connection between the xyloglucan and pectic polysaccharides. Fragments released by a protease from endopolygalacturonase-endoglucanase-pretreated cell walls provide evidence for a covalent connection between the pectic polysaccharides and the structural protein of the cell wall. Based on these interconnections and the strong binding which occurs between the xyloglucan and cellulose, a tentative structure of the cell wall is proposed.  相似文献   

17.
Unripe Spanish pears ( Pyras commanis L. ev. Blanquilla ) were ripened at 18°C for 5 and 10 days. Softening of the cortical tissues was associated with swelling of parenchyma cell walls from 1 to more than 5 μm in 10 day ripe pears, by which time the pears were over ripe. However, there was little indication of cell separation and the middle lamella could be detected between most cell walls. Furthermore, cell separation was constrained by regions rich in plasmodesmata where wall swelling was prevented. Parenchyma cells in the 500 μm of tissue underlying the epidermis did not undergo ripening-related changes to the same extent as those of the cortex. These cells, in combination with a sub-epidermal layer of lignified sclereid clusters, constituted a relatively tough and protective skin. Ripening of the cortical tissues was associated with a depletion of alcohol-insoluble pectic polysaccharides, as indicated by the decrease in arabinose and uronic acid. Analysis of alcohol-insoluble cell wall preparations enriched in either parenchyma or sclereid cell walls indicated that this change was predominantly associated with the parenchyma walls. Such changes were less prominent in the peel. The decrease in pectic polysaccharides was accompanied by an increase in their solubility. During ripening, the sclereid clusters of the cortex continued in develop, as indicated by an increase in their size and yield of cell wall xylose and glucose. Cortical parenchyma cells radiating from the sclereids were firmly attached to the lignified cells. This was due to lignification extending from the sclereids into the primary walls of the parenchyma cells. We conclude that dissolution of pectic polysaccharides is one of several factors which determine softening during ripening of Spanish pears.  相似文献   

18.
The composition of walls isolated from pollen grains of the seagrass Amphibolis antarctica was determined. Glucose, galactose, and rhamnose were the major neutral monosaccharides in the wall polysaccharides, and fucose, arabinose, xylose, and mannose were present in minor proportions. No apiose, a monosaccharide present in the wall polysaccharides of the vegetative parts of the seagrass Heterozostera tasmanica, was found. Large amounts of uronic acid (mainly as galacturonic acid) were found in the walls. The monosaccharides were probably present in cellulose and pectic polysaccharides, the latter comprising neutral pectic galactans, and rhamnogalacturonans containing high proportions of rhamnose. The walls contained a small amount of protein; glycine and lysine were the amino acids present in the highest proportions. Histochemical examination of isolated walls confirmed the presence of polyanionic components (pectic polysaccharides), -glucans (cellulose), and protein. The composition of the walls is discussed in relation to analyses of the walls of pollen grains and vegetative organs of other plants.  相似文献   

19.
Flax plantlets, cultivated from day 3 in liquid medium and undercontinuous light showed linear growth. Electron microscopy observationsshowed that treatment of the cell walls with cdta-Na2 clearedout the middle lamella and the cell junctions, whereas boilingwater extracted pectic polysaccharides from the primary cellwall in each tissue (epidermis, cortical parenchyma and phloem). Pulse-chase experiments showed that there was during the growthof flax plantlets a continuous redistribution of radioactivityin all parts of the cell walls: 1) from pectins to hemicellulosesand even to the cellulosic residues. 2) from oligomers to polymers.3) from neutral to acidic polymers in the core of the middlelamella. 4) from acidic to neutral pectins in the primary cellwalls. The elongation zone which was restricted to a small zoneback from the tip, involved strong synthesis of neutral pectinsin all the cell walls. Conversely, the redistribution of radioactivitywas related mainly to the plant cell maturation, and especiallyto the acidification of the cell wall. Demethylation of someneutral pectins occurred in the middle lamella whereas stronglyacidic pectins were synthetized in the primary cell wall. (Received October 1, 1990; Accepted April 9, 1991)  相似文献   

20.
Spruce wood that had been degraded by brown-rot fungi (Gloeophyllum trabeum or Poria placenta) exhibiting mass losses up to 16% was investigated by transmission Fourier transform infrared (FT-IR) imaging microscopy. Here the first work on the application of FT-IR imaging microscopy and multivariate image analysis of fungal degraded wood is presented and the first report on the spatial distribution of polysaccharide degradation during incipient brown-rot of wood. Brown-rot starts to become significant in the outer cell wall regions (middle lamellae, primary cell walls, and the outer layer of the secondary cell wall S1). This pattern was detected even in a sample with non-detectable mass loss. Most significant during incipient decay was the cleavage of glycosidic bonds, i.e. depolymerisation of wood polysaccharides and the degradation of pectic substances. Accordingly, intramolecular hydrogen bonding within cellulose was reduced, while the presence of phenolic groups increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号