首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
根据腺苷琥珀酸裂解酶(adenylosuccinate lyase, ADSL)基因外显子2的序列设计引物, 用PCR-SSCP的方法对隐性白羽鸡、丝羽乌骨鸡、白耳鸡、藏鸡以及红色原鸡两个亚种进行了单核苷酸多态性分析, 并检测到了多态性, 表现为3种基因型, 对两种纯合子进行直接测序, 结果发现3484位碱基处发生C→T突变。对3种基因型的肌肉肌苷酸含量的最小二乘分析结果显示TT型(突变型)个体的肌肉肌苷酸含量极显著地高于CT型、显著地高于CC型个体, CT型个体也稍高于CC型, 但差异不显著, 初步推测该位点可能与肌肉肌苷酸含量有关。根据该多态位点的基因频率, 基于Nei氏的遗传距离运用NJ聚类法构建系统发生树, 进行家鸡与原鸡的亲缘关系分析, 结果发现, 丝羽乌骨鸡与白耳鸡的亲缘关系最近, 藏鸡和中国红原鸡亚种的亲缘关系也较近, 中国地方家鸡品种与中国红原鸡亚种的亲缘关系较近,而与泰国红色原鸡的亲缘关系较远,隐性白羽鸡与原鸡亲缘关系最远, 初步得出中国家鸡有自己独自的血缘来源的结论。  相似文献   

2.
中国红原鸡和泰国红原鸡遗传多样性分析   总被引:9,自引:0,他引:9  
利用29个微卫星DNA标记对来自中国的红原鸡Gallus gallus spadiceus亚种和来自泰国的红原鸡Gallus gallus gallus亚种进行遗传多样性分析, 评估亚种内的遗传变异和亚种间的遗传分化, 结果表明: 共检测到168个等位基因, 每个位点的等位基因数从2到13不等, 所有位点平均的期望杂合度和PIC值分别为0.5780和0.53。中国和泰国红原鸡29个微卫星位点平均有效等位基因数分别为3.79和4.79, 平均基因杂合度为0.5379和0.6385, 两个红原鸡亚种均表现出较高的群体杂合度和丰富的遗传多样性。群体分化系数为19.4%(P<0.01), 两个红原鸡亚种间的Reynolds’遗传距离和Nm值分别为0.157和1.040。由此可见, Gallus gallus spadiceus亚种和Gallus gallus gallus亚种群体具有不同的群体遗传结构, 群体之间存在明显的遗传分化, 并不能将其认定为是同一亚种, 这也为中国家鸡具有独立的起源提供了一定的佐证。  相似文献   

3.
红色原鸡和中国家鸡遗传多样性及亲缘关系   总被引:1,自引:0,他引:1  
对红色原鸡(Gallus gallus)和中国家鸡(Gallus domesticus)之间的遗传多样性和亲缘关系进行系统分析,可以为中国家鸡的起源进化、种质资源保护以及科学开发利用等研究提供理论依据,但迄今尚未见用微卫星标记进行分析比较的公开报道.本研究利用29对微卫星引物对红色原鸡Gallus gallus spadiceus亚种和Gallus gallus gallus亚种以及14个中国家鸡品种的568只个体进行扫描,共检测到286个等位基因,平均值为9.86±6.36;所有群体的期望杂合度为0.6708±0.0251,皖南三黄鸡的期望杂合度最高(0.6442),固始鸡的最低(0.4532).单个位点偏离Hardy-Weinberg平衡的群体数从0-7不等.整个群体平均遗传分化为17.9%(P〈0.001),约有16.7%的遗传变异源自群体间的差异,所有的位点都极显著地贡献于这一结果(P〈0.001);杂合子缺失的水平很高,为0.015(P〈0.01),有8个位点显示显著的杂合子缺失.群体间的Reynolds’遗传距离从0.036(萧山鸡-鹿苑鸡)~0.371(泰国红色原鸡-河南斗鸡)不等,而Nm值变异范围为从0.583(泰国红色原鸡-河南斗鸡)~5.833(萧山鸡鹿苑鸡).NJ系统发生树中,鹿苑鸡、萧山鸡、北京油鸡、河南斗鸡、淮南麻黄鸡、狼山鸡等重体型的鸡种首先形成一大类;鹿苑鸡与萧山鸡以及茶花鸡与藏鸡有着较近的遗传关系;茶花鸡和藏鸡与两个红色原鸡亚种亲缘关系较近,中国红色原鸡Gallus gallus spadiceus亚种与所有中国家鸡品种的亲缘关系比泰国红色原鸡Gallus gallus gallus亚种要近.结果表明:29个微卫星位点均具有较高的多态性,红色原鸡和中国家鸡群体间存在着极显著的遗传分化;中国家鸡和红色原鸡两个亚种的亲缘关系从近到远的排序是:进化型品种-原始型品种(茶花鸡与藏鸡)-中国红色原鸡亚种(Gallus gallus spadiceus)-  相似文献   

4.
藏鸡线粒体全基因组序列的测定和分析   总被引:11,自引:0,他引:11  
童晓梅  梁羽  王威  徐树青  郑晓光  汪建  于军 《遗传》2006,28(7):769-777
通过PCR扩增,测序,拼接,获得藏鸡(Tibetan Chicken)线粒体全基因组序列并进行数据分析处理。藏鸡线粒体全基因组序列全长16783bp,共有13个蛋白质编码基因、2个rRNA基因、22个tRNA基因和1个D-loop区。模拟电子酶切结果显示,藏鸡DraI酶的酶切结果和先前报道的原鸡,茶花鸡,尼西鸡和大理漾濞黄鸡的酶切结果都不相同,为藏鸡特有。基于D-loop区全序列和13个蛋白质编码基因序列,采用N-J算法与原鸡属4个种,3个亚种和3个家鸡品系构建系统进化树:初步确定藏鸡起源于红原鸡,与家鸡中的来航鸡、白洛克鸡亲缘关系最近,但是藏鸡的进化与来航鸡、白洛克鸡这两个家鸡品系又显得相对独立。推测可能原因是藏鸡的祖先在进入高原以后处于相对封闭的环境,从而形成了独特群体遗传特性。  相似文献   

5.
鸡,家喻户晓。古人称鸡有五德:“头戴冠者,文也;足缚钜者,武也;敌在前敢斗,勇也;见食相告,仁也;守夜不失时,信也。”鸡在人们心目中象征吉祥,预兆丰收,鼓舞斗志,振奋精神。千百年来,鸡与人类结下不解之缘。深山丛林藏原鸡原鸡是家鸡的祖先。原鸡有四种:绿领原鸡、红色原鸡、黑纹原鸡和灰纹原鸡。达尔文认为,家鸡是从红色原鸡进化而来的。原鸡分布于南亚次大陆和东南亚岛屿以及中国的南部和西南部地区,出没于海拔千米以下的深山丛林,在稀疏混交林或灌木林中常有原鸡的踪迹,依靠采食昆虫和草籽生存。原鸡体型外貌和生长习性几乎与家  相似文献   

6.
中国科学院北京基因组研究所在国际合作的框架下,参与和主持完成的原鸡基因组和家鸡基因组多态性研究于12月在NATURE杂志上,以主题科学论文的形式发表。由中国科学院北京基因组研究所主持、中国、美国和欧洲科学家组成的研究小组参考红原鸡基因组框架图,分别对肉鸡、蛋鸡和乌鸡三种家鸡品种基因组进行了测序分析,  相似文献   

7.
为了探明我国华东地区地方鸡品种的遗传多样性和群体遗传结构,追溯其母系起源和进化过程,利用PCR技术扩增了11个地方鸡品种的线粒体DNA(mtDNA)控制区(D-loop)序列,并结合NCBI数据库中已发表的红色原鸡(Gallus gallus)D-loop区全序列,分析了它们的遗传多样性与亲缘关系,构建了11个品种与红色原鸡系统发生邻接树。结果表明:11个地方品种mtDNA D-loop区全长为1,231或1,232 bp,其中1,231 bp的序列有196条,1,232 bp的序列有123条,经过比对发现,两者在859 bp处存在单碱基缺失。11个地方品种319个个体共计检测到变异位点37个,总体单倍型多样度核苷酸多样度和平均核苷酸差异分别为0.901±0.009、0.00573±0.000001和6.833。按照鸡mtDNA单倍型分类通用标准,共包含35种单倍型,可以分为A、B、C和E共4个分支(单倍型群),分别包括11、10、9和5个单倍型。中介网络图中11个鸡品种也很明显地分成了4个支系,分别含有100、118、47和54条序列。系统发育树分为4个大枝,海南亚种(G.gallus jabouillei)自成一枝;C单倍型群与4个亚种的红色原鸡聚为一枝;E单倍型群与2个亚种红色原鸡聚为一枝;A和B单倍型群只与滇南亚种(G.gallus spadiceus)聚为一枝。11个品种中,除了狼山和丝羽乌骨鸡2个标准化品种外,都有很高的遗传多样性,可开发选择潜力很大。没有发现线粒体品种特异性DNA序列。华东地区地方品种至少有4个母系起源,部分品种可能受到了欧美高产品系的渗入。  相似文献   

8.
海南坡鹿的起源、进化及保护   总被引:1,自引:0,他引:1  
坡鹿是世界濒危物种,三个亚种分布在东南亚大陆,仅海南坡鹿种群分布在中国海南岛.2003年,国际社会的专家和学者提出了将海南坡鹿引入泰国亚种原分布区,重建已经绝灭野生种群的建议.在此种情况下,明确海南坡鹿的起源、与其它亚种间的系统发生关系、以及遗传多样性水平对有效保护坡鹿具有重要意义.本研究以线粒体DNA D-loop区490 bp基因片段为分子标记,比较分析了海南坡鹿、泰国亚种和缅甸亚种共35个样本的序列差异.我们所测的样本中,总共发现4种单倍型.所有21个海南坡鹿样品共享1种单倍型.利用最大似然法(ML)、最大简约法(MP)、邻接法(NJ)和贝叶斯法(Bayesian)构建的系统进化树表明海南坡鹿种群与泰国亚种的关系较近.但是,二者也发生一定程度的遗传分化.海南坡鹿与泰国亚种的遗传距离均值为0.026.我们推测海南坡鹿可能是在更新世冰期(69万年前)通过陆桥由东南亚大陆迁入中国海南岛.我们的结论说明海南坡鹿的遗传多样性很低,并且已独立进化很长时间.因此,我们不支持将海南坡鹿引入泰国亚种的原分布区,重建已经绝灭的野生种群的设想和建议.我们建议将海南坡鹿与泰国亚种分别作为两个独立的进化显著单元(ESUs)进行管理.  相似文献   

9.
大石鸡亚种分化及一新亚种描述(鸡形目,雉科)   总被引:4,自引:1,他引:3  
通过地理分布、形态差异、分子进化证明了我国特有种大石鸡Alectoris magna分化为两个亚种,指名亚种A.magna magna和兰州亚种新亚种A.magna lanzhouensis subsp.nov..对新亚种与指名亚种的形态进行了比较.测新亚种12个和指名亚种7个样本的mtDNA控制区486个碱基,两个亚种间无共享单倍型,其间基因交流受到限制;新亚种各取样种群间共享一种单倍型,说明它们来自共同祖先;新亚种序列变异0.27%,而指名亚种为0.91%,其间差异显著(t=1.77,p=0.046<0.05);两个亚种间的遗传距离为0.0103,约50万年前它们分歧进化.  相似文献   

10.
《动物学研究》2005,26(1):7-7
原鸡 (Gallusgallus ,RedJungleFowl)俗名野鸡、红原鸡、茶花鸡 ,鸡形目 (Galliformes)原鸡属(Gallus) ,属国家Ⅱ级重点保护鸟类。一般体形与家鸡十分相似 ,但稍小些 ,全长约 70 0mm。雄性头顶具红色锯齿缘肉冠 ;上体大都红色和亮橙红色 ;尾羽黑色 ,中央两枚尾羽较长而向下弯曲 ;下体黑色。雌性上体大都黑褐色 ,上背黄而满布黑色纵纹 ;后颈和颈侧羽缘金黄色 ,胸棕色 ;腹浅棕色。栖息于海拔 2 0 0 0m以下的热带、南亚热带森林及灌丛地带 ,凡有植被可供隐蔽和觅食的地方均有分布 ,常结群活动。以植物性食物为主 ,也取食昆虫等小型无脊椎动…  相似文献   

11.
The origin and genetic diversity of Chinese native chicken breeds   总被引:5,自引:0,他引:5  
Niu D  Fu Y  Luo J  Ruan H  Yu XP  Chen G  Zhang YP 《Biochemical genetics》2002,40(5-6):163-174
The first 539 bases of mitochondrial DNA D-loop region of six Chinese native chicken breeds (Gallus gallus domesticus) were sequenced and compared to those of the red junglefowl (Gallus gallus), the gray junglefowl (Gallus sonneratii), the green junglefowl (Gallus varius) and Lafayette's junglefowl (Gallus lafayettei) reported in GenBank, and the phylogenetic trees for the chickens were constructed based on the D-loop sequences. The results showed that the four species of the genus Gallus had great differences among each other, the G. g. domesticus was closest to the red junglefowl in Thailand and its adjacent regions, suggesting the Chinese domestic fowl probably originated from the red junglefowl in these regions. The two subs pecies of Thailand, G. g. gallus and G. g. spadiceus, should belong to one subspecies because of their resemblance. In the case of native breeds, there existed a great difference between the egg breeds and general purpose breeds, which suggested different maternal origins of the two types.  相似文献   

12.
Genetic diversity and phylogenetic relationships among 568 individuals of two red jungle fowl subspe- cies (Gallus gallus spadiceus in China and Gallus gallus gallus in Thailand) and 14 Chinese domestic chicken breeds were evaluated with 29 microstaellite loci, the genetic variability within population and genetic differentiation among population were estimated, and then genetic diversity and phylogenetic relationships were analyzed among red jungle fowls and Chinese domestic fowls. A total of 286 alleles were detected in 16 population with 29 microsatellite markers and the average number of the alleles observed in 29 microsatellite loci was 9.86±6.36. The overall expected heterozygosity of all population was 0.6708±0.0251, and the number of population deviated from Hardy-Weinberg equilibrium per locus ranged from 0 to 7. In the whole population, the average of genetic differentiation among population, measured as FST value, was 16.7% (P<0.001), and all loci contributed significantly (P<0.001) to this differentiation. It can also be seen that the deficit of heterozygotes was very high (0.015) (P<0.01). Reynolds' distance values varied between 0.036 (Xiaoshan chicken-Luyuan chicken pair) and 0.330 (G. gallus gallus-Gushi chicken pair). The Nm value ranged from 0.533 (between G. gallus gallus and Gushi chicken) to 5.833 (between Xiaoshan chicken and Luyuan chicken). An unrooted consensus tree was constructed using the neighbour-joining method and the Reynolds' genetic distance. The heavy-body sized chicken breeds, Luyuan chicken, Xiaoshan chicken, Beijing Fatty chicken, Henan Game chicken, Huainan Partridge and Langshan chicken formed one branch, and it had a close genetic relationship between Xiaoshan chicken-Luyuan chicken pair and Chahua chicken-Tibetan chicken pair. Chahua chicken and Tibetan chicken had closer genetic relationship with these two subspecies of red jungle fowl than other domestic chicken breeds. G. gallus spadiceus showed closer phylogenetic relationship with Chinese domestic chicken breeds than G. gallus gallus. All 29 microstaellite loci in this study showed high levels of polymorphism and significant genetic differentiation was observed among two subspecies of red jungle fowl and 14 Chinese domestic chicken breeds. The evolutional dendrogram is as follows: evolutional breeds→primitive breeds (Chahua chicken and Tibetan)→red jungle fowl in China (G. gallus spadiceus)→red jungle fowl in Thailand (G. gallus gallus). The results supported the theory that the domestic fowls might originate from different subspecies of red jungle fowl and Chinese domestic fowls had independent origin.  相似文献   

13.
Indigenous chickens (IC) in developing countries provide a useful resource to detect novel genes in mitochondrial and nuclear genomes. Here, we investigated the level of genetic diversity in IC from five distinct regions of Sri Lanka using a PCR-based resequencing method. In addition, we investigated the relatedness of IC to different species of junglefowls including Ceylon (CJF; Gallus lafayetti ), a subspecies that is endemic to Sri Lanka, green ( Gallus varius ), grey ( Gallus sonneratii ) and red ( Gallus gallus ) junglefowls. A total of 140 birds including eight CJF were used to screen the control region of the mitochondrial DNA sequence for single nucleotide polymorphisms (SNPs) and other variants. We detected and validated 44 SNPs, which formed 42 haplotypes and six haplogroups in IC. The SNPs observed in the CJF were distinct and the D-loop appeared to be missing a 62-bp segment found in IC and the red junglefowl. Among the six haplogroups of IC, only one was region-specific. Estimates of haplotype and nucleotide diversities ranged from 0.901 to 0.965 and from 0.011 to 0.013 respectively, and genetic divergence was generally low. Further, variation among individuals within regions accounted for 92% of the total molecular variation among birds. The Sri Lankan IC were more closely related to red and grey junglefowls than to CJF, indicating multiple origins. The molecular information on genetic diversity revealed in our study may be useful in developing genetic improvement and conservation strategies to better utilize indigenous Sri Lankan chicken resources.  相似文献   

14.

Background

Previous studies suggested that multiple domestication events in South and South-East Asia (Yunnan and surrounding areas) and India have led to the genesis of modern domestic chickens. Ha Giang province is a northern Vietnamese region, where local chickens, such as the H'mong breed, and wild junglefowl coexist. The assumption was made that hybridisation between wild junglefowl and Ha Giang chickens may have occurred and led to the high genetic diversity previously observed. The objectives of this study were i) to clarify the genetic structure of the chicken population within the Ha Giang province and ii) to give evidence of admixture with G. gallus. A large survey of the molecular polymorphism for 18 microsatellite markers was conducted on 1082 chickens from 30 communes of the Ha Giang province (HG chickens). This dataset was combined with a previous dataset of Asian breeds, commercial lines and samples of Red junglefowl from Thailand and Vietnam (Ha Noï). Measurements of genetic diversity were estimated both within-population and between populations, and a step-by-step Bayesian approach was performed on the global data set.

Results

The highest value for expected heterozygosity (> 0.60) was found in HG chickens and in the wild junglefowl populations from Thailand. HG chickens exhibited the highest allelic richness (mean A = 2.9). No significant genetic subdivisions of the chicken population within the Ha Giang province were found. As compared to other breeds, HG chickens clustered with wild populations. Furthermore, the neighbornet tree and the Bayesian clustering analysis showed that chickens from 4 communes were closely related to the wild ones and showed an admixture pattern.

Conclusion

In the absence of any population structuring within the province, the H'mong chicken, identified from its black phenotype, shared a common gene pool with other chickens from the Ha Giang population. The large number of alleles shared exclusively between Ha Giang chickens and junglefowl, as well as the results of a Bayesian clustering analysis, suggest that gene flow has been taking place from junglefowl to Ha Giang chickens.  相似文献   

15.
A phylogenetic tree for fowl including chicken in the genus Gallus and based on mitochondrial D-loop analysis further supports the hypothesis developed from morphology and progeny production that red junglefowl (RJF) is the direct ancestor of the chicken. The phylogenetic positions of the chicken and the other fowl species in the genus Gallus are of great importance when considering maintenance and improvement of chicken breeds through introgression of genetic variation from wild-type genomes. However, because the phylogenetic analysis based on the DNA sequences is not sufficient to conclude the phylogenetic positions of the fowls in the genus, in the present study, we have determined sequences of whole mitochondrial DNA (mtDNA) and two segments of the nuclear genome (intron 9 of ornithine carbamoyltransferase, and four chicken repeat 1 elements) for the species in the genus Gallus. The phylogenetic analyses based on mtDNA sequences revealed that two grey junglefowls (GyJF) were clustered in a clade with RJFs and chicken, and that one GyJF was located in a remote position close to Ceylon junglefowl (CJF). The analyses based on the nuclear sequences revealed that alleles of GyJFs were alternatively clustered with those of CJF and with those of RJFs and chicken. Alternative clustering of RJF and chicken alleles were also observed. These findings taken together strongly indicate that inter-species hybridizations have occurred between GyJF and RJF/chicken and between GyJF and CJF.  相似文献   

16.
In this study, we analysed the mitochondrial DNA D-loop region of Japanese native chickens to clarify their phylogenetic relationships, possible maternal origin and routes of introduction into Japan. Seven haplogroups (Types A-G) were identified. Types A-C were observed in Jidori, Shokoku and related breeds. However, Type C was absent in Shokoku, which was introduced from China, while most Indonesian native chickens were included in the Type C haplogroup. Types D-G were observed in Shamo and related breeds. Type E had a close genetic relationship with Chinese native chickens. Our results indicate that some breeds were not introduced into Japan as suggested in conventional literature, based on low nucleotide diversity of certain chicken breeds. Sequences originating from China and Korea could be clearly distinguished from those originating from Southeast Asia. In each group, domestic chickens were divided into the Jidori-Shokoku and Shamo groups. These results indicate that Chinese and Korean chickens were derived from Southeast Asia. Following the domestication of red junglefowl, a non-game type chicken was developed, and it spread to China. A game type chicken was developed in each area. Both non-game and game chickens formed the foundation of Japanese native chickens.  相似文献   

17.
The chicken lysozyme gene encodes a hydrolase that has a key role in defence, especially in ovo. This gene was resequenced in global chicken populations [red, grey, Ceylon and green jungle fowl (JF)] and related bird species. Networks, summary statistics and tests of neutrality indicate that although there is extensive variation at the gene, little is present at coding sites, with the exception of one non‐synonymous site. This segregating site and a further fixed non‐synonymous change between red JF and domestic chicken populations are spatially close to the catalytic sites of the enzyme and so might affect its activity.  相似文献   

18.
Domestic chickens (Gallus gallus domesticus) fulfill various roles ranging from food and entertainment to religion and ornamentation. To survey its genetic diversity and trace the history of domestication, we investigated a total of 4938 mitochondrial DNA (mtDNA) fragments including 2843 previously published and 2095 de novo units from 2044 domestic chickens and 51 red junglefowl (Gallus gallus). To obtain the highest possible level of molecular resolution, 50 representative samples were further selected for total mtDNA genome sequencing. A fine-gained mtDNA phylogeny was investigated by defining haplogroups A–I and W–Z. Common haplogroups A–G were shared by domestic chickens and red junglefowl. Rare haplogroups H–I and W–Z were specific to domestic chickens and red junglefowl, respectively. We re-evaluated the global mtDNA profiles of chickens. The geographic distribution for each of major haplogroups was examined. Our results revealed new complexities of history in chicken domestication because in the phylogeny lineages from the red junglefowl were mingled with those of the domestic chickens. Several local domestication events in South Asia, Southwest China and Southeast Asia were identified. The assessment of chicken mtDNA data also facilitated our understanding about the Austronesian settlement in the Pacific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号