首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Transitions in growth irradiance level from 92 to 7 Em-2 s-1 and vice versa caused changes in the pigment contents and photosynthesis of Oscillatoria agardhii. The changes in chlorophyll a and C-phycocyanin contents during the transition from high to low irradiance (HL) were reflected in photosynthetic parameters. In the LH transition light utilization efficiencies of the cells changed faster than pigment contents. This appeared to be related to the lowering of light utilization efficiencies of photosynthesis. As a possible explanation it was hypothesized that excess photosynthate production led to feed back inhibition of photosynthesis. Time-scales of changes in the maximal rate of O2 evolution were discussed as changes in the number of reaction centers of photosystem II in relation to photosynthetic electron transport. Parameters that were subject to change during irradiance transitions obeyed first order kinetics, but hysteresis occurred when comparing HL with LH transients. Interpretation of first order kinetic analysis was discussed in terms of adaptive response vs changes in growth rate.Non-standard abbreviations Chla chlorophyll a - CPC C-phycocyanin - PS II photosystem II - PS I photosystem I - RC II reaction center of photosystem II - P photosynthetic O2-evolution - I irradiance, Em-2 s-1 - light utilization efficiency of cells, mmol O2·mg dry wt-1·h-1/Em-2 s-1 - light utilization efficiency of photosynthetic apparatus, mol O2·mol Chla -1·h-1/Em-2 s-1 - Pmax maximal rate of O2 evolution by cells, mol O2·mg dry wt-1·h-1 - Pmax maximal rate of O2 evolution by photosynthetic apparatus, mol O2·mol·Chla -1·h-1 - LL low light, E m-2 s-1 - HL high light, E m-2 s-1 - LH low to high light transition - HL high to low light transition - k specific rate of adaptation, h-1 - specific growth rate, h-1 - Q pool size of cell constituent, mol·mg dry wt-1 - q net synthesis rate of cell constituent, mol·mg dry wt-1·h-1  相似文献   

2.
We analysed the stable isotope composition of emitted N2O in a one-year field experiment (June 1998 to April 1999) in unfertilized controls, and after adding nitrogen by applying slurry or mineral N (calcium ammonium nitrate). Emitted N2O was analysed every 2–4 weeks, with additional daily sampling for 10 days after each fertilizer application. In supplementary soil incubations, the isotopic composition of N2O was measured under defined conditions, favouring either denitrification or nitrification. Soil incubated for 48 h under conditions favouring nitrification emitted very little N2O (0.024 mol gdw –1) and still produced N2O from denitrification. Under denitrifying incubation conditions, much more N2O was formed (0.91 mol gdw –1 after 48 h). The isotope ratios of N2O emitted from denitrification stabilized at 15N = –40.8 ± 5.7 and 18O = 2.7 ± 6.3. In the field experiment, the N2O isotope data showed no clear seasonal trends or treatment effects. Annual means weighted by time and emission rate were 15N = –8.6 and 18O = 34.7 after slurry application, 15N = –4.6 and 18O = 24.0 after mineral fertilizer application and 15N = –6.4 and 18O = 35.6 in the control plots, respectively. So, in all treatments the emitted N2O was 15N-depleted compared to ambient air N2O (15N = 11.4 ± 11.6, 18O = 36.9 ± 10.7). Isotope analyses of the emitted N2O under field conditions per se allowed no unequivocal identification of the main N2O producing process. However, additional data on soil conditions and from laboratory experiments point to denitrification as the predominant N2O source. We concluded (1) that the isotope ratios of N2O emitted from the field soil were not only influenced by the source processes, but also by microbial reduction of N2O to N2 and (2) that N2O emission rates had to exceed 3.4 mol N2O m–2 h–1 to obtain reliable N2O isotope data.  相似文献   

3.
SUMMARY 1. We previously reported that angiotensin III modulates noradrenergic neurotransmission in the hypothalamus of the rat. In the present work we studied the effects of angiotensin III on norepinephrine release and tyrosine hydroxylase activity. We also investigated the receptors and intracellular pathways involved in angiotensin III modulation of noradrenergic transmission.2. In rat hypothalamic tissue labeled with [3H]norepinephrine 1, 10, and 100 nM and 1 M losartan (AT1 receptor antagonist) had no effect on basal neuronal norepinephrine release, whereas 10 and 100 nM and 1 M losartan partially diminished norepinephrine secretion evoked by 25 mM KCl. The AT2 receptor antagonist PD 123319 showed no effect either on basal or evoked norepinephrine release. The increase in both basal and evoked norepinephrine output induced by 1 M angiotensin III was blocked by 1 M losartan, but not by 1 M PD 123319.3. The phospholipase C inhibitor 5 M neomicin inhibited the increase in basal and evoked norepinephrine release produced by 1 M angiotensin III.4. Tyrosine hydroxylase activity was increased by 1 M angiotensin III and this effect was blocked by 1 M LST and 5 M neomicin, but not by PD 123319. On the other hand, 1 M angiotensin III enhanced phosphatidyl inositol hydrolysis that was blocked by 1 M losartan and 5 M neomicin. PD 123319 (1 M) did not affect ANG III-induced phosphatidyl inositol hydrolysis enhancement.5. Our results confirm that angiotensin III acts as a modulator of noradrenergic transmission at the hypothalamic level through the AT1-phospholipase C pathway. This enhancement of hypothalamic noradrenergic activity suggests that angiotensin III may act as a central modulator of several biological processes regulated at this level by catecholamines, such as cardiovascular, endocrine, and autonomic functions as well as water and saline homeostasis.  相似文献   

4.
In view of the accumulation of H2O2 in the myocardium due to ischemia-reperfusion and changes in -adrenoceptor mechanisms in the ischemic-reperfused heart, we investigated the effects of H2O2 on the -adrenoceptor, G-protein and adenylyl cyclase complex. Rat hearts were perfused with 1 mM H2O2 for 10 min before isolating membranes for measuring the biochemical activities. The stimulation of adenylyl cyclase by different concentrations of isoproterenol was depressed upon perfusing hearts with H2O2. Both the affinity and density of 1-adrenoceptors as well as the density of the 2-adrenoceptors were decreased whereas the affinity of 2-adrenoceptors was increased by H2O2 perfusion. Competition curves did not reveal any effect of H2O2 on the proportion of coupled receptors in the high affinity state. The basal as well as forskolin-, NaF- and Gpp(NH)p-stimulated adenylyl cyclase activities were depressed by perfusing the heart with H2O2. Catalase alone or in combination with mannitol was able to significantly decrease the magnitude of alterations due to H2O2. The positive inotropic effect of 1 M isoproterenol was markedly attenuated upon perfusing hearts with 200-500 M H2O2 for 10 min. These results suggest that H2O2 may depress the 1-adrenoceptor, Gs-proteins and catalytic subunit of the adenylyl cyclase enzyme and thus may play an important role in attenuating the -adrenoceptor linked signal transduction due to ischemia-reperfusion injury.  相似文献   

5.
Callus was initiated from immature leaf and stem segments of rose (Rosa hybrida cv. Landora) and subcultured every four weeks on a basal medium of half-strength Murashige & Skoog (1962) salts plus 30 g l-1 sucrose (1/2 MS) and supplemented with 2.2 M BA, 5.4 M NAA and 2.2–9.0 M 2,4-D. Embryogenic callus and subsequently somatic embryos were obtained from 8-week-old callus culture on 1/2 MS+2.2 M BA+0.05 M NAA+0.3 M GA3+200–800 mg l-1 L-proline. Long-term cultures were established and maintained for up to 16 months by repeated subculture of embryogenic callus on L-proline deficient medium. About 12% of cotyledonary stage embryos taken from cultures cold-stored at 8±1°C for 4 days germinated on 1/2 MS+2.2 M BA+0.3 M GA3+24.7 M adenine sulphate.Abbreviations BA benzyladenine - NAA -naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid  相似文献   

6.
The magnitude of the proton motive force (p) and its constituents, the electrical () and chemical potential (-ZpH), were established for chemostat cultures of a protease-producing, relaxed (rel ) variant and a not protease-producing, stringent (rel +) variant of an industrial strain ofBacillus licheniformis (respectively referred to as the A- and the B-type). For both types, an inverse relation of p with the specific growth rate was found. The calculated intracellular pH (pHin) was not constant but inversely related to . This change in pHin might be related to regulatory functions of metabolism but a regulatory role for pHin itself could not be envisaged. Measurement of the adenylate energy charge (EC) showed a direct relation with for glucose-limited chemostat cultures; in nitrogen-limited chemostat cultures, the EC showed an approximately constant value at low and an increased value at higher . For both limitations, the ATP/ADP ratio was directly related to .The phosphorylation potential (G'p) was invariant with . From the values for G'p and p, a variable H+/ATP-stoichiometry was inferred: H+/ATP=1.83+0.52µ, so that at a given H+/O-ratio of four (4), the apparent P/O-ratio (inferred from regression analysis) showed a decline of 2.16 to 1.87 for =0 to max (we discuss how more than half of this decline will be independent of any change in internal cell-volume). We propose that the constancy of G'p and the decrease in the efficiency of energy-conservation (P/O-value) with increasing are a way in which the cells try to cope with an apparent less than perfect coordination between anabolism and catabolism to keep up the highest possible with a minimum loss of growth-efficiency. Protease production in nitrogen-limited cultures as compared to glucose-limited cultures, and the difference between the A- and B-type, could not be explained by a different energy-status of the cells.Abbreviations CCCP carbonylcyanide-p-trichloromethoxyphenylhydrazone - DW dry weight of biomass - F Faraday's constant, 96.6 J/(mV × mol) - Fo chemostat outflow-rate (ml/h) - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - G'p phosphorylation potential, the Gibbs energy change for ATP-synthesis from ADP and Pi - G'0p standard Gibbs energy change at specified conditions - H+/ATP number of protons translocated through - ATP synthase in synthesis of one ATP - H+/O protons translocated during transfer of 2 electrons from substrate to oxygen - specific growth rate (1/h) - H+ transmembrane electrochemical proton potential, J/mol - Mb molar weight (147.6 g/mol) of bacteria with general cell formula C6.0H10.8O3.0N1.2 - pHout,in extracellular, intracellular pH - Pi (intracellular) inorganic phosphate - p proton motive force, mV - pH transmembrane pH-difference - transmembrane electrical potential, mV - P/O number of ADP phosphorylated to ATP upon reduction of one O2– to H2O by two electrons transferred through the electron transfer chain - P/O (H+/O) × (H+/ATP)–1 - P/OF, P/ON P/O with the two electrons donated by resp. (NADH + H+) and FADH - q specific rate of consumption or production (mol/g DW × h) - rel +,rel stringent, relaxed genotype - R universal gas constant, 8.36 J/(mol × degree) - T absolute temperature - TPMP+ triphenylmethylphosphonium ion - TPP+ tetraphenyl phosphonium ion - Y growth yield, g DW/mol - Z conversion constant=61.8 mV for 310 K (37 °C) - ZpH transmembrane proton potential or chemical potential, mV  相似文献   

7.
In this paper we report studies on photosynthetic formation of inorganic pyrophosphate (PPi) in three phototrophic bacteria. Formation of PPi was found in chromatophores from Rhodopseudomonas viridis but not in chromatophores from Rhodopseudomonas blastica and Rhodobacter capsulatus. The maximal rate of PPi synthesis in Rps. viridis was 0.15 mol PPi formed/(min*mol Bacteriochlorophyll) at 23°C. The synthesis of PPi was inhibited by electron transport inhibitors, uncouplers and fluoride, but was insensitive to oligomycin and venturicidin. The steady state rate of PPi synthesis under continuous illumination was about 15% of the steady-state rate of ATP synthesis. The synthesis of PPi after short light flashes was also studied. The yield of PPi after a single 1 ms flash was equivalent to approximately 1 mol PPi/500 mol Bacteriochlorophyll. In Rps. viridis chromatophores, PPi was also found to induce a membrane potential, which was sensitive to carbonyl cyanide p-trifluoromethoxyphenylhydrazone and NaF.Abbreviations BChl Bacteriochlorophyll - F0F1-ATPase Membrane bound proton translocating ATP synthase - FCCP Carbonyl cyanide p-trifluoromethoxyphenylhydrazone - H+-PPase Membrane bound proton translocating PPi synthase - TPP+ Tetraphenyl phosphonium ion - TPB- Tetraphenyl boron ion - Transmembrane electrical potential difference  相似文献   

8.
Free radicals are involved in neuronal damage. Bifemelane hydrochloride has been reported to protect neural tissues against ischemic damage and age-related neurodegeneration. We examined the protective effects of bifemelane HCl and the relation between its effectiveness and free radical formation in hydrogen peroxide (H2O2)-induced cytotoxicity using cultured rat neuroblastoma cell line (B50). Cytotoxicity was examined by using the lactate dehydrogenase (LDH) assay and cell viability by the WST-1 assay. H2O2 reduced the survival of B50 cells in a dose-dependent manner, and treatment of these cells with 75 M or 100 M H2O2 reduced their viability by 50% relative to the control group. B50 cells were treated with 5 or 10 M bifemelane for 2 days followed by treatment with 75 M or 100 M H2O2. H2O2 cytotoxicity was reduced by pretreatment with bifemelane. We also examined the effect of bifemelane on lipid peroxide formation in B50 cells using thiobarbituric acid reactive substances assay. Pretreatment of B50 cells with 10 M bifemelane for 2 days reduced lipid peroxide formation to approximately 54% of the control group. Our results suggest that bifemelane hydrochloride provides a protective effect against H2O2 cytotoxicity partly due to its anti-oxidative properties.  相似文献   

9.
Phosphate was fractionated in Guianese mangrove sediments. Fe(OOH)P was extracted using a Ca-EDTA + Na-dithionite solution buffered at pH 8. CaCO3P was extracted using Na2-EDTA solution at pH 4.5. Next, Acid Soluble Organic Phosphate (ASOP) was extracted by H2SO4 0.5 N. Finally, Residual Organic Phosphate (ROP) was digested with H2SO4 + H2O2. Four representative mangrove stages have been studied: sea edge pioneer mangroves, mature coastal mangroves, mixed riverine mangroves, and declining to dead mangroves. The sum of the P-fractions varied between 638 to 804 g g-1 in pioneer and mixed mangroves respectively. In all the stages, the percentage of inorganic phosphate was larger than 50% of the total P. Fe(OOH)P varied between 221 (pioneer mangrove) to 426 g g-1 (dead mangrove). CaCO3P varied between 75 to 102 g g-1 in mixed, dead or mature mangroves and attained 125 g g-1 in pioneer mangrove. The sum of the concentrations of organic phosphate (ASOP + ROP) increased markedly from the dead mangrove (189 g g-1) to the mixed mangrove (380 g g-1). Guianese mangroves, are relatively rich in total phosphate, possibly because they are narrowly related to the 'Amazon dispersal system. Each mangrove stage can be characterised by a prevailing form of phosphate. The concentrations of these different forms were ascribed to the marked relations with the seawater which controls import or export of suspended matters and to the wave action which controls the resuspension of the sediments and subsequently exchange of phosphate between the suspended matter and the water column.  相似文献   

10.
In Fuji, the production of ethylene was increased with the addition of AgNO3 and inhibited with the addition of 10 M aminoethoxyvinylglycine (AVG). The addition of 80 M AgNO3 to transformed explants of Fuji cultured on selection medium resulted in increased ethylene production (20 l l–1) at 3 weeks. Under examining the effect of AgNO3 in Fuji, the 40 M AgNO3 showed with higher 33.8% and 6.5% in the efficiency of regeneration and transformation. However, ethylene production in Gala explants treated with 10M AgNO3 (3 l l–1) decreased after 2 weeks compared with the control (5 l l–1). Although the regeneration efficiency of Gala with 10 M AgNO3 was higher (41.1%) than the control (20.1%), there was no significant difference in the transformation efficiency at the same concentration. Shoot regeneration of Fuji and Gala was completely inhibited with 10 M AVG. These results suggest that the addition of AgNO3 affects the efficiency of Agrobacterium-mediated gene transfer in Fuji.Eun Soo Seong, Ill Min Chung- These two Authors Contributed equally to this work  相似文献   

11.
The effect of chemical modifiers of amino acid residues on the proton conductivity of H+-ATPase in inside out submitochondrial particles has been studied. Treatment of submitochondrial particles prepared in the presence of EDTA (ESMP) with the arginine modifiers, phenylglyoxal or butanedione, or the tyrosine modifier, tetranitromethane, caused inhibition of the ATPase activity. Phenylglyoxal and tetranitromethane also caused inhibition of the anaerobic release of respiratory H+ in ESMP as well as in particles deprived of F1 (USMP). Butanedione treatment caused, on the contrary, acceleration of anaerobic proton release in both particles. The inhibition of proton release caused by phenylglyoxal and tetranitromethane exhibited in USMP a sigmoidal titration curve. The same inhibitory pattern was observed with oligomycin and withN,N-dicyclohexylcarbodiimide. In ESMP, relaxation of H+ exhibited two first-order phases, both an expression of the H+ conductivity of the ATPase complex. The rapid phase results from transient enhancement of H+ conduction caused by respiratory H+ itself. Oligomycin,N,N-dicyclohexylcarbodiimide, and tetranitromethane inhibited both phases of H+ release, and butanedione accelerated both. Phenylglyoxal inhibited principally the slow phase of H+ conduction. In USMP, H+ release followed simple first-order kinetics. Oligomycin depressed H+ release, enhanced respiratory H+, and restored the biphasicity of H+ release. Phenylglyoxal and tetranitromethane inhibited H+ release in USMP without modifying its first-order kinetics. Butanedione treatment caused biphasicity of H+ release from USMP, introducing a very rapid phase of H+ release. Addition of soluble F1 to USMP also restored biphasicity of H+ release. A mechanism of proton conduction by F o is discussed based on involvement of tyrosine or other hydroxyl residues, in series with the DCCD-reactive acid residue. There are apparently two functionally different species of arginine or other basic residues: those modified by phenylglyoxal, which facilitate H+ conduction, and those modified by butanedione, which retard H+ diffusion.  相似文献   

12.
Glycyrrhizic acid and its 30-methyl ester were conjugated with 2-amino-1,3,4,6-tetra-O-acetyl-2-deoxy--D-glucopyranose, 2,3,4,6-tetra-O-acetyl--D-glucopyranosyl amine, 2,3,4-tri-O-acetyl--L-arabinopyranosyl amine, 2-acetamido-2-deoxy--D-glucopyranosyl amine, and -D-galactopyranosyl amine using N,N-dicyclohexylcarbodiimide and its mixtures with N-hydroxybenzotriazole. Structures of the conjugates were confirmed by IR, UV, 1H, and 13C NMR spectroscopy. The glycoconjugate with the residues of 2-acetamido-2-deoxy--D-glucopyranosyl amine in the carbohydrate part of its molecule exhibited antiviral activity (ID50 4 g/ml) toward the herpes simplex type 1 virus (HSV-1) in the VERO cell culture. Two compounds demonstrated anti-HIV-1 activity (50–70% inhibition of p24) in a culture of MT-4 cells at concentrations of 0.5–20 g/ml.  相似文献   

13.
Summary The kinetics of light-driven proton transport by bacteriorhodopsin has been studied in a model system consisting of a planar lipid bilayer membrane to which purple membrane fragments have been attached. After excitation with a 10-nsec laser flash a fast negative current-transient occurs, followed by a positive transient which decays to zero. The time course of the photocurrent may be represented by a sum of four exponentials with time constants 1= 1.2sec, 2= 17sec, 4= 57sec, 1= 950sec (at 25°C). In a D2O medium 2 and 3 are increased by a factor of 2.6 and 2.9, respectively, whereas 1 remains unaffected. The observed components of the photocurrent can be correlated to photochemical reaction steps inferred from flash-photometric experiments on the basis of the observed time constants, the activation energies, and the effects of pH and D2O. From the photocurrent signals information may be obtained on the magnitude of the charge displacement associated with the elementary transitions of the bacteriorhodopsin molecule.  相似文献   

14.
The O2 dependence of net H+ efflux of maize coleoptiles has been investigated. Below 100 M O2, H+ efflux in young (1 cm long) coleoptiles is markedly decreased while old (7 cm long) coleoptiles show a decline only at 10 M O2. Old coleoptiles show the same decrease in net H+ efflux as young ones if treated with fusicoccin. The ratio of alteration of CO2 production to the change in net proton efflux is about 1:1 at 40–80 M O2 but not at 10 M O2. An influx can be observed at 10 M O2 in young as well as in old coleoptiles if the H+ concentration is held at values below pH 6.5. Lower O2 concentrations lead to an increase of net H+ efflux, which might be caused by leaching of organic acids resulting from anaerobic processes, but CO2 production is not significantly changed at these values. It is proposed that more than one system is responsible for proton translocation across the plasmalemma. One of the systems has a high sensitivity to reduced O2 concentration which is within the same range as the high Km of the alternative path.Abbreviation FC fusicoccin  相似文献   

15.
Effects of benzyladenine (BA) and abscisic acid (ABA) applied separately or simultaneously on parameters of gas exchange of Phaseolus vulgaris L. leaves were studied. In the first two experimental sets) 100 M ABA and 10 M BA were applied to plants sufficiently supplied with water. Spraying of leaves with ABA decreased stomatal conductance (g s) and in consequence transpiration rate (E) and net photosynthetic rate (P N) already 1 h after application, but 24 h after application the effect almost disappeared. 10 M BA slightly decreased gas exchange parameters, but in simultaneous application with ABA reversed the effect of ABA. Immersion of roots into the same solutions markedly decreased gas exchange parameters and 24 h after ABA application the stomata were completely closed. The effect of ABA was ameliorated by simultaneous BA application, particularly after 1-h treatment. In the third experimental set, plants were pre-treated by immersing roots into water, 1 M BA, or 100 M ABA for 24 h and then the halves of split root system were dipped into different combinations of 1 M BA, 100 M ABA, and water. In plants pre-treated with ABA all gas exchange parameters were small and they did not differ in plants treated with H2O+H2O, H2O+BA, or BA+BA. In plants pre-treated with BA or H2O, markedly lower values of P N were found when both halves of roots were immersed in ABA. Further, the effects of pre-treatment of plants with water, 1 M BA, 100 M ABA, or ABA+BA on the development of water stress induced by cessation of watering and on the recovery after rehydration were followed. ABA markedly decreased gas exchange parameters at the beginning of the experiment, but in its later phase the effect was compensated by delay in development of water stress. BA also delayed development of water stress and increased P N in water-stressed leaves. BA reversed the effect of ABA at mild water stress. Positive effects of BA and ABA pre-treatments were observed also after rehydration.  相似文献   

16.
Conversion of methanol to CH4 has a large isotope effect so that a small contribution of methanol-dependent CH4 production may decrease the 13CH4 of total CH4 production. Therefore, we investigated the role of methanol for CH4 production. Methanol was not detectable above 10 M in anoxic methanogenic rice field soil. Nevertheless, addition of 13C-labeled methanol (99% enriched) resulted in immediate accumulation of 13CH4. Addition of 0.1 M 13C-methanol resulted in increase of the 13CH4 from –47 to –6 within 2 h, followed by a slow decrease. Addition of 1 M 13C-methanol increased 13CH4 to +500 within 4 h, whereas 10 M increased 13CH4 to +2500 and continued to increase. These results indicate that the methanol concentrations in situ, which diluted the 13C-methanol added, were 0.1 M and that the turnover of methanol contributed only about 2% to total CH4 production at 0.1 M. However, contribution increased up to 5 and 17% when 1 and 10 M methanol were added, respectively. Anoxic rice soil that was incubated at different temperatures between 10 and 37 °C exhibited maximally 2–6% methanol-dependent methanogenesis about 1–2 h after addition of 1 M 13C-methanol. Only at 50 °C, contribution of methanol to CH4 production reached a maximum of 10%. After longer (7–10 h) incubation, however, contribution generally was only 2–4%. Methanol accumulated in the soil when CH4 production was inhibited by chloroform. However, the accumulated methanol accounted for only up to 0.7 and 1.2% of total CH4 production at 37 and 50 °C, respectively. Collectively, our results show that methanol-dependent methanogenesis was operating in anoxic rice field soil but contributed only marginally to total CH4 production and the isotope effect observed at both low and high temperature.  相似文献   

17.
Role of mitochondria in ethanol tolerance of Saccharomyces cerevisiae   总被引:7,自引:0,他引:7  
The presence of active mitochondria and oxidative metabolism is shown to be essential to maintain low inhibition levels by ethanol of the growth rate (), fermentation rate (v) or respiration rate () of Saccharomyces cerevisiae wild type strain S288C. Cells which have respiratory metabolism show K i (ethanol inhibition constant) values for , v and , higher (K i>1 M) than those of petite mutants or grande strains grown in anaerobiosis (K i=0.7 M). In addition, the relationship between or v and ethanol concentration is linear in cells with respiratory metabolism and exponential in cells lacking respiration. When functional mitochondria are transferred to petite mutants, the resulting strain shows K i values similar to those of the grande strain and the inhibition of and v by increasing ethanol concentrations becomes linear.  相似文献   

18.
Interspecies hybrids of HbA and Hb from mouse C57BL/10 [ 2 M 2 H and 2 H 2 M (H=human, M=mouse)], representing 19 and 27 sequence differences per dimers (as compared with human dimer) have been generatedin vitro. The efficiency of the assembly of the interspecies hybrids by the alloplex intermediate pathway is about twofold higher than the low-pH-mediated subunit approach. The interspecies hybrids exhibit a cooperative O2 binding. The intrinsic O2 affinity of mouse Hb is slightly lower than HbA, while the 2,3-diphosphoglycerate (DPG) effect is comparable. Interestingly, the interspecies hybrid 2 M 2 H has high O2 affinity (compared to either human or mouse Hb), while the interspecies hybrid 2 H 2 M exhibits a very low O2 affinity. These results suggest that the mouse chain generates a tetramer with very low oxygen affinity. However, the complementarity of the mouse and chains generates a set of unique interactions that compensate for the low-oxygen-affinity propensity of the mouse chain. DPG binds the tetramer in the central cavity formed by the two subunits, hence the DPG effects on the interspecies hybrids should be as in the parent molecule. However, the results of the present study demonstrate that the DPG binding pocket is influenced by the nature of the chain present in the tetramer. The mouse chain reduces considerably the DPG right shift of the O2 affinity of the human-chain containing hybrid. Sequence analysis suggest that perturbations of the 1 1 (not the 1 2) are communicated to the DPG binding pocket in the presence of the alien subunit, and are the primary determinant of the ligand binding properties. The results have implications for the design of Hb-based blood substitutes and understanding of the inhibitory potential of mouse chains in transgenic mouse expressing human S chains.  相似文献   

19.
We investigated the ability of hydrogen peroxide (H2O2) to cause apoptotic cell death in cultured rat forebrain neurons and the potential mechanisms by which oxidative stress triggers delayed neuronal death. H2O2 (25 M for 5 min) reduced cell viability to 34.5 ± 8.3% of untreated controls 20 h after exposure, and resulted in a significant proportion of neurons which exhibited apoptotic nuclear morphology. Using single cell fluorescence assays, we measured H2O2-induced changes in DNA strand breaks, 27 dichlorofluorescin fluorescence, reduced glutathione, intracellular free Ca2+, and mitochondrial membrane potential. DNA strand breaks in response to H2O2 were not evident immediately following exposure, but were increased 12h and 20h after exposure. Millimolar concentrations of H2O2 caused increases in the fluorescence of the oxidant-sensitive fluorescent dye, 27-dichlorofluorescin. H2O2 treatment decreased reduced glutathione following 30 minutes of exposure using the fluorescent indicator, 5-chloromethylfluorescein diacetate, and increased intra-neuronal free Ca2+ levels in a subpopulation of neurons. Mitochondrial membrane potential, measured by rhodamine 123 localization was unaffected by 25 H2O2, while higher concentrations of H2O2 (10 or 30 mM) depolarized mitochondria. These studies demonstrate that H2O2 is a potent and effective neurotoxin that produces oxidative stress, as well as apoptotic neuronal death  相似文献   

20.
Summary Respiration of an undescribed species of soil nematode of the genus Chiloplacus from the Canadian High Arctic was measured at 2°, 5°, 10°, 15°, 20° and 25°C. The corresponding metabolic rates were 0.2697×10-3 l, 0.3406×10-3 l, 0.8408×10-3 l, 0.8539×10-3 l, 1.8420×10-3 l and 2.9360×10-3 l O2 ind-1 h-1, respectively, for a nematode of 1.0 g dry weight. The relationship between respiration and dry weight for Chiloplacus sp. at 10°C is described by the function log R=-3.0693+0.8844 log W. Q10 values for the 2°–5°, 5°–10°, 10°–15°, 15°–20° and 20°–25°C temperature intervals were 2.18, 6.09, 1.03, 4.65 and 2.54, respectively. Chiloplacus sp. showed raised metabolic rates at low tempetatures compared with species from warmer environments. Metabolic rates of representative samples of the soil, nematode fauna (dominated by individuals of the genus Plectus) from the same location were 0.1593×10-3 l, 0.3603×10-3 l and 0.5332×10-3 l O2 ind-1 h-1 at 5°, 10° and 15°C for an average nematode of 0.4297 g dry weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号