首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The mature renal medulla, the inner part of the kidney, consists of the medullary collecting ducts, loops of Henle, vasa recta and the interstitium. The unique spatial arrangement of these components is essential for the regulation of urine concentration and other specialized kidney functions. Thus, the proper and timely assembly of medulla constituents is a crucial morphogenetic event leading to the formation of a functioning metanephric kidney. Mechanisms that direct renal medulla formation are poorly understood. This review describes the current understanding of the key molecular and cellular mechanisms underlying morphological aspects of medulla formation. Given that hypoplasia of the renal medulla is a common manifestation of congenital obstructive nephropathy and other types of congenital anomalies of the kidney and urinary tract (CAKUT), better understanding of how disruptions in medulla formation are linked to CAKUT will enable improved diagnosis, treatment and prevention of CAKUT and their associated morbidity.  相似文献   

2.
《Organogenesis》2013,9(1):10-17
The mature renal medulla, the inner part of the kidney, consists of the medullary collecting ducts, loops of Henle, vasa recta and the interstitium. The unique spatial arrangement of these components is essential for the regulation of urine concentration and other specialized kidney functions. Thus, the proper and timely assembly of medulla constituents is a crucial morphogenetic event leading to the formation of a functioning metanephric kidney. Mechanisms that direct renal medulla formation are poorly understood. This review describes the current understanding of the key molecular and cellular mechanisms underlying morphological aspects of medulla formation. Given that hypoplasia of the renal medulla is a common manifestation of congenital obstructive nephropathy and other types of congenital anomalies of the kidney and urinary tract (CAKUT), better understanding of how disruptions in medulla formation are linked to CAKUT will enable improved diagnosis, treatment and prevention of CAKUT and their associated morbidity.  相似文献   

3.
Congenital anomalies of the kidney and urinary tract (CAKUT) represent a broad range of disorders that result from abnormalities of the urinary collecting system, abnormal embryonic migration of the kidneys, or abnormal renal parenchyma development. These disorders are commonly found in humans, accounting for 20–30% of all genetic malformations diagnosed during the prenatal period. It has been estimated that CAKUT are responsible for 30–50% of all children with chronic renal disease worldwide and that some anomalies can predispose to adult‐onset diseases, such as hypertension. Currently, there is much speculation regarding the pathogenesis of CAKUT. Common genetic background with variable penetrance plays a role in the development of the wide spectrum of CAKUT phenotypes. This review aims to summarize the possible mechanisms by which genes responsible for kidney and urinary tract morphogenesis might be implicated in the pathogenesis of CAKUT. Birth Defects Research (Part C) 102:374–381, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Angiotensin type 2 receptor gene null mutant mice display congenital anomalies of the kidney and urinary tract (CAKUT). Various features of mouse CAKUT impressively mimic human CAKUT. Studies of the human type 2 receptor (AGTR2) gene in two independent cohorts found that a significant association exists between CAKUT and a nucleotide transition within the lariat branchpoint motif of intron 1, which perturbs AGTR2 mRNA splicing efficiency. AGTR2, therefore, has a significant ontogenic role for the kidney and urinary tract system. Studies revealed that the establishment of CAKUT is preceded by delayed apoptosis of undifferentiated mesenchymal cells surrounding the urinary tract during key ontogenic events, from the ureteral budding to the expansive growth of the kidney and ureter.  相似文献   

5.
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in children. This disease group includes a spectrum of urinary tract defects including vesicoureteral reflux, duplex kidneys and other developmental defects that can be found alone or in combination. To identify new regulators of CAKUT, we tested the genetic cooperativity between several key regulators of urogenital system development in mice. We found a high incidence of urinary tract anomalies in Pax2;Emx2 compound heterozygous mice that are not found in single heterozygous mice. Pax2+/−;Emx2+/− mice harbor duplex systems associated with urinary tract obstruction, bifid ureter and a high penetrance of vesicoureteral reflux. Remarkably, most compound heterozygous mice refluxed at low intravesical pressure. Early analysis of Pax2+/−;Emx2+/− embryos point to ureter budding defects as the primary cause of urinary tract anomalies. We additionally establish Pax2 as a direct regulator of Emx2 expression in the Wolffian duct. Together, these results identify a haploinsufficient genetic combination resulting in CAKUT-like phenotype, including a high sensitivity to vesicoureteral reflux. As both genes are located on human chromosome 10q, which is lost in a proportion of VUR patients, these findings may help understand VUR and CAKUT in humans.  相似文献   

6.
Congenital anomalies of the kidney and urinary tract (CAKUT) include vesicoureteral reflux (VUR). VUR is a complex, genetically heterogeneous developmental disorder characterized by the retrograde flow of urine from the bladder into the ureter and is associated with reflux nephropathy, the cause of 15% of end-stage renal disease in children and young adults. We investigated a man with a de novo translocation, 46,X,t(Y;3)(p11;p12)dn, who exhibits multiple congenital abnormalities, including severe bilateral VUR with ureterovesical junction defects. This translocation disrupts ROBO2, which encodes a transmembrane receptor for SLIT ligand, and produces dominant-negative ROBO2 proteins that abrogate SLIT-ROBO signaling in vitro. In addition, we identified two novel ROBO2 intracellular missense variants that segregate with CAKUT and VUR in two unrelated families. Adult heterozygous and mosaic mutant mice with reduced Robo2 gene dosage also exhibit striking CAKUT-VUR phenotypes. Collectively, these results implicate the SLIT-ROBO signaling pathway in the pathogenesis of a subset of human VUR.  相似文献   

7.
Congenital abnormalities of the kidney and urinary tract (CAKUT) occur in 1 out of 500 newborns, and constitute approximately 20-30% of all anomalies identified in the prenatal period. CAKUT has a major role in renal failure, and there is increasing evidence that certain abnormalities predispose to the development of hypertension and cardiovascular disease in adult life. Moreover, defects in nephron formation can predispose to Wilms tumour, the most frequent solid tumour in children. To understand the basis of human renal diseases, it is essential to consider how the kidney develops.  相似文献   

8.
Mutations in the receptor tyrosine kinase RET are associated with congenital anomalies of kidneys or urinary tract (CAKUT). RET tyrosine Y1015 is the docking site for PLCγ, a major regulator of RET signaling. Abrogating signaling via Y1015 causes CAKUT that are markedly different than renal agenesis in Ret-null or RetY1062F mutant mice. We performed analysis of Y1015F mutant upper and lower urinary tracts in mice to delineate its molecular and developmental roles during early urinary tract formation. We found that the degeneration of the common nephric ducts (CND), the caudal-most Wolffian duct (WD) segment, depends on Y1015 signals. The CNDs in Y1015F mutants persist owing to increased proliferation and reduced apoptosis, and showed abundance of phospho-ERK-positive cells. In the upper urinary tract, the Y1015 signals are required for proper patterning of the mesonephros and metanephros. Timely regression of mesonephric mesenchyme and proper demarcation of mesonephric and metanephric mesenchyme from the WD depends on RetY1015 signaling. We show that the mechanism of de novo ectopic budding is via increased ERK activity due to abnormal mesenchymal GDNF expression. Although reduction in GDNF dosage improved CAKUT it did not affect delayed mesenchyme regression. Experiments using whole-mount immunofluorescence confocal microscopy and explants cultures of early embryos with ERK-specific inhibitors suggest an imbalance between increased proliferation, decreased apoptosis and increased ERK activity as a mechanism for WD defects in RetY1015F mice. Our work demonstrates novel inhibitory roles of RetY1015 and provides a possible mechanistic explanation for some of the confounding broad range phenotypes in individuals with CAKUT.  相似文献   

9.
《Organogenesis》2013,9(4):177-190
Signaling pathways that are activated upon interaction of glial cell-line derived neurotrophic factor (Gdnf), its coreceptor Gfrα1, and receptor tyrosine kinase Ret are critical for kidney development and ureter maturation. Outside the kidney, this pathway is implicated in a number of congenital diseases including Hirschsprung disease (intestinal aganglionosis, HSCR) and hereditary cancer syndromes (MEN 2). Total lack of Gdnf, Gfrα1 or Ret in mice results in perinatal lethality due to bilateral renal agenesis or aplasia. In humans, RET mutations have been identified in a spectrum of congenital malformations involving the RET axis including isolated HSCR, isolated congenital anomalies of kidney or urinary tract (CAKUT), or CAKUT and HSCR together. The molecular basis for these pleiotropic effects of RET has just begun to be unraveled. In an effort to delineate the pathogenetic mechanisms that underlie these congenital malformations, we and others have characterized Ret’s role in early kidney and urinary system development. Here we present a brief overview of the “many faces” of Ret dysfunction in kidney with particular emphasis on Ret’s signaling specificity and intergenic interactions that confer normal urinary system development.  相似文献   

10.
Signaling pathways that are activated upon interaction of glial cell-line derived neurotrophic factor (Gdnf), its coreceptor Gfra1, and receptor tyrosine kinase Ret are critical for kidney development and ureter maturation. Outside the kidney, this pathway is implicated in a number of congenital diseases including Hirschsprung disease (intestinal aganglionosis, HSCR) and hereditary cancer syndromes (MEN 2). Total lack of Gdnf, Gfra1 or Ret in mice results in perinatal lethality due to bilateral renal agenesis or aplasia. In humans, RET mutations have been identified in a spectrum of congenital malformations involving the RET axis including isolated HSCR, isolated congenital anomalies of kidney or urinary tract (CAKUT), or CAKUT and HSCR together. The molecular basis for these pleiotropic effects of RET has just begun to be unraveled. In an effort to delineate the pathogenetic mechanisms that underlie these congenital malformations, we and others have characterized Ret''s role in early kidney and urinary system development. Here we present a brief overview of the “many faces” of Ret dysfunction in kidney with particular emphasis on Ret''s signaling specificity and intergenic interactions that confer normal urinary system development.Key words: RET, GDNF, kidney, RTK, CAKUT, branching morphogenesis, ureter  相似文献   

11.
Vesicoureteral reflux (VUR) is the retrograde passage of urine from the bladder to the upper urinary tract. It is the most common congenital urological anomaly affecting 1-2% of children and 30-40% of patients with urinary tract infections. VUR is a major risk factor for pyelonephritic scarring and chronic renal failure in children. It is the result of a shortened intravesical ureter with an enlarged or malpositioned ureteric orifice. An ectopic embryonal ureteric budding development is implicated in the pathogenesis of VUR, which is a complex genetic developmental disorder. Many genes are involved in the ureteric budding formation and subsequently in the urinary tract and kidney development. Previous studies demonstrate an heterogeneous genetic pattern of VUR. In fact no single major locus or gene for primary VUR has been identified. It is likely that different forms of VUR with different genetic determinantes are present. Moreover genetic studies of syndromes with associated VUR have revealed several possible candidate genes involved in the pathogenesis of VUR and related urinary tract malformations. Mutations in genes essential for urinary tract morphogenesis are linked to numerous congenital syndromes, and in most of those VUR is a feature. The Authors provide an overview of the developmental processes leading to the VUR. The different genes and signaling pathways controlling the embryonal urinary tract development are analyzed. A better understanding of VUR genetic bases could improve the management of this condition in children.  相似文献   

12.
Signaling by the glial cell line-derived neurotrophic factor (GDNF)-RET receptor tyrosine kinase and SPRY1, a RET repressor, is essential for early urinary tract development. Individual or a combination of GDNF, RET and SPRY1 mutant alleles in mice cause renal malformations reminiscent of congenital anomalies of the kidney or urinary tract (CAKUT) in humans and distinct from renal agenesis phenotype in complete GDNF or RET-null mice. We sequenced GDNF, SPRY1 and RET in 122 unrelated living CAKUT patients to discover deleterious mutations that cause CAKUT. Novel or rare deleterious mutations in GDNF or RET were found in six unrelated patients. A family with duplicated collecting system had a novel mutation, RET-R831Q, which showed markedly decreased GDNF-dependent MAPK activity. Two patients with RET-G691S polymorphism harbored additional rare non-synonymous variants GDNF-R93W and RET-R982C. The patient with double RET-G691S/R982C genotype had multiple defects including renal dysplasia, megaureters and cryptorchidism. Presence of both mutations was necessary to affect RET activity. Targeted whole-exome and next-generation sequencing revealed a novel deleterious mutation G443D in GFRα1, the co-receptor for RET, in this patient. Pedigree analysis indicated that the GFRα1 mutation was inherited from the unaffected mother and the RET mutations from the unaffected father. Our studies indicate that 5?% of living CAKUT patients harbor deleterious rare variants or novel mutations in GDNF-GFRα1-RET pathway. We provide evidence for the coexistence of deleterious rare and common variants in genes in the same pathway as a cause of CAKUT and discovered novel phenotypes associated with the RET pathway.  相似文献   

13.
The upper lamina propria (ULP) area of interstitial cells (IC) has been studied extensively in bladder, but is rather unexplored in the rest of the urinary tract. This cell layer is intriguing because of the localization directly underneath the urothelium, the intercellular contacts and the close relationship with nerve endings and capillaries. In this study, we examine the ULP layer of IC in human renal pelvis, ureter and urethra, and we make a comparison with ULP IC in bladder. Tissue was obtained from normal areas in nephrectomy, cystectomy and prostatectomy specimens, and processed for morphology, immunohistochemistry and electron microscopy. A morphological and immunohistochemical phenotype for the ULP IC was assessed and region-dependent differences were looked for. The ULP IC in renal pelvis, ureter and urethra had a similar ultrastructural phenotype, which differed somehow from that of bladder IC, that is, thinner and longer cytoplasmic processes, no peripheral actin filaments and presence of dense core granules and microtubules. Together with their immunohistochemical profile, these features are most compatible with the phenotype of telocytes, a recently discovered group of stromal cells. Based on their global ultrastructural and immunohistochemical phenotype, ULP IC in human bladder should also be classified as telocytes. The most striking immunohistochemical finding was the variable expression of oestrogen receptor (ER) and progesterone receptor (PR). The functional relevance of ULP telocytes in the urinary tract remains to be elucidated, and ER and PR might therefore be promising pharmacological research targets.  相似文献   

14.
The work presents data indicating no dependence of the pacemaker activity located in the zone of junction of cat ureter with urinary bladder on genesis of the main perirenal pacemaker. Data are presented on effect of clamping the renal artery supplying with blood flow the renal area on rhythmogenesis of the ureter perivesicular area. An inhibition of the pacemaker activity of the pyeloureteral anastomosis is observed. At the same time, no marked effect on automatism of the low organ area is revealed. Data of morphological studies of the vascular bed providing blood supply of various ureter areas are presented.  相似文献   

15.
16.
Obstruction of the kidney may affect native or transplanted kidneys and results in kidney injury and scarring. Presented here is a model of obstructive nephropathy induced by unilateral ureteric obstruction (UUO), which can either be irreversible (UUO) or reversible (R-UUO). In the irreversible UUO model, the ureter may be obstructed for variable periods of time in order to induce increasingly severe renal inflammation and interstitial fibrotic scarring. In the reversible R-UUO model the ureter is obstructed to induce hydronephrosis, tubular dilation and inflammation. After a suitable period of time the ureteric obstruction is then surgically reversed by anastomosis of the severed previously obstructed ureter to the bladder in order to allow complete decompression of the kidney and restoration of urinary flow to the bladder. The irreversible UUO model has been used to investigate various aspects of renal inflammation and scarring including the pathogenesis of disease and the testing of potential anti-inflammatory or anti-fibrotic therapies. The more challenging model of R-UUO has been used by some investigators and does offer significant research potential as it allows the study of inflammatory and immune processes and tissue remodeling in an injured and scarred kidney following the removal of the injurious stimulus. As a result, the R-UUO model offers investigators the opportunity to explore the resolution of kidney inflammation together with key aspects of tissue repair. These experimental models are of relevance to human disease as patients often present with obstruction of the renal tract that requires decompression and are commonly left with significant residual kidney impairment that has no current treatment options and may lead to eventual end stage kidney failure.  相似文献   

17.
The urinary tract is an outflow system that conducts urine from the kidneys to the bladder via the ureters that propel urine to the bladder via peristalsis. Once in the bladder, the ureteral valve, a mechanism that is not well understood, prevents backflow of urine to the kidney that can cause severe damage and induce end-stage renal disease. The upper and lower urinary tract compartments form independently, connecting at mid-gestation when the ureters move from their primary insertion site in the Wolffian ducts to the trigone, a muscular structure comprising the bladder floor just above the urethra. Precise connections between the ureters and the trigone are crucial for proper function of the ureteral valve mechanism; however, the developmental events underlying these connections and trigone formation are not well understood. According to established models, the trigone develops independently of the bladder, from the ureters, Wolffian ducts or a combination of both; however, these models have not been tested experimentally. Using the Cre-lox recombination system in lineage studies in mice, we find, unexpectedly, that the trigone is formed mostly from bladder smooth muscle with a more minor contribution from the ureter, and that trigone formation depends at least in part on intercalation of ureteral and bladder muscle. These studies suggest that urinary tract development occurs differently than previously thought, providing new insights into the mechanisms underlying normal and abnormal development.  相似文献   

18.
ObjectivesTo compare ultrasonography and abdominal radiography with intravenous urography in the investigation of urinary tract infection in men.DesignProspective study in two hospital departments. Radiological procedures and urological assessments performed on different days by different cliniciansSettingDistrict general hospital.ParticipantsConsecutive series of men (n=114) referred to the department of urology for investigation of proved urinary tract infection.InterventionsUltrasonography and intravenous urography of renal tract and assessment of urinary flow rate. Clinical assessment, cystoscopy, urodynamic studies, and transrectal ultrasonography with biopsy.ResultsImportant abnormalities were seen in 53 of 100 fully evaluated patients, the most common being a poorly emptying bladder (34). The combination of plain radiographs of kidneys, ureter, and bladder and ultrasonography detected more abnormalities than intravenous urography alone. No important abnormality was missed by this combination (sensitivity 100% and specificity 93%).ConclusionsUltrasonography with abdominal radiography is as accurate as intravenous urography in detecting important urological abnormalities in men presenting with urinary tract infection. This combination is safer than intravenous urography and should be the initial investigation for such patients. Additional determination of urinary flow rate is useful for the assessment of an incompletely emptying bladder.

What is already known on this topic

Ultrasonography alone is the primary investigation of choice for urinary tract infection in children and womenUltrasonography has limited sensitivity for renal stones and poor sensitivity for ureteric stonesUrinary infection is less common in men than women and the risk factors are different

What this study adds

Ultrasonography is as effective as intravenous urography in men with urinary tract infection only when it is combined with plain radiographyIn men aged over 50 an incompletely emptying bladder is the most common abnormalityIn such patients determination of urinary flow rate is particularly helpful  相似文献   

19.
Purinergic signalling is involved in a number of physiological and pathophysiological activities in the lower urinary tract. In the bladder of laboratory animals there is parasympathetic excitatory cotransmission with the purinergic and cholinergic components being approximately equal, acting via P2X1 and muscarinic receptors, respectively. Purinergic mechanosensory transduction occurs where ATP, released from urothelial cells during distension of bladder and ureter, acts on P2X3 and P2X2/3 receptors on suburothelial sensory nerves to initiate the voiding reflex, via low threshold fibres, and nociception, via high threshold fibres. In human bladder the purinergic component of parasympathetic cotransmission is less than 3 %, but in pathological conditions, such as interstitial cystitis, obstructed and neuropathic bladder, the purinergic component is increased to 40 %. Other pathological conditions of the bladder have been shown to involve purinoceptor-mediated activities, including multiple sclerosis, ischaemia, diabetes, cancer and bacterial infections. In the ureter, P2X7 receptors have been implicated in inflammation and fibrosis. Purinergic therapeutic strategies are being explored that hopefully will be developed and bring benefit and relief to many patients with urinary tract disorders.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号