首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The small Photosystem I particles prepared from spinach chloroplasts by the action of Triton X-100 (TSF 1 particles) reaggregate into membrane structures when they are incubated with soybean phospholipids and cholate and then subjected to a slow dialysis. The membranes so formed are vesicular in nature and show the capability of catalyzing phenazine methosulfate-mediated cyclic photophosphorylation at rates which are usually about 20% of those observed with chloroplasts, but higher rates have been obtained. When coupling factor is removed from the chloroplasts by treatment with EDTA, a requirement for coupling factor can be shown for the subsequent ATP formation. The uncouplers carbonylcyanide 3-chlorophenyl-hydrazone, valinomycin, Triton X-100 and NH+4 are effective with the reformed vesicles, which do not show the typical light-induced pH gradient observed with chloroplasts. Incubation of the TSF 1 particles with phospholipids alone allows for the formation of membrane vesicles, but such vesicles are only slightly active in ATP formation. In most properties investigated, the reformed membrane vesicles resemble the original chloroplast membrane so far as phenazine methosulfate-mediated cyclic photophosphorylation is concerned, which indicates a high degree of selectivity in the reaggregation process. The major difference between chloroplasts and the reformed vesicles is the failure of the latter to show a light-induced pH gradient.  相似文献   

2.
The light-induced H+ efflux observed at acidic pH in Cyanidiumcells was shown to be an active H+ transport depending on theintracellular ATP produced by cyclic photo-phosphorylation.Triton X-100 was found to act as an effective uncoupler in intactCyanidium cells without collapsing the pH gradient across theplasma membrane. Triton X-100 at 0.015% significantly reducedthe intracellular ATP levels, stimulated the p-BQ, Hill reactionand completely inhibited the light-induced H+ efflux. Inhibitionof the H+ efflux by Triton X-100 correlated well with the depressionof the apparent rale of light-induced ATP synthesis as wellas the decrease in the intracellular ATP level in light. The light-induced H+ efflux was completely inhibited by diethylstilbestrol,a specific inhibitor of plasma membrane ATPase, without anychanges in the intracellular ATP level, thereby suggesting theparticipation of the plasma membrane ATPase in the light-inducedH+ efflux. 1The data in this paper are included in the Ph. D. dissertationsubmitted by M. Kura-Hotta to Tokyo Metropolitan University. (Received February 3, 1984; Accepted June 14, 1984)  相似文献   

3.
D.L. Vandermeulen  Govindjee 《BBA》1976,449(3):340-356
1. A reversible light-induced enhancement of the fluorescence of a “hydrophobic fluorophore”, 12-(9-anthroyl)-stearic acid (anthroyl stearate), is observed with chloroplasts supporting phenazine methosulfate, cyclic or 1,1′-ethylene-2,2′-dipyridylium dibromide (Diquat) pseudo-cyclic electron flow; no fluorescence change is observed when methyl viologen or ferricyanide are used as electron acceptors. The stearic acid moiety of anthroyl stearate is important for its localization and fluorescence response in the thylakoid membrane, since structural analogs of anthroyl stearate lacking this group do not show the same response.

2. This effect is decreased under phosphorylating conditions (presence of ADP, Pi, Mg2+), and completely inhibited by the uncoupler of phosphorylation NH4Cl (5–10 mM), as well as the ionophores nigericin and gramicidin-D (both at 5 · 10−8 M). The MgCl2 concentration dependence of the anthroyl stearate enhancement effect is identical to that previously observed for cyclic photophosphorylation, as well as for the formation of a “high energy intermediate”. The anthroyl stearate fluorescence enhancement is inhibited by increasing concentrations of ionophores in parallel with the decrease in ATP synthesis, but is essentially unaffected by specific inhibitors (Dio-9 and phlorizin) of photophosphorylation; thus, it appears that anthroyl stearate monitors a component of the “high energy state” of the thylakoid membrane rather than a terminal phosphorylation step.

3. The light-induced anthroyl stearate fluorescence enhancement is suggested to monitor a proton gradient in the energized chloroplast because (a) similar enhancement can be produced by sudden injection of hydrogen ions in a solution of anthroyl stearate; (b) when the proton gradient is dissipated by gramicidin or nigericin light-induced anthroyl stearate fluorescence is eliminated; (c) when the proton gradient is dissipated by tetraphenylboron, light-induced anthroyl stearate fluorescence decreases, and (d) light-induced anthroyl stearate fluorescence change as a function of pH is qualitatively similar to that observed with other probes for a proton gradient (e.g. 9-aminoacridine). Furthermore, anthroyl stearate does not monitor H+ uptake per se because (a) the pH dependence of H+ transport is different from that of the anthroyl stearate fluorescence change, and (b) tetraphenylboron, which does not inhibit H+ uptake, reduces anthroyl stearate fluorescence.

Thus, anthroyl stearate appears to be a useful probe of a proton gradient supported by phenazine methosulfate or Diquat catalyzed electron flow and is the first “non-amine” fluorescence probe utilized for this purpose in chloroplasts.  相似文献   


4.
1. A reversible light-induced enhancement of the fluorescence of a "hydrophobic fluorophore", 12-(9-anthroyl)-stearic acid (anthroyl stearate), is observed with chloroplasts supporting phenazine methosulfate, cyclic or 1,1'-ethylene-2,2'-dipyridylium dibromide (Diquat) pseudo-cyclic electron flow; no fluorescence change is observed when methyl viologen or ferricyanide are used as electron acceptors. The stearic acid moiety of anthroyl stearate is important for its localization and fluorescence response in the thylakoid membrane, since structural analogs of anthroyl stearate lacking this group do not show the same response. 2. This effect is decreased under phosphorylating conditions (presence of ADP, Pi, Mg2+), and completely inhibited by the uncoupler of phosphorylation NH4Cl(5-10mM), as well as the ionophores nigericin and gramicidin-D (both at 5 - 10(-8)M). The MgCl2 concentration dependence of the anthroyl stearate enhancement effect is identical to that previously observed for cyclic photophosphorylation, as well as for the formation of a "high energy intermediate". The anthroyl stearate fluorescence enhancement is inhibited by increasing concentrations of ionophores in parallel with the decrease in ATP synthesis, but is essentially unaffected by specific inhibitors (Dio-9 and phlorizin) of photophosphorylation; thus, it appears that anthroyl stearate monitors a component of the "high energy state" of the thylakoid membrane rather than a terminal phosphorylation step. 3. The light-induced anthroyl stearate fluorescence enhancement is suggested to monitor a proton gradient in the energized chloroplast because (a) similar enhancement can be produced by sudden injection of hydrogen ions in a solution of anthroyl stearate; (b) when the proton gradient is dissipated by gramicidin or nigericin light-induced anthroyl stearate fllorescence is eliminated; (c) when the proton gradient is dissipated by tetraphenylboron, light-induced anthroyl stearate fluorescence decreases, and (d) light-induced anthroyl stearate fluorescence change as a function of pH is qualitatively similar to that observed with other probes for a proton gradient (e.g. 9-aminoacridine). Furthermore, anthroyl stearate does not monitor H+ uptake per se because (a) the pH dependence of H+ transport is different from that of the anthroyl stearate fluorescence change, and (b) tetraphenylboron, which does not inhibit H+ uptake, reduces anthroyl stearate fluorescence. Thus, anthroyl stearate appears to be a useful probe of a proton gradient supported by phenazine methosulfate of Diquat catalyzed electron flow and is the first "non-amine" fluorescence probe utilized for this purpose in chloroplasts.  相似文献   

5.
The formation of membrane potential in sonicated particles of an aerobic bacterium, Micrococcus lysodeikticus, and of pea chloroplasts has been demonstrated

To detect membrane potential, the responses of synthetic penetrating anions of phenyl dicarbaundecaborane (PCB), tetraphenyl boron and anilinonaphthalene-sulfonate (ANS) were studied. It was found that oxidation of NADH, succinate, malate, and lactate by oxygen in particles of M. lysodeikticus is coupled with anion uptake and ANS- fluorescence enhancement, the fact testifying to the formation of membrane potential (“plus” inside particles). Uncouplers, cyanide and heptyl-hydroxyquinoline N-oxide prevent and reverse respiration-induced anion responses. Cyanide-resistant oxygen uptake is not coupled with ion fluxes. Ion responses are inhibited by acceptors competing with oxygen for electrons, such as Q0, menadione, and also ferricyanide when malate or succinate (but not lactate) are oxidized. In cyanide-treated particles, reduction of ferricyanide by lactate, but not by malate, supports some anion transport. In contrast to respiration, ATP does not actuate ion fluxes in M. lysodeikticus particles competent in respiratory phosphorylation.

In sonicated particles of pea chloroplasts, light-induced anion uptake can be observed. Switching off light results in the efflux of anions accumulated on illumination. Again, ATP does not induce any anion response, although the system of photophosphorylation is active under the same conditions. It is concluded that formation of a membrane potential in particles of M. lysodeikticus and pea chloroplasts (plus inside) can be actuated by electron transfer but not ATP hydrolysis. The ineffectiveness of ATP seems to be a result of irreversibility, rather than damage, of the energy transfer chain; a property in which coupling mechanisms of M. lysodeikticus and chloroplasts differ from those of animal mitochondria and Rhodospirillum rubrum chromatophores.  相似文献   


6.
C. J. Arntzen  R. A. Dilley  J. Neumann 《BBA》1971,245(2):409-424
Membrane fragments released by French pressure cell treatment of whole chloroplasts and isolated by differential centrifugation have been characterized structurally and with respect to phosophorylating and proton transport activities. In agreement with results of other workers, the heavy fraction released by pressure treatment was found by electron microscopy studies to be made up of mostly intact grana stacks while the light fraction was comprised of vesicles derived from the stromal lamellae. Both fractions were found to carry out rapid rates of cyclic photophosphorylation catalyzed by phenazine methosulfate (PMS). However, only the grana membranes demonstrated active proton accumulation in the presence of PMS. No light induced H+ uptake could be detected in the stromal lamellae fraction; and as expected, proton gradient dissipating agents such as NH4Cl, nigericin in the presence of K+, and gramicidin were only slightly inhibitory to phosphorylation at concentrations which were very inhibitory in the grana membrane fraction.

Further evidence that stromal lamellae do not have active proton transport in the intact chloroplast was obtained by comparing various chloroplasts having different amounts of stromal and grana membranes. Comparative studies on young and old chloroplasts from lettuce, mesophyll and bundle sheath cell plastids from sorghum, and greening plastids from etiolated corn seedlings revealed a direct correlation between the extent of grana formation and the amount of proton transport activity. Samples which had larger amounts of stromal lamellae had high rates of ATP formation but a reduced capacity for H+ accumulation.  相似文献   


7.
An "elementary act" of ATP formation from ADP and Pi in energy-transducing organels (mitochondria, chloroplasts and chromatophores) can be realized without closed membrane vesicles, pieces of membranes and F0-component of H+ATPase. The "elementary act" is initiated by a rather fast deprotonation of several acid groups of the coupling factor F1 (or CF1), this process leads to structurally non-equilibrium state of the enzyme due to the appearance of "additional" negative charges in unchanged protein globula. The endergonic step of ATP synthesis, i. e. release of tightly-bound ATP into the aqueous medium, occurs during conformational relaxation of the non-equilibrium state of H+ATPase. Closed membrane vesicles are necessary for a cyclic return of the enzyme to the initial state with protonized functional groups, this provides multiple synthesis of ATP under the steady state and quasi-stationary conditions. The energetical aspects and details of possible schemes of ATP synthesis initiated by artificial electrochemical gradient of protons, as well as ATP formation during oxidative and photophosphorylation are discussed here.  相似文献   

8.
Addition of Triton X-100 to chloroplast suspensions to a final concentration of 100–200 µM causes an approximate tripling of chloroplast volume and complete inhibition of light-induced conformational changes, light-dependent hydrogen ion transport, and photophosphorylation. Electron microscopic studies show that chloroplasts treated in this manner manifest extensive swelling in the form of vesicles within their inner membrane structure. Triton was adsorbed to chloroplast membranes in a manner suggesting a partition between the membrane phase and the suspending medium, rather than a strong, irreversible binding. This adsorption results in the production of pores through which ions may freely pass, and it is suggested that the inhibition of conformational changes, hydrogen ion transport, and photophosphorylation by Triton is due to an inability of treated chloroplast membranes to maintain a light-dependent pH gradient. The observed swelling is due to water influx in response to a fixed, osmotically active species within the chloroplasts, after ionic equilibrium has occurred. This is supported by the fact that chloroplasts will shrink upon Triton addition if a nonpenetrating, osmotically active material such as dextran or polyvinylpyrrolidone is present externally in sufficient concentration (>0.1 mM) to offset the osmotic activity of the internal species.  相似文献   

9.
Treatment of rat liver rough microsomes (3.5 mg of protein/ml) with sublytical concentrations (0.08%) of the neutral detergent Triton X-100 caused a lateral displacement of bound ribosomes and the formation of ribosomal aggregates on the microsomal surface. At slightly higher detergent concentrations (0.12-0.16%) membrane areas bearing ribosomal aggregates invaginated into the microsomal lumen and separated from the rest of the membrane. Two distinct classes of vesicles could be isolated by density gradient centrifugation from microsomes treated with 0.16% Triton X-100: one with ribosomes bound to the inner membrane surfaces ("inverted rough" vesicles) and another with no ribosomes attached to the membranes. Analysis of the fractions showed that approximately 30% of the phospholipids and 20-30% of the total membrane protein were released from the membranes by this treatment. Labeling with avidin-ferritin conjugates demonstrated that concanavalin A binding sites, which in native rough microsomes are found in the luminal face of the membranes, were present on the outer surface of the inverted rough vesicles. Freeze-fracture electron microscopy showed that both fracture faces had similar concentrations of intramembrane particles. SDS PAGE analysis of the two vesicle subfractions demonstrated that, of all the integral microsomal membrane proteins, only ribophorins I and II were found exclusively in the inverted rough vesicles bearing ribosomes. These observations are consistent with the proposal that ribophorins are associated with the ribosomal binding sites characteristic of rough microsomal membranes.  相似文献   

10.
Radiation inactivation technique was employed to measure the functional size of adenosine triphosphatase of spinach chloroplasts. The functional size for acid-base-induced ATP synthesis was 450 +/- 24 kilodaltons; for phenazine methosulfate-mediated ATP synthesis, 613 +/- 33 kilodaltons; and for methanol-activated ATP hydrolysis, 280 +/- 14 kilodaltons. The difference (170 +/- 57 kilodaltons) between 450 +/- 24 and 280 +/- 14 kilodaltons is explained to be the molecular mass of proton channel (coupling factor 0) across the thylakoid membrane. Our data suggest that the stoichiometry of subunits I, II, and III of coupling factor 0 is 1:2:15. Ca2+- and Mg2+-ATPase activated by methanol, heat, and trypsin digestion have a similar functional size. However, anions such as SO3(2-) and CO3(2-) increased the molecular mass for both ATPase's (except trypsin-activated Mg2+-ATPase) by 12-30%. Soluble coupling factor 1 has a larger target size than that of membrane-bound. This is interpreted as the cold effect during irradiation.  相似文献   

11.
The energy-linked ATPase complex has been isolated from spinach chloroplasts. This protein complex contained all the subunits of the chloroplast coupling factor (CF1) as well as several hydrophobic components. When the activated complex was reconstituted with added soybean phospholipids, it catalyzed the exchange of radioactive inorganic phosphate with ATP. Sonication of the complex into proteoliposomes together with bacteriorhodopsin yielded vesicles that catalyzed light-dependent ATP formation. Both the 32Pi-ATP exchange reactions and ATP formation were sensitive to uncouplers such as 3-tert-butyl-5,2′-dichloro-4′-nitrosalicylanilide, bis-(hexafluoroacetonyl)acetone and carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone, that act to dissipate a proton gradient. The energy transfer inhibitors dicyclohexylcarbodiimide, triphenyltin chloride and 2-β-d-glucopyranosyl-4,6′-dihydroxydihydrochalcone were also effective inhibitors of both reactions.  相似文献   

12.
In order to study the "sidedness" of the ligands of the Na+, K+-ATPase in the phosphorylation from [32P]ATP, tight vesicles were prepared from guinea pig kidney and partially purified by a two-stage sucrose and Ficoll gradient centrifugation procedure. These vesicles were derived presumably from plasma membrane fragments resealed after the initial disruption of the cells during homogenization. Tightness of the vesicles was estimated according to activation by the nonionic detergent, Triton X-100. Treatment with Triton X-100 increased both the activity of the Na+, K+-ATPase and its Na+-dependent phosphorylation from [32P]ATP at least three-fold. Activation of both functions also appeared when the vesicles were shocked osmotically. These results suggest that the preparation contains a major population of tight normal vesicles (approximately 75%) in which the phosphorylation site faces the intravesicular solution. In the response to ouabain breakdown of the phosphoenzyme was inhibited in vesicles treated with Triton X-100 but not in intact ones as if ouabain could not get to its binding site. Correspondingly in phosphorylation from ATP pretreatment with ouabain in the presence of inorganic phosphate produced less inhibition in intact vesicles than in those disrupted with Triton X-100 beforehand. These data suggest the presence of an everted vesicle fraction in the preparation (approximately 20%). Apparently only a small fraction of the vesicles was leaky. In the everted vesicles the action of K+ on the phosphoenzyme was slow. In order to accelerate the dephosphorylation in intact vesicles as effectively as in disrupted ones, K+ had to be added before the start of phosphorylation. This supports the view that K+ was acting from the side of the membrane opposite to that where the gamma-phosphoryl group was accepted from ATP.  相似文献   

13.
The energy-linked ATPase complex has been isolated from spinach chloroplasts. This protein complex contained all the subunits of the chloroplast coupling factor (CF1) as well as several hydrophobic compoenents. When the activated complex was reconstituted with added soybean phospholipids, it catalyzed the exchange of radioactive inorganic phosphate with ATP. Sonication of the complex into proteoliposomes together with bacteriorhodopsin yield vesicles that catalyzed light-dependent ATP formation. Both the 32Pi-ATP exchange reactions and ATP formation were sensitive to uncouplers such as 3-tert-butyl-5,2'-dichloro-4'-nitrosalicylanilide, bis-(hexafluoroacetonyl)acetone and carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone, that act to dissipate a proton gradient. The energy transfer inhibitors dicyclohexylcarbodiimide, triphenyltin chloride and 2-beta-D-glucopyranosyl-4,6'-dihydroxydihydrochalcone were also effective inhibitors of both reactions.  相似文献   

14.
The outer membrane of Pseudomonas aeruginosa PA01 is permeable to saccharides of molecular weights lower than about 6000. Triton X-100/EDTA-soluble outer membrane proteins were fractionated by ion-exchange chromatography in the presence of Triton X-100 and EDTA, and the protein contents of the various fractions analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Each of the major protein bands present in the Triton X-100/EDTA soluble outer membrane was separated from one another. Adjacent fractions were pooled, concentrated and extensively dialyzed to reduce the Triton X-100 concentration. Vesicles were reconstituted from lipopolysaccharide, phospholipids and each of these dialyzed fractions, and examined for their ability to retain [14C]sucrose. Control experiments indicated that the residual levels of Triton X-100 remaining in the dialyzed fractions had no effect on the formation or permeability to saccharides of the reconstituted vesicles. It was concluded that a major outer membrane polypeptide with an apparent weight of 35,000 is a porin, responsible for the size-dependent permeability of the outer membrane.  相似文献   

15.
Ca2+ ATPase activity and Ca2+ transport from Triton X-100-solubilized sarcoplasmic reticulum vesicles and soybean phospholipids were reconstituted by passing this mixture through a Bio-Bead SM-2 column. This rapid procedure gave a coupling efficiency of 0.83 mol of Ca2+-mol? of ATP hydrolyzed when 35 mg of soybean phospholipids mg?1 of protein was used.  相似文献   

16.
To identify integral and peripheral membrane proteins, highly purified coated vesicles from bovine brain were exposed to solutions of various pH, ionic strength, and concentrations of the nonionic detergent Triton X-100. At pH 10.0 or above most major proteins were liberated, but four minor polypeptides sedimented with the vesicles. From quantitative analysis of phospholipids in the pellet and extract, we determined that at a pH of up to 12 all phospholipids could be recovered in the pellet. Electron microscopic examination of coated vesicles at pH 12.0 showed all vesicles devoid of coat structures. Treatment with high ionic strength solutions (0-1.0 M KCl) at pH 6.5-8.5 also liberated all major proteins, except tubulin, which remained sedimentable. The addition of Triton X-100 to coated vesicles or to stripped vesicles from which 90% of the clathrin had been removed resulted in the release of four distinct polypeptides of approximate Mr 38,000, 29,000, 24,000 and 10,000. The 38,000-D polypeptide (pK approximately 5.0), which represents approximately 50% of the protein liberated by Triton X-100, appears to be a glycoprotein on the basis of its reaction with periodic acid-Schiff reagent. Extraction of 90% of the clathrin followed by extraction of 90% of the phospholipids with Triton X-100 produced a protein residue that remained sedimentable and consisted of structures that appeared to be shrunken stripped vesicles. Together our data indicate that most of the major polypeptides of brain coated vesicles behave as peripheral membrane proteins and at least four polypeptides behave as integral membrane proteins. By use of a monoclonal antibody, we have identified one of these polypeptides (38,000 mol wt) as a marker for a subpopulation of calf brain coated vesicles.  相似文献   

17.
Triton X-100 (in concentrations which did not cause a significant solubilization of membrane material) caused aggregation of the intramembrane particles of human erythrocyte ghosts.Ghosts from which the extrinsic proteins had been removed by alkali treatment showed a temperature-induced aggregation of the particles. With virtually no spectrin present, the particles in these stripped ghosts could still be aggregated by manipulations with ionic strength and pH, or by the addition of calcium.Recombinant vesicles were made from a Triton X-100 extract and a mixture of phospholipids with a composition which resembled that of the inner monolayer of erythrocyte membrane. In these recombinants the same manipulations with ionic strength and pH and the addition of calcium caused a rearrangement of the particles, resulting in the appearance of particle-free areas. In recombinants prepared from a Trixon X-100 extract and egg phosphatidylcholine the lateral distribution of the particles was not altered by these manipulations.It is concluded that in the erythrocyte membrane the intramembrane particles can be aggregated by effects of external agents on lipid components. In this light the role of spectrin in stabilizing the membrane by interactions with lipids in the inner monolayer is discussed.  相似文献   

18.
The outer membrane of Pseudomonas aeruginosa PA01 is permeable to saccharides of molecular weights lower than about 6000. Triton X-100/EDTA-soluble outer membrane proteins were fractionated by ion-exchange chromatography in the presence of Triton X-100 and EDTA, and the protein contents of the various fractions analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Each of the major protein bands present in the Triton X-100/EDTA soluble outer membrane was separated from one another. Adjacent fractions were pooled, concentrated and extensively dialyzed to reduce the Triton X-100 concentration. Vesicles were reconstituted from lipopolysaccharide, phospholipids and each of these dialyzed fractions, and examined for their ability to retain [14C]sucrose. Control experiments indicated that the residual levels of Triton X-100 remaining in the dialyzed fractions had no effect on the formation or permeability to saccharides of the reconstituted vesicles. It was concluded that a major outer membrane polypeptide with an apparent weight of 35 000 is a porin, responsible for the size-dependent permeability of the outer membrane.  相似文献   

19.
The light-induced absorbance change at 515 nm, light-inducedhydrogen ion uptake and ATP formation were compared in chloroplastsand different types of sonicated subchloroplast particles. Noparallel relationship among the activities for ATP formation,hydrogen ion uptake and the 515-nm change was observed in differenttypes of preparations. NH4Cl inhibited ATP formation in chloroplastsbut had little effect on subchloroplast particles. In contrast,the light-induced hydrogen ion uptake was inhibited by NH4Clin a similar manner. Tetraphenylboron (TPB), at 1 µM, inhibited ATP formationby about 30% in both chloroplasts and subchloroplast particles.In the presence of TPB, ATP formation in chloroplasts was stronglyinhibited by NHC4Cl, but in subchloroplast particles the additionalinhibitory effect of NH4Cl was small. A synergistic inhibitionof photophosphorylation by valinomycin plus NH4Cl was much clearer.Although acceleration of the recovery of the 515-nm change byNH4Cl or valinomycin was moderate, the 515-nm change virtuallydisappeared when NH4Cl and valinomycin were added simultaneously. Although the membrane potential has a major role as the principaldriving force for ATP formation in subchloroplast particles,the simultaneous abolishment of the pH gradient and membranepotential may be required to uncouple ATP formation. 1Present address: Fukuoka Women's University, Kasumigaoka, Fukuoka813, Japan. 2Present address: Ryukyu University, Naha, Okinawa 903, Japan. (Received February 5, 1974; )  相似文献   

20.

1. 1. A comparison of chloroplasts from which plastoquinone had been extracted with ultraviolet irradiation supports the conclusion that plastoquinone destruction is not the major cause of ultraviolet inhibition of photosynthesis. No photodestruction of chloroplast lipids, carotenoids or soluble proteins by ultraviolet irradiation was detected.

2. 2. Phenazine methosulfate-mediated cyclic photophosphorylation and variable yield fluorescence were inhibited at the same rate as the Hill reaction. Examination of fluorescence emission spectra of chloroplasts and whole algal cells revealed decreases in both the 685-nm and long-wavelength emission peaks.

3. 3. Digestion of chloroplasts with lipase decreased fluorescence in a manner similar to ultraviolet irradiation. Hill reaction activity was also inhibited by lipase digestion.

4. 4. It is concluded that the inhibition of photosynthesis by ultraviolet irradiation is most likely due to a disruption of the structural integrity of the lamellar membranes which results in the loss of System II activity and associated reactions.

Abbreviations: DCIP, 2,6-dichlorphenolindophenol; DCMU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea; CCCP, m-chlorocyanocarbonylphenylhydrazone; PMS, phenazine methosulfate  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号