首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
In developing strategies to control malaria vectors, there is increased interest in biological methods that do not cause instant vector mortality, but have sublethal and lethal effects at different ages and stages in the mosquito life cycle. These techniques, particularly if integrated with other vector control interventions, may produce substantial reductions in malaria transmission due to the total effect of alterations to multiple life history parameters at relevant points in the life-cycle and transmission-cycle of the vector. To quantify this effect, an analytically tractable gonotrophic cycle model of mosquito-malaria interactions is developed that unites existing continuous and discrete feeding cycle approaches. As a case study, the combined use of fungal biopesticides and insecticide treated bednets (ITNs) is considered. Low values of the equilibrium EIR and human prevalence were obtained when fungal biopesticides and ITNs were combined, even for scenarios where each intervention acting alone had relatively little impact. The effect of the combined interventions on the equilibrium EIR was at least as strong as the multiplicative effect of both interventions. For scenarios representing difficult conditions for malaria control, due to high transmission intensity and widespread insecticide resistance, the effect of the combined interventions on the equilibrium EIR was greater than the multiplicative effect, as a result of synergistic interactions between the interventions. Fungal biopesticide application was found to be most effective when ITN coverage was high, producing significant reductions in equilibrium prevalence for low levels of biopesticide coverage. By incorporating biological mechanisms relevant to vectorial capacity, continuous-time vector population models can increase their applicability to integrated vector management.  相似文献   

2.

Background

Past experience and modelling suggest that, in most cases, mass treatment strategies are not likely to succeed in interrupting Plasmodium falciparum malaria transmission. However, this does not preclude their use to reduce disease burden. Mass screening and treatment (MSAT) is preferred to mass drug administration (MDA), as the latter involves massive over-use of drugs. This paper reports simulations of the incremental cost-effectiveness of well-conducted MSAT campaigns as a strategy for P. falciparum malaria disease-burden reduction in settings with varying receptivity (ability of the combined vector population in a setting to transmit disease) and access to case management.

Methods

MSAT incremental cost-effectiveness ratios (ICERs) were estimated in different sub-Saharan African settings using simulation models of the dynamics of malaria and a literature-based MSAT cost estimate. Imported infections were simulated at a rate of two per 1,000 population per annum. These estimates were compared to the ICERs of scaling up case management or insecticide-treated net (ITN) coverage in each baseline health system, in the absence of MSAT.

Results

MSAT averted most episodes, and resulted in the lowest ICERs, in settings with a moderate level of disease burden. At a low pre-intervention entomological inoculation rate (EIR) of two infectious bites per adult per annum (IBPAPA) MSAT was never more cost-effective than scaling up ITNs or case management coverage. However, at pre-intervention entomological inoculation rates (EIRs) of 20 and 50 IBPAPA and ITN coverage levels of 40 or 60%, respectively, the ICER of MSAT was similar to that of scaling up ITN coverage further.

Conclusions

In all the transmission settings considered, achieving a minimal level of ITN coverage is a “best buy”. At low transmission, MSAT probably is not worth considering. Instead, MSAT may be suitable at medium to high levels of transmission and at moderate ITN coverage. If undertaken as a burden-reducing intervention, MSAT should be continued indefinitely and should complement, not replace, case management and vector control interventions.  相似文献   

3.

Background

Insecticide-treated nets (ITNs) are a proven intervention to reduce the burden of malaria, yet there remains a debate as to the best method of ensuring they are universally utilized. This study is a cost-effectiveness analysis of an intervention in Malawi that started in 1998, in Blantyre district, before expanding nationwide. Over the 5-year period, 1.5 million ITNs were sold.

Methods

The costs were calculated retrospectively through analysis of expenditure data. Costs and effects were measured as cost per treated-net year (cost/TNY) and cost per net distributed.

Results

The mean cost/TNY was calculated at $4.41, and the mean cost/ITN distributed at $2.63. It also shows evidence of economies of scale, with the cost/TNY falling from $7.69 in year one (72,196 ITN) to $3.44 in year five (720,577 ITN). Cost/ITN distributed dropped from $5.04 to $1.92.

Conclusion

Combining targeting and social marketing has the potential of being both cost-effective and capable of achieving high levels of coverage, and it is possible that increasing returns to scale can be achieved.  相似文献   

4.

Background

Introducing sustainability and self-reliance is essential in chronic humanitarian emergencies before financial assistance is phased out. In Pakistan-based Afghan refugee camps, this was attempted through shifting from indoor residual spraying (IRS) to the subsidized sale of insecticide-treated nets (ITNs) for prevention of malaria and anthroponotic cutaneous leishmaniasis (ACL). Here we outline the strategy and document the progress to provide guidance for replication of similar approaches in other chronic refugee situations.

Methods

The operational monitoring data presented were collected through: (i) two surveys of knowledge, attitude and practice (KAP); (ii) routine sales reporting of health-care providers; (iii) records completed during field visits; and (iv) registers used during annual re-treatment campaigns.

Results

From 2000 until 2003, subsidized ITN sales expanded from 17 to 44 camps. Based on 2003 sales records, maximum coverage from subsidized sales exceeded 50% in 13 camps and 20% in an additional 14 camps. Free annual treatment campaigns showed that many refugees were in possession of non-programme nets, which were either locally-made or had leaked from an ITN programme in Afghanistan. Estimated re-treatment coverage of sold and existing nets through annual campaigns exceeded 43% in all camps and was above 70% in the majority.

Conclusion

Subsidized sales of ITNs have effectively introduced the components of sustainability and self-reliance to the prevention of malaria and ACL in Afghan refugee camps. Similar approaches should be investigated in other chronic refugee situations to discourage expectations of continuing humanitarian donations that cannot be fulfilled.  相似文献   

5.

Background

Successful malaria vector control depends on understanding behavioural interactions between mosquitoes and humans, which are highly setting-specific and may have characteristic features in urban environments. Here mosquito biting patterns in Dar es Salaam, Tanzania are examined and the protection against exposure to malaria transmission that is afforded to residents by using an insecticide-treated net (ITN) is estimated.

Methods

Mosquito biting activity over the course of the night was estimated by human landing catch in 216 houses and 1,064 residents were interviewed to determine usage of protection measures and the proportion of each hour of the night spent sleeping indoors, awake indoors, and outdoors.

Results

Hourly variations in biting activity by members of the Anopheles gambiae complex were consistent with classical reports but the proportion of these vectors caught outdoors in Dar es Salaam was almost double that of rural Tanzania. Overall, ITNs confer less protection against exophagic vectors in Dar es Salaam than in rural southern Tanzania (59% versus 70%). More alarmingly, a biting activity maximum that precedes 10 pm and much lower levels of ITN protection against exposure (38%) were observed for Anopheles arabiensis, a vector of modest importance locally, but which predominates transmission in large parts of Africa.

Conclusion

In a situation of changing mosquito and human behaviour, ITNs may confer lower, but still useful, levels of personal protection which can be complemented by communal transmission suppression at high coverage. Mosquito-proofing houses appeared to be the intervention of choice amongst residents and further options for preventing outdoor transmission include larviciding and environmental management.  相似文献   

6.

Background

Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) of houses provide effective malaria transmission control. There is conflicting evidence about whether it is more beneficial to provide both interventions in combination. A cluster randomised controlled trial was conducted to investigate whether the combination provides added protection compared to ITNs alone.

Methods and Findings

In northwest Tanzania, 50 clusters (village areas) were randomly allocated to ITNs only or ITNs and IRS. Dwellings in the ITN+IRS arm were sprayed with two rounds of bendiocarb in 2012. Plasmodium falciparum prevalence rate (PfPR) in children 0.5–14 y old (primary outcome) and anaemia in children <5 y old (secondary outcome) were compared between study arms using three cross-sectional household surveys in 2012. Entomological inoculation rate (secondary outcome) was compared between study arms.IRS coverage was approximately 90%. ITN use ranged from 36% to 50%. In intention-to-treat analysis, mean PfPR was 13% in the ITN+IRS arm and 26% in the ITN only arm, odds ratio = 0.43 (95% CI 0.19–0.97, n = 13,146). The strongest effect was observed in the peak transmission season, 6 mo after the first IRS. Subgroup analysis showed that ITN users were additionally protected if their houses were sprayed. Mean monthly entomological inoculation rate was non-significantly lower in the ITN+IRS arm than in the ITN only arm, rate ratio = 0.17 (95% CI 0.03–1.08).

Conclusions

This is the first randomised trial to our knowledge that reports significant added protection from combining IRS and ITNs compared to ITNs alone. The effect is likely to be attributable to IRS providing added protection to ITN users as well as compensating for inadequate ITN use. Policy makers should consider deploying IRS in combination with ITNs to control transmission if local ITN strategies on their own are insufficiently effective. Given the uncertain generalisability of these findings, it would be prudent for malaria control programmes to evaluate the cost-effectiveness of deploying the combination.

Trial registration

www.ClinicalTrials.gov NCT01697852 Please see later in the article for the Editors'' Summary  相似文献   

7.

Background

On the island of Bioko (Equatorial Guinea), insecticide-treated nets (ITNs) have been the main tool used to control malaria over the last 13 years. In 2004, started an indoor residual spraying (IRS) campaign to control malaria. The purpose of this study is to asses the impact of the two control strategies on the island of Bioko (Equatorial Guinea), with regards to Plasmodium infection and anaemia in the children under five years of age.

Methods

Two transversal studies, the first one prior to the start of the IRS campaign and the second one year later. Sampling was carried out by stratified clusters. Malaria infection was measured by means of thick and thin film, and the packed cell volume (PCV) percentage. Data related to ITN use and information regarding IRS were collected. The Pearson's chi-square and logistic regression statistical tests were used to calculate odds ratios (OR)

Results

In the first survey, 168 children were sampled and 433 children in the second one. The prevalence of infection was 40% in 2004, and significantly lower at 21.7% in 2005. PCV was 41% and 39%, respectively. 58% of the children surveyed in 2004 and 44.3% in 2005 had slept under an ITN. 78% of the dwellings studied in 2005 had been sprayed. In the 2005 survey, sleeping without a mosquito net meant a risk of infection 3 times greater than sleeping protected with a net hanged correctly and with no holes (p < 0.05).

Conclusion

IRS and ITNs have proven to be effective control strategies on the island of Bioko. The choice of one or other strategy is, above all, a question of operational feasibility and availability of local resources.  相似文献   

8.

Background

Urbanization has a great impact on the composition of the vector system and malaria transmission dynamics. In Dakar, some malaria cases are autochthonous but parasite rates and incidences of clinical malaria attacks have been recorded at low levels. Ecological heterogeneity of malaria transmission was investigated in Dakar, in order to characterize the Anopheles breeding sites in the city and to study the dynamics of larval density and adult aggressiveness in ten characteristically different urban areas.

Methods

Ten study areas were sampled in Dakar and Pikine. Mosquitoes were collected by human landing collection during four nights in each area (120 person-nights). The Plasmodium falciparum circumsporozoite (CSP) index was measured by ELISA and the entomological inoculation rates (EIR) were calculated. Open water collections in the study areas were monitored weekly for physico-chemical characterization and the presence of anopheline larvae. Adult mosquitoes and hatched larvae were identified morphologically and by molecular methods.

Results

In September-October 2007, 19,451 adult mosquitoes were caught among which, 1,101 were Anopheles gambiae s.l. The Human Biting Rate ranged from 0.1 bites per person per night in Yoff Village to 43.7 in Almadies. Seven out of 1,101 An. gambiae s.l. were found to be positive for P. falciparum (CSP index = 0.64%). EIR ranged from 0 infected bites per person per year in Yoff Village to 16.8 in Almadies. The An. gambiae complex population was composed of Anopheles arabiensis (94.8%) and Anopheles melas (5.2%). None of the An. melas were infected with P. falciparum. Of the 54 water collection sites monitored, 33 (61.1%) served as anopheline breeding sites on at least one observation. No An. melas was identified among the larval samples. Some physico-chemical characteristics of water bodies were associated with the presence/absence of anopheline larvae and with larval density. A very close parallel between larval and adult densities was found in six of the ten study areas.

Conclusion

The results provide evidence of malaria transmission in downtown Dakar and its surrounding suburbs. Spatial heterogeneity of human biting rates was very marked and malaria transmission was highly focal. In Dakar, mean figures for transmission would not provide a comprehensive picture of the entomological situation; risk evaluation should therefore be undertaken on a small scale.  相似文献   

9.

Background

The impact of insecticide treated nets (ITNs) on reducing malaria incidence is shown mainly through data collection from health facilities. Routine evaluation of long-term epidemiological and entomological dynamics is currently unavailable. In Kenya, new policies supporting the provision of free ITNs were implemented nationwide in June 2006. To evaluate the impacts of ITNs on malaria transmission, we conducted monthly surveys in three sentinel sites with different transmission intensities in western Kenya from 2002 to 2010.

Methods and Findings

Longitudinal samplings of malaria parasite prevalence in asymptomatic school children and vector abundance in randomly selected houses were undertaken monthly from February 2002. ITN ownership and usage surveys were conducted annually from 2004 to 2010. Asymptomatic malaria parasite prevalence and vector abundances gradually decreased in all three sites from 2002 to 2006, and parasite prevalence reached its lowest level from late 2006 to early 2007. The abundance of the major malaria vectors, Anopheles funestus and An. gambiae, increased about 5–10 folds in all study sites after 2007. However, the resurgence of vectors was highly variable between sites and species. By 2010, asymptomatic parasite prevalence in Kombewa had resurged to levels recorded in 2004/2005, but the resurgence was smaller in magnitude in the other sites. Household ITN ownership was at 50–70% in 2009, but the functional and effective bed net coverage in the population was estimated at 40.3%, 49.4% and 28.2% in 2010 in Iguhu, Kombewa, and Marani, respectively.

Conclusion

The resurgence in parasite prevalence and malaria vectors has been observed in two out of three sentinel sites in western Kenya despite a high ownership of ITNs. The likely factors contributing to malaria resurgence include reduced efficacy of ITNs, insecticide resistance in mosquitoes and lack of proper use of ITNs. These factors should be targeted to avoid further resurgence of malaria transmission.  相似文献   

10.
Akachi Y  Atun R 《PloS one》2011,6(6):e21309

Background

Around 8.8 million children under-five die each year, mostly due to infectious diseases, including malaria that accounts for 16% of deaths in Africa, but the impact of international financing of malaria control on under-five mortality in sub-Saharan Africa has not been examined.

Methods and Findings

We combined multiple data sources and used panel data regression analysis to study the relationship among investment, service delivery/intervention coverage, and impact on child health by observing changes in 34 sub-Saharan African countries over 2002–2008. We used Lives Saved Tool to estimate the number of lives saved from coverage increase of insecticide-treated nets (ITNs)/indoor residual spraying (IRS). As an indicator of outcome, we also used under-five mortality rate. Global Fund investments comprised more than 70% of the Official Development Assistance (ODA) for malaria control in 34 countries. Each $1 million ODA for malaria enabled distribution of 50,478 ITNs [95%CI: 37,774–63,182] in the disbursement year. 1,000 additional ITNs distributed saved 0.625 lives [95%CI: 0.369–0.881]. Cumulatively Global Fund investments that increased ITN/IRS coverage in 2002–2008 prevented an estimated 240,000 deaths. Countries with higher malaria burden received less ODA disbursement per person-at-risk compared to lower-burden countries ($3.90 vs. $7.05). Increased ITN/IRS coverage in high-burden countries led to 3,575 lives saved per 1 million children, as compared with 914 lives in lower-burden countries. Impact of ITN/IRS coverage on under-five mortality was significant among major child health interventions such as immunisation showing that 10% increase in households with ITN/IRS would reduce 1.5 [95%CI: 0.3–2.8] child deaths per 1000 live births.

Conclusions

Along with other key child survival interventions, increased ITNs/IRS coverage has significantly contributed to child mortality reduction since 2002. ITN/IRS scale-up can be more efficiently prioritized to countries where malaria is a major cause of child deaths to save greater number of lives with available resources.  相似文献   

11.

Background

The coverage of insecticide-treated nets (ITNs) remains low despite existing distribution strategies, hence, it was important to assess consumers' preferences for distribution of ITNs, as well as their perceptions and expenditures for malaria prevention and to examine the implications for scaling-up ITNs in rural Nigeria.

Methods

Nine focus group discussions (FGDs) and questionnaires to 798 respondents from three malaria hyper-endemic villages from Enugu state, south-east Nigeria were the study tools.

Results

There was a broad spectrum of malaria preventive tools being used by people. The average monthly expenditure on malaria prevention per household was 55.55 Naira ($0.4). More than 80% of the respondent had never purchased any form of untreated mosquito net. People mostly preferred centralized community-based sales of the ITNS, with instalment payments.

Conclusion

People were knowledgeable about malaria and the beneficial effects of using nets to protect themselves from the disease. The mostly preferred community-based distribution of ITNs implies that the strategy is a potential untapped additional channel for scaling-up ITNs in Nigeria and possibly other parts of sub-Saharan Africa.  相似文献   

12.

Background

Plasmodium falciparum malaria remains endemic in sub-Saharan Africa including Ghana. The epidemiology of malaria in special areas, such as mining areas needs to be monitored and controlled. Newmont Ghana Gold Limited is conducting mining activities in the Brong Ahafo Region of Ghana that may have an impact on the diseases such as malaria in the mining area.

Methods

Prior to the start of mining activities, a cross-sectional survey was conducted in 2006/2007 to determine malaria epidemiology, including malaria parasitaemia and anaemia among children < 5 years and monthly malaria transmission in a mining area of Ghana.

Results

A total of 1,671 households with a child less than five years were selected. About 50% of the household heads were males. The prevalence of any malaria parasitaemia was 22.8% (95% CI 20.8 - 24.9). Plasmodium falciparum represented 98.1% (95% CI 96.2 - 99.2) of parasitaemia. The geometric mean P. falciparum asexual parasite count was 1,602 (95% CI 1,140 - 2,252) and 1,195 (95% CI 985 - 1,449) among children < 24 months and ≥ 24 months respectively. Health insurance membership (OR 0.60, 95% CI 0.45 - 0.80, p = 0.001) and the least poor (OR 0.57, 95% CI 0.37 - 0.90, p = 0.001) were protected against malaria parasitaemia. The prevalence of anaemia was high among children < 24 months compared to children ≥ 24 months (44.1% (95% CI 40.0 - 48.3) and 23.8% (95% CI 21.2 - 26.5) respectively. About 69% (95% CI 66.3 - 70.9) of households own at least one ITN. The highest EIRs were record in May 2007 (669 ib/p/m) and June 2007 (826 ib/p/m). The EIR of Anopheles gambiae were generally higher than Anopheles funestus.

Conclusion

The baseline malaria epidemiology suggests a high malaria transmission in the mining area prior to the start of mining activities. Efforts at controlling malaria in this mining area have been intensified but could be enhanced with increased resources and partnerships between the government and the private sector.  相似文献   

13.

Introduction

Insecticide-treated nets (ITNs) are one of the main interventions used for malaria control. However, these nets may also be effective against other vector borne diseases (VBDs). We conducted a systematic review and meta-analysis to estimate the efficacy of ITNs, insecticide-treated curtains (ITCs) and insecticide-treated house screening (ITS) against Chagas disease, cutaneous and visceral leishmaniasis, dengue, human African trypanosomiasis, Japanese encephalitis, lymphatic filariasis and onchocerciasis.

Methods

MEDLINE, EMBASE, LILACS and Tropical Disease Bulletin databases were searched using intervention, vector- and disease-specific search terms. Cluster or individually randomised controlled trials, non-randomised trials with pre- and post-intervention data and rotational design studies were included. Analysis assessed the efficacy of ITNs, ITCs or ITS versus no intervention. Meta-analysis of clinical data was performed and percentage reduction in vector density calculated.

Results

Twenty-one studies were identified which met the inclusion criteria. Meta-analysis of clinical data could only be performed for four cutaneous leishmaniasis studies which together showed a protective efficacy of ITNs of 77% (95%CI: 39%–91%). Studies of ITC and ITS against cutaneous leishmaniasis also reported significant reductions in disease incidence. Single studies reported a high protective efficacy of ITS against dengue and ITNs against Japanese encephalitis. No studies of Chagas disease, human African trypanosomiasis or onchocerciasis were identified.

Conclusion

There are likely to be considerable collateral benefits of ITN roll out on cutaneous leishmaniasis where this disease is co-endemic with malaria. Due to the low number of studies identified, issues with reporting of entomological outcomes, and few studies reporting clinical outcomes, it is difficult to make strong conclusions on the effect of ITNs, ITCs or ITS on other VBDs and therefore further studies be conducted. Nonetheless, it is clear that insecticide-treated materials such as ITNs have the potential to reduce pathogen transmission and morbidity from VBDs where vectors enter houses.  相似文献   

14.

Background

The most important factor for effective zooprophylaxis in reducing malaria transmission is a predominant population of a strongly zoophilic mosquito, Anopheles arabiensis. The feeding preference behaviour of Anopheline mosquitoes was evaluated in odour-baited entry trap (OBET).

Methods

Mosquitoes were captured daily using odour-baited entry traps, light traps and hand catch both indoor and in pit traps. Experimental huts were used for release and recapture experiment. The mosquitoes collected were compared in species abundances.

Results

Anopheles arabiensis was found to account for over 99% of Anopheles species collected in the study area in Lower Moshi, Northern Tanzania. In experimental release/capture trials conducted at the Mabogini verandah huts, An. arabiensis was found to have higher exophilic tendency (80.7%) compared to Anopheles gambiae (59.7%) and Culex spp. (60.8%). OBET experiments conducted at Mabogini collected a total of 506 An. arabiensis in four different trials involving human, cattle, sheep, goat and pig. Odours from the cattle attracted 90.3% (243) compared to odours from human, which attracted 9.7% (26) with a significant difference at P = 0.005. Odours from sheep, goat and pig attracted 9.7%, 7.2% and 7.3%, respectively. Estimation of HBI in An. arabiensis collected from houses in three lower Moshi villages indicated lower ratios for mosquitoes collected from houses with cattle compared to those without cattles. HBI was also lower in mosquitoes collected outdoors (0.1–0.3) compared to indoor (0.4–0.9).

Conclusion

In discussing the results, reference has been made to observation of exophilic, zoophilic and feeding tendencies of An. arabiensis, which are conducive for zooprophylaxis. It is recommended that in areas with a predominant An. arabiensis population, cattle should be placed close to dwelling houses in order to maximize the effects of zooprophylaxis. Protective effects of human from malaria can further be enhanced by keeping cattle in surroundings of residences.  相似文献   

15.

Background

Malaria is a huge public health problem in Africa that is responsible for more than one million deaths annually. In line with the Roll Back Malaria initiative and the Abuja Declaration, Eritrea and other African countries have intensified their fight against malaria. This study examines the impact of Eritrea's Roll Back Malaria Programme: 2000–2004 and the effects and possible interactions between the public health interventions in use.

Methods

This study employed cross-sectional survey to collect data from households, community and health facilities on coverage and usage of Insecticide-Treated Nets (ITNs), Indoor Residual Spraying (IRS), larvicidal activities and malaria case management. Comparative data was obtained from a similar survey carried out in 2001. Data from the Health Management Information System (HMIS) and reports of the annual assessments by the National Malaria Control Programme was used to assess impact. Time series model (ARIMA) was used to assess association.

Results

In the period 2000–2004, approximately 874,000 ITNs were distributed and 13,109 health workers and community health agents were trained on malaria case management. In 2004, approximately 81% households owned at least one net, of which 73% were ITNs and 58.6% of children 0–5 years slept under a net. The proportion of malaria cases managed by community health agents rose from 50% in 1999 to 78% in 2004. IRS coverage increased with the combined amount of DDT and Malathion used rising from 6,444 kg, in 2000 to 43,491 kg, in 2004, increasing the population protected from 117,017 to 259,420. Drug resistance necessitated regimen change to chloroquine plus sulfadoxine-pyrimethamine. During the period, there was a steep decline in malaria morbidity and case fatality by 84% and 40% respectively. Malaria morbidity was strongly correlated to the numbers of ITNs distributed (β = -0.125, p < 0.005) and the amount (kg) of DDT and Malathion used for IRS (β = -2.352, p < 0.05). The correlation between malaria case fatality and ITNs, IRS, population protected and annual rainfall was not statistically significant.

Conclusion

Eritrea has within 5 years attained key Roll Back Malaria targets. ITNs and IRS contributed most to reducing malaria morbidity.  相似文献   

16.

Background

Insecticide-impregnated bed nets (ITNs) have been shown to be a highly effective tool against malaria in the endemic regions of sub-Saharan Africa (SSA). There are however different opinions about the role of ITN social marketing and ITN free distribution in the roll-out of ITN programmes. The objective of this study was to evaluate the effects of free ITN distribution through antenatal care services in addition to an ITN social marketing programme in an area typical for rural SSA.

Methods

A cluster-randomised controlled ITN trial took place in the whole Kossi Province in north-western Burkina Faso, an area highly endemic for malaria. Twelve clusters were assigned to long-term ITN (Serena brand) social marketing plus free ITN (Serena brand) distribution to all pregnant women attending governmental antenatal care services (group A), and 13 clusters to ITN social marketing only (group B). The intervention took place during the rainy season of 2006 and thereafter. The trial was evaluated through a representative household survey at baseline and after one year. Serena ITN household ownership was the primary outcome measure.

Findings

A total of 1052 households were visited at baseline in February 2006 and 1050 at follow-up in February 2007. Overall Serena ITN household ownership increased from 16% to 28% over the study period, with a significantly higher increase in group A (13% to 35%) than in group B (18% to 23%) (p<0.001).

Interpretation

The free distribution of ITNs to pregnant women through governmental antenatal care services in addition to ITN social marketing substantially improved ITN household ownership in rural Burkina Faso.

Trial registration

Controlled-Trials.com ISRCTN07985309  相似文献   

17.

Background

The length of the gonotrophic cycle varies the vectorial capacity of a mosquito vector and therefore its exact estimation is important in epidemiological modelling. Because the gonotrophic cycle length depends on temperature, its estimation can be satisfactorily computed by means of physiological time analysis.

Methods

A model of physiological time was developed and calibrated for Anopheles pseudopunctipennis, one of the main malaria vectors in South America, using data from laboratory temperature controlled experiments. The model was validated under varying temperatures and could predict the time elapsed from blood engorgement to oviposition according to the temperature.

Results

In laboratory experiments, a batch of An. pseudopunctipennis fed at the same time may lay eggs during several consecutive nights (2–3 at high temperature and > 10 at low temperature). The model took into account such pattern and was used to predict the range of the gonotrophic cycle duration of An. pseudopunctipennis in four characteristic sites of Bolivia. It showed that the predicted cycle duration for An. pseudopunctipennis exhibited a seasonal pattern, with higher variances where climatic conditions were less stable. Predicted mean values of the (minimum) duration ranged from 3.3 days up to > 10 days, depending on the season and the geographical location. The analysis of ovaries development stages of field collected biting mosquitoes indicated that the phase 1 of Beklemishev might be of significant duration for An. pseudopunctipennis. The gonotrophic cycle length of An. pseudopunctipennis correlates with malaria transmission patterns observed in Bolivia which depend on locations and seasons.

Conclusion

A new presentation of cycle length results taking into account the number of ovipositing nights and the proportion of mosquitoes laying eggs is suggested. The present approach using physiological time analysis might serve as an outline to other similar studies and allows the inclusion of temperature effects on the gonotrophic cycle in transmission models. However, to better explore the effects of temperature on malaria transmission, the others parameters of the vectorial capacity should be included in the analysis and modelled accordingly.  相似文献   

18.

Background

Traps baited with synthetic human odors have been proposed as suitable technologies for controlling malaria and other mosquito-borne diseases. We investigated the potential benefits of such traps for preventing malaria transmission in Africa and the essential characteristics that they should possess so as to be effective.

Methods and Principal Findings

An existing mathematical model was reformulated to distinguish availability of hosts for attack by mosquitoes from availability of blood per se. This adaptation allowed the effects of pseudo-hosts such as odor-baited mosquito traps, which do not yield blood but which can nonetheless be attacked by the mosquitoes, to be simulated considering communities consisting of users and non-users of insecticide-treated nets (ITNs), currently the primary malaria prevention method. We determined that malaria transmission declines as trap coverage (proportion of total availability of all hosts and pseudo hosts that traps constitute) increases. If the traps are more attractive than humans and are located in areas where mosquitoes are most abundant, 20–130 traps per 1000 people would be sufficient to match the impact of 50% community-wide ITN coverage. If such traps are used to complement ITNs, malaria transmission can be reduced by 99% or more in most scenarios representative of Africa. However, to match cost-effectiveness of ITNs, the traps delivery, operation and maintenance would have to cost a maximum of US$4.25 to 27.61 per unit per year.

Conclusions and Significance

Odor-baited mosquito traps might potentially be effective and affordable tools for malaria control in Africa, particularly if they are used to complement, rather than replace, existing methods. We recommend that developers should focus on super-attractive baits and cheaper traps to enhance cost-effectiveness, and that the most appropriate way to deploy such technologies is through vertical delivery mechanisms.  相似文献   

19.

Background

There have been resurgent efforts in Africa to estimate the public health impact of malaria control interventions such as insecticide treated nets (ITNs) following substantial investments in scaling-up coverage in the last five years. Little is known, however, on the effectiveness of ITN in areas of Africa that support low transmission. This hinders the accurate estimation of impact of ITN use on disease burden and its cost-effectiveness in low transmission settings.

Methods and Principal Findings

Using a stratified two-stage cluster sample design, four cross-sectional studies were undertaken between March-June 2007 across three livelihood groups in an area of low intensity malaria transmission in South Central Somalia. Information on bed net use; age; and sex of all participants were recorded. A finger prick blood sample was taken from participants to examine for parasitaemia. Mantel-Haenzel methods were used to measure the effect of net use on parasitaemia adjusting for livelihood; age; and sex. A total of 10,587 individuals of all ages were seen of which 10,359 provided full information. Overall net use and parasite prevalence were 12.4% and 15.7% respectively. Age-specific protective effectiveness (PE) of bed net ranged from 39% among <5 years to 72% among 5–14 years old. Overall PE of bed nets was 54% (95% confidence interval 44%–63%) after adjusting for livelihood; sex; and age.

Conclusions and Significance

Bed nets confer high protection against parasite infection in South Central Somalia. In such areas where baseline transmission is low, however, the absolute reductions in parasitaemia due to wide-scale net use will be relatively small raising questions on the cost-effectiveness of covering millions of people living in such settings in Africa with nets. Further understanding of the progress of disease upon infection against the cost of averting its consequent burden in low transmission areas of Africa is therefore required.  相似文献   

20.

Background

Insecticide-treated bed nets (ITNs) reduce malaria transmission and are an important prevention tool. However, there are still information gaps on how the reduction in malaria transmission by ITNs affects parasite genetics population structure. This study examined the relationship between transmission reduction from ITN use and the population genetic diversity of Plasmodium falciparum in an area of high ITN coverage in western Kenya.

Methods

Parasite genetic diversity was assessed by scoring eight single copy neutral multilocus microsatellite (MS) markers in samples collected from P. falciparum- infected children (< five years) before introduction of ITNs (1996, baseline, n = 69) and five years after intervention (2001, follow-up, n = 74).

Results

There were no significant changes in overall high mixed infections and unbiased expected heterozygosity between baseline (%MA = 94% and He = 0.75) and follow up (%MA = 95% and He = 0.79) years. However, locus specific analysis detected significant differences for some individual loci between the two time points. Pfg377 loci, a gametocyte-specific MS marker showed significant increase in mixed infections and He in the follow up survey (%MA = 53% and He = 0.57) compared to the baseline (%MA = 30% and He = 0.29). An opposite trend was observed in the erythrocyte binding protein (EBP) MS marker. There was moderate genetic differentiation at the Pfg377 and TAA60 loci (FST = 0.117 and 0.137 respectively) between the baseline and post-ITN parasite populations. Further analysis revealed linkage disequilibrium (LD) of the microsatellites in the baseline (14 significant pair-wise tests and I S A = 0.016) that was broken in the follow up parasite population (6 significant pairs and I S A = 0.0003). The locus specific change in He, the moderate population differentiation and break in LD between the baseline and follow up years suggest an underlying change in population sub-structure despite the stability in the overall genetic diversity and multiple infection levels.

Conclusions

The results from this study suggest that although P. falciparum population maintained an overall stability in genetic diversity after five years of high ITN coverage, there was significant locus specific change associated with gametocytes, marking these for further investigation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号