首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neural network model of gene expression.   总被引:1,自引:0,他引:1  
J Vohradsky 《FASEB journal》2001,15(3):846-854
  相似文献   

2.
Nagata Y  Chu KH 《Biotechnology letters》2003,25(21):1837-1842
Artificial neural networks and genetic algorithms are used to model and optimize a fermentation medium for the production of the enzyme hydantoinase by Agrobacterium radiobacter. Experimental data reported in the literature were used to build two neural network models. The concentrations of four medium components served as inputs to the neural network models, and hydantoinase or cell concentration served as a single output of each model. Genetic algorithms were used to optimize the input space of the neural network models to find the optimum settings for maximum enzyme and cell production. Using this procedure, two artificial intelligence techniques have been effectively integrated to create a powerful tool for process modeling and optimization.  相似文献   

3.
Boolean networks are an important class of computational models for molecular interaction networks. Boolean canalization, a type of hierarchical clustering of the inputs of a Boolean function, has been extensively studied in the context of network modeling where each layer of canalization adds a degree of stability in the dynamics of the network. Recently, dynamic network control approaches have been used for the design of new therapeutic interventions and for other applications such as stem cell reprogramming. This work studies the role of canalization in the control of Boolean molecular networks. It provides a method for identifying the potential edges to control in the wiring diagram of a network for avoiding undesirable state transitions. The method is based on identifying appropriate input-output combinations on undesirable transitions that can be modified using the edges in the wiring diagram of the network. Moreover, a method for estimating the number of changed transitions in the state space of the system as a result of an edge deletion in the wiring diagram is presented. The control methods of this paper were applied to a mutated cell-cycle model and to a p53-mdm2 model to identify potential control targets.  相似文献   

4.
Granulocyte colony-stimulating factor (G-CSF) is a cytokine widely used in cancer patients receiving high doses of chemotherapeutic drugs to prevent the chemotherapy-induced suppression of white blood cells. The production of recombinant G-CSF should be increased to meet the increasing market demand. This study aims to model and optimize the carbon source of auto-induction medium to enhance G-CSF production using artificial neural networks coupled with genetic algorithm. In this approach, artificial neural networks served as bioprocess modeling tools, and genetic algorithm (GA) was applied to optimize the established artificial neural network models. Two artificial neural network models were constructed: the back-propagation (BP) network and the radial basis function (RBF) network. The root mean square error, coefficient of determination, and standard error of prediction of the BP model were 0.0375, 0.959, and 8.49 %, respectively, whereas those of the RBF model were 0.0257, 0.980, and 5.82 %, respectively. These values indicated that the RBF model possessed higher fitness and prediction accuracy than the BP model. Under the optimized auto-induction medium, the predicted maximum G-CSF yield by the BP-GA approach was 71.66 %, whereas that by the RBF-GA approach was 75.17 %. These predicted values are in agreement with the experimental results, with 72.4 and 76.014 % for the BP-GA and RBF-GA models, respectively. These results suggest that RBF-GA is superior to BP-GA. The developed approach in this study may be helpful in modeling and optimizing other multivariable, non-linear, and time-variant bioprocesses.  相似文献   

5.
This work describes an alternative method for estimation of reaction rate of a biofilm process without using a model equation. A first principles model of the biofilm process is integrated with artificial neural networks to derive a hybrid mechanistic-neural network rate function model (HMNNRFM), and this combined model structure is used to estimate the complex kinetics of the biofilm process as a consequence of the validation of its steady state solution. The performance of the proposed methodology is studied with the aid of the experimental data of an anaerobic fixed bed biofilm reactor. The statistical significance of the method is also analyzed by means of the coefficient of determination (R2) and model efficiency (ME). The results demonstrate the effectiveness of HMNNRFM for estimating the complex kinetics of the biofilm process involved in the treatment of industry wastewater.  相似文献   

6.
MOTIVATION: Interpretation of high-throughput gene expression profiling requires a knowledge of the design principles underlying the networks that sustain cellular machinery. Recently a novel approach based on the study of network topologies has been proposed. This methodology has proven to be useful for the analysis of a variety of biological systems, including metabolic networks, networks of protein-protein interactions, and gene networks that can be derived from gene expression data. In the present paper, we focus on several important issues related to the topology of gene expression networks that have not yet been fully studied. RESULTS: The networks derived from gene expression profiles for both time series experiments in yeast and perturbation experiments in cell lines are studied. We demonstrate that independent from the experimental organism (yeast versus cell lines) and the type of experiment (time courses versus perturbations) the extracted networks have similar topological characteristics suggesting together with the results of other common principles of the structural organization of biological networks. A novel computational model of network growth that reproduces the basic design principles of the observed networks is presented. Advantage of the model is that it provides a general mechanism to generate networks with different types of topology by a variation of a few parameters. We investigate the robustness of the network structure to random damages and to deliberate removal of the most important parts of the system and show a surprising tolerance of gene expression networks to both kinds of disturbance.  相似文献   

7.
The present paper proposes a model which applies formal neural network modeling techniques to construct a theoretical representation of the cerebellar cortex and its performances in motor control. A schema that makes explicit use of propagation delays of neural signals, is introduced to describe the ability to store temporal sequences of patterns in the Golgi-granule cell system. A perceptron association is then performed on these sequences of patterns by the Purkinje cell layer. The model conforms with important biological constraints, such as the known excitatory or inhibitory nature of the various synapses. Also, as suggested by experimental evidence, the synaptic plasticity underlying the learning ability of the model, is confined to the parallel fiber — Purkinje cell synapses, and takes place under the control of the climbing fibers. The result is a neural network model, constructed according to the anatomy of the cerebellar cortex, and capable of learning and retrieval of temporal sequences of patterns. It provides a framework to represent and interpret properties of learning and control of movements by the cerebellum, and to assess the capacity of formal neural network techniques for modeling of real neural systems.  相似文献   

8.
The biochemical pathways involved in the production of ethyl caproate, a secondary product of the beer fermentation process, are not well established. Hence, there are no phenomenological models available to control and predict the production of this particular compound as with other related products. In this work, neural networks have been used to fit experimental results with constant and variable pH, giving a good fit of laboratory and industrial scale data. The results at constant pH were also used to predict results at variable pH. Finally, the application of neural networks obtained from laboratory experiments gave excellent predictions of results in industrial breweries and so could be used in the control of industrial operations. The input pattern to the neural network included the accumulated fermentation time, cell dry weight, consumption of sugars and aminoacids and, in some cases, the pH. The output from the neural network was an estimation of quantity of the ethyl caproate ester.  相似文献   

9.
Central Pattern Generator (CPG) networks, which organize rhythmic movements, have long served as models for neural network organization. Modulatory inputs are essential components of CPG function: neuromodulators set the parameters of CPG neurons and synapses to render the networks functional. Each modulator acts on the network by many effects which may oppose one another; this may serve to stabilize the modulated state. Neuromodulators also determine the active neuronal composition in the CPG, which varies with state changes such as locomotor speed. The pattern of gene expression which determines the electrophysiological personality of each CPG neuron is also under modulatory control. It is not possible to model the function of neural networks without including the actions of neuromodulators.  相似文献   

10.
The aim of this paper is to propose an interdisciplinary evolutionary connectionism approach for the study of the evolution of modularity. It is argued that neural networks as a model of the nervous system and genetic algorithms as simulative models of biological evolution would allow us to formulate a clear and operative definition of module and to simulate the different evolutionary scenarios proposed for the origin of modularity. I will present a recent model in which the evolution of primate cortical visual streams is possible starting from non-modular neural networks. Simulation results not only confirm the existence of the phenomenon of neural interference in non-modular network architectures but also, for the first time, reveal the existence of another kind of interference at the genetic level, i.e. genetic interference, a new population genetic mechanism that is independent from the network architecture. Our simulations clearly show that genetic interference reduces the evolvability of visual neural networks and sexual reproduction can at least partially solve the problem of genetic interference. Finally, it is shown that entrusting the task of finding the neural network architecture to evolution and that of finding the network connection weights to learning is a way to completely avoid the problem of genetic interference. On the basis of this evidence, it is possible to formulate a new hypothesis on the origin of structural modularity, and thus to overcome the traditional dichotomy between innatist and empiricist theories of mind.  相似文献   

11.
12.
13.
This paper presents a vision-based force measurement method using an artificial neural network model. The proposed model is used for measuring the applied load to a spherical biological cell during micromanipulation process. The devised vision-based method is most useful when force measurement capability is required, but it is very challenging or even infeasible to use a force sensor. Artificial neural networks in conjunction with image processing techniques have been used to estimate the applied load to a cell. A bio-micromanipulation system capable of force measurement has also been established in order to collect the training data required for the proposed neural network model. The geometric characterization of zebrafish embryos membranes has been performed during the penetration of the micropipette prior to piercing. The geometric features are extracted from images using image processing techniques. These features have been used to describe the shape and quantify the deformation of the cell at different indentation depths. The neural network is trained by taking the visual data as the input and the measured corresponding force as the output. Once the neural network is trained with sufficient number of data, it can be used as a precise sensor in bio-micromanipulation setups. However, the proposed neural network model is applicable for indentation of any other spherical elastic object. The results demonstrate the capability of the proposed method. The outcomes of this study could be useful for measuring force in biological cell micromanipulation processes such as injection of the mouse oocyte/embryo.  相似文献   

14.
The endoplasmic reticulum (ER) in live cells is a highly mobile network whose structure dynamically changes on a number of timescales. The role of such drastic changes in any system is unclear, although there are correlations with ER function. A better understanding of the fundamental biophysical constraints on the system will allow biologists to determine the effects of molecular factors on ER dynamics. Previous studies have identified potential static elements that the ER may remodel around. Here, we use these structural elements to assess biophysical principles behind the network dynamics. By analyzing imaging data of tobacco leaf epidermal cells under two different conditions, i.e., native state (control) and latrunculin B (treated), we show that the geometric structure and dynamics of ER networks can be understood in terms of minimal networks. Our results show that the ER network is well modeled as a locally minimal-length network between the static elements that potentially anchor the ER to the cell cortex over longer timescales; this network is perturbed by a mixture of random and deterministic forces. The network need not have globally minimum length; we observe cases where the local topology may change dynamically between different Euclidean Steiner network topologies. The networks in the treated cells are easier to quantify, because they are less dynamic (the treatment suppresses actin dynamics), but the same general features are found in control cells. Using a Langevin approach, we model the dynamics of the nonpersistent nodes and use this to show that the images can be used to estimate both local viscoelastic behavior of the cytoplasm and filament tension in the ER network. This means we can explain several aspects of the ER geometry in terms of biophysical principles.  相似文献   

15.
The endoplasmic reticulum (ER) in live cells is a highly mobile network whose structure dynamically changes on a number of timescales. The role of such drastic changes in any system is unclear, although there are correlations with ER function. A better understanding of the fundamental biophysical constraints on the system will allow biologists to determine the effects of molecular factors on ER dynamics. Previous studies have identified potential static elements that the ER may remodel around. Here, we use these structural elements to assess biophysical principles behind the network dynamics. By analyzing imaging data of tobacco leaf epidermal cells under two different conditions, i.e., native state (control) and latrunculin B (treated), we show that the geometric structure and dynamics of ER networks can be understood in terms of minimal networks. Our results show that the ER network is well modeled as a locally minimal-length network between the static elements that potentially anchor the ER to the cell cortex over longer timescales; this network is perturbed by a mixture of random and deterministic forces. The network need not have globally minimum length; we observe cases where the local topology may change dynamically between different Euclidean Steiner network topologies. The networks in the treated cells are easier to quantify, because they are less dynamic (the treatment suppresses actin dynamics), but the same general features are found in control cells. Using a Langevin approach, we model the dynamics of the nonpersistent nodes and use this to show that the images can be used to estimate both local viscoelastic behavior of the cytoplasm and filament tension in the ER network. This means we can explain several aspects of the ER geometry in terms of biophysical principles.  相似文献   

16.
MOTIVATION: A large number of molecular mechanisms at the basis of gene regulation have been described during the last few decades. It is now becoming possible to address questions dealing with both the structure and the dynamics of genetic regulatory networks, at least in the case of some of the best-characterized organisms. Most recent attempts to address these questions deal with microbial or animal model systems. In contrast, we analyze here a gene network involved in the control of the morphogenesis of flowers in a model plant, Arabidopsis thaliana. RESULTS: The genetic control of flower morphogenesis in Arabidopsis involves a large number of genes, of which 10 are considered here. The network topology has been derived from published genetic and molecular data, mainly relying on mRNA expression patterns under wild-type and mutant backgrounds. Using a 'generalized logical formalism', we provide a qualitative model and derive the parameter constraints accounting for the different patterns of gene expression found in the four floral organs of Arabidopsis (sepals, petals, stamens and carpels), plus a 'non-floral' state. This model also allows the simulation or the prediction of various mutant phenotypes. On the basis of our model analysis, we predict the existence of a sixth stable pattern of gene expression, yet to be characterized experimentally. Moreover, our dynamical analysis leads to the prediction of at least one more regulator of the gene LFY, likely to be involved in the transition from the non-flowering state to the flowering pathways. Finally, this work, together with other theoretical and experimental considerations, leads us to propose some general conclusions about the structure of gene networks controlling development.  相似文献   

17.
A new neural network model with feedback based on the concept of information storage matrices is proposed. This model is similar to the Hopfield and spectral type neural networks but has a more general structure. The presentation gives a fully developed theory for first-order networks, including results on the formation of fixed points and their domains of attraction. These results are used to determine, in deterministic sense, the information storage capacity. The algorithm is applied to the DNA sequencing problem. It is demonstrated how a hidden genetic information in an arbitrary long DNA strand can be extracted.  相似文献   

18.
The current paper proposes a novel model for integrative learning of proactive visual attention and sensory-motor control as inspired by the premotor theory of visual attention. The model is characterized by coupling a slow dynamics network with a fast dynamics network and by inheriting our prior proposed multiple timescales recurrent neural networks model (MTRNN) that may correspond to the fronto-parietal networks in the cortical brains. The neuro-robotics experiments in a task of manipulating multiple objects utilizing the proposed model demonstrated that some degrees of generalization in terms of position and object size variation can be achieved by organizing seamless integration of the proactive object-related visual attention and the related sensory-motor control into a set of action primitives in the distributed neural activities appearing in the fast dynamics network. It was also shown that such action primitives can be combined in compositional ways in acquiring novel actions in the slow dynamics network. The experimental results presented substantiate the premotor theory of visual attention.  相似文献   

19.
A neural network model for a sensorimotor system, which was developed to simulate oriented movements in man, is presented. It is composed of a formal neural network comprising two layers: a sensory layer receiving and processing sensory inputs, and a motor layer driving a simulated arm. The sensory layer is an extension of the topological network previously proposed by Kohonen (1984). Two kinds of sensory modality, proprioceptive and exteroceptive, are used to define the arm position. Each sensory cell receives proprioceptive inputs provided by each arm-joint together with the exteroceptive inputs. This sensory layer is therefore a kind of associative layer which integrates two separate sensory signals relating to movement coding. It is connected to the motor layer by means of adaptive synapses which provide a physical link between a motor activity and its sensory consequences. After a learning period, the spatial map which emerges in the sensory layer clearly depends on the sensory inputs and an associative map of both the arm and the extra-personal space is built up if proprioceptive and exteroceptive signals are processed together. The sensorimotor transformations occuring in the junctions linking the sensory and motor layers are organized in such a manner that the simulated arm becomes able to reach towards and track a target in extra-personal space. Proprioception serves to determine the final arm posture adopted and to correct the ongoing movement in cases where changes in the target location occur. With a view to developing a sensorimotor control system with more realistic salient features, a robotic model was coupled with the formal neural network. This robotic implementation of our model shows the capacity of formal neural networks to control the displacement of mechanical devices.  相似文献   

20.
Finding control strategies of cells is a challenging and important problem in the post-genomic era. This paper considers theoretical aspects of the control problem using the Boolean network (BN), which is a simplified model of genetic networks. It is shown that finding a control strategy leading to the desired global state is computationally intractable (NP-hard) in general. Furthermore, this hardness result is extended for BNs with considerably restricted network structures. These results justify existing exponential time algorithms for finding control strategies for probabilistic Boolean networks (PBNs). On the other hand, this paper shows that the control problem can be solved in polynomial time if the network has a tree structure. Then, this algorithm is extended for the case where the network has a few loops and the number of time steps is small. Though this paper focuses on theoretical aspects, biological implications of the theoretical results are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号