首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Anostraca,Cladocera and Copepoda of Spanish saline lakes   总被引:6,自引:6,他引:0  
M. Alonso 《Hydrobiologia》1990,197(1):221-231
A study of 102 samples from almost all salt water bodies in Spain has allowed the preparation of a comprehensive list of anostracans, cladocerans and copepods living in such extreme environments. Among the 26 species recorded, 9 are halobionts, but 17 can exist in less saline waters. Of the halobionts, several are widely distributed throughout arid areas around the Mediterranean (Arctodiaptomus salinus, Cletocamptus retrogressus, Branchinectella media, Branchinella spinosa, Daphnia mediterranea, Moina salina); Branchinecta orientalis ( = B. cervantesi) only appears in Guadiana watershed and toward the east of Hungary, and the Alona belonging to the A. elegans complex is a Spanish endemic. In the second group are many typically freshwater species which also appear occasionally in saline waters, and colonizers of wetlands in steppes, characteristically adapted to a wide range of salinity; one of the formers, Diaphanosoma cf. mongolianum, deserves closer study. The Spanish halobiontic fauna seems to be very old judging by the existence of some isolated species, e.g. B. orientalis may be a Tertiary relic. Persistence through time could have resulted from the continuous aridity of some Iberian localities during the Pleistocene and the ecological constancy of wetlands maintained by regional groundwater discharges.  相似文献   

2.
Cladoceran assemblages in a mineralization gradient   总被引:3,自引:3,他引:0  
Boronat  Loles  Miracle  Maria R.  Armengol  Xavier 《Hydrobiologia》2001,442(1-3):75-88
Cladoceran assemblages were studied in littoral samples from 44 water bodies in Central Spain, showing great differences in salinity and permanence of water. Principal component analyses (PCA) were performed with data on cladoceran relative abundances to identify the main groups of species. Five main groups of species were found, defining the following types of environments: (I) Small but deep hard water lakes (II) permanent but shallow hard water lakes fed by surface springs, rich in macrophytes (III) ephemeral and shallow soft waters lakes (IV) subsaline and hyposaline lakes in their lower range, specially the permanent ones and (V) saline lakes (salinities>6 mg l–1) subject to short or long periods of dryness. The main species constituting these groups were: Group (I): Acroperus neglectus, Alona guttata, Pleuroxus truncatus, Daphnia longispina; group II: Phrixura leei, Latonura rectirostris, Eurycercus lamellatus; Alonella excisa, Daphnia pulicaria; group III: Ephemeroporus phintonicus, Macrothrix rosea, Moina micrura; group IV: Alona rectangula, Ceriodaphnia reticulata, Tetrocephala ambigua, Diaphanosoma mongolianum; group V: Alona salina, Pleuroxus letourneuxi, Dunhevedia crassa, Moina brachiata, Daphnia magna and Daphnia mediterranea. Sample scores from PCA extracted from the correlation matrix of cladoceran proportions were correlated with limnological measurements. Significant correlations with salinity, alkalinity anions and cations indicate that salinity is an important factor in the distribution of the species. However, species assemblages also reflect other factors, such as temporality and littoral development.  相似文献   

3.
Chinese and Mongolian saline lakes: a limnological overview   总被引:8,自引:2,他引:6  
W. D. Williams 《Hydrobiologia》1991,210(1-2):39-66
More than half of China's lakes are saline (viz. have salinities > 3 g L−1). Most salt lakes are in northwestern China (Tibet, Qinghai, Sinkiang, Inner Mongolia). Most Mongolian salt lakes are in the west of that country. Tectonic movements have been of the greatest importance in lake origins, but aeolian activity and deflation have also played a role. Many salt lakes in Qinghai-Tibet lie at altitudes > 4 000 m.a.s.l.; Aiding Hu (Sinkiang) lies at −154 m.a.s.l. Again, many lakes are large in area and deep. Small, shallow lakes are also common. Dimictic thermal patterns prevail in deep lakes, polymictic patterns in shallow ones. The highest salinity recorded is 555 g L−1. The salinity of Qinghai Lake, the largest Chinese salt lake, is 14 g L−1, but mean lake salinity on the northern Tibetan plateau is about an order of magnitude greater. Lop Nor has a salinity of ∼ 5 g L−1. Dominant ions are Na and Cl; Mg, Ca, SO4 and HCO3 + CO3 are important in certain lakes. Most major ions originate by weathering and leaching from rocks. pH values are generally high (often > 9.0). There are no bird or fish species confined to salt lakes, though many are associated with lakes of low or moderate salinity. Artemia occurs widely inland and in coastal salt pans, but is the only major macroinvertebrate of highly saline lakes. In lakes of only low to moderate salinity, invertebrate communities comprise widespread halotolerant freshwater forms and halophiles, some regionally endemic. Submerged and emergent macrophytes occur in lakes of low salinity, but phytoplankton species are more halotolerant. Ctenocladus circinatus, a green alga, is known from a Tibetan salt lake with a salinity of 200 g L−1. There is a dearth of basic limnological information on Chinese and Mongolian salt lakes. More work in particular is needed on a variety of geographically widespread lakes to (a) document seasonal physico-chemical events, and (b) compile comprehensive biological inventories of taxa present. Chinese salt lakes are significant sites for palaeoclimatic research, for conservation purposes, and for the resolution of several important biological questions (especially of an ecological and biogeographical sort). They also have important economic values. Unfortunately, the natural existence of many appears to be threatened by decreased inflows, largely the result of human impact on catchments.  相似文献   

4.
The central provinces of Argentina are characterized by the presence of a high number of shallow lakes, located in endorheic basins, many of which have elevated salinities as well as eutrophic or hypereutrophic condition. The zooplankton of four saline shallow lakes of the province of La Pampa was studied on a monthly basis during a 2‐year period to determine its temporal and spatial variation. The surface of these shallow lakes (<2.5 m depth) varied between 56.8 and 215.9 ha, and some have from 8.4 to 20.8 g · l–1. The more saline lakes have “clear” water and the less saline lakes “turbid” water. Fishes, Jenynsia multidentata , were present in only two lakes during the last two months of the studied period. The zooplankton was composed of 17 taxa of Rotifera, 5 taxa of Cladocera and 4 taxa of Copepoda. The low diversity and the faunistic composition are characteristic of saline environments. Although the studied lakes share 38% of the species, the faunistic similarity was higher between the two least saline lakes. The lowest diversity was found in the two most saline lakes. All four shallow lakes were characterized by their very high zooplankton density, especially in the least saline lakes (<80000 ind · l–1). The abundance is significantly correlated with the water transparency but not with salinity. The zooplankton temporal variation was characterized by the alternation of macro‐ and microzooplankton, probably regulated by competition and intrazooplanktonic predation. In each lake, the spatial abundance distribution of the macro‐ and microzooplankton was homogeneous. It was related to the shallow depht of the lakes and their polymictic condition. The Scheffer model on alternative states in shallow lakes acknowledges that it cannot be applied to saline lakes because Daphnia , the main responsible for the clear water state, is not tolerant to high salinity. Our study shows that the most saline lakes, where the halophylic Daphnia menucoensis is abundant, have also the most clear waters. Another difference that we found with regards to the mentioned model is that, in turbid lakes, it could not have had a top‐down control on macrozooplankton exerted by fishes because in these lakes fishes were practically absent. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
A detailed survey was undertaken of the microbial communities of 16 saline lakes in the Vestfold Hills (Princess Elizabeth Land, eastern Antarctica), which ranged in salinity from slightly brackish (4–5‰) to hypersaline (maximum: 174‰). Temperatures at comparable sampling depths in the lakes ranged from −12.2°C to +10.5°C. Ranges in the abundances of bacteria, heterotrophic nanoflagellates (HNAN) and phototrophic nanoflagellates (PNAN) were 1.40 × 107 l−1–1.58 × 1010 l−1, 4.83 × 104 l−1–1.70 × 107 l−1 and 0–1.02 × 107 l−1, respectively. There was considerable variation across the salinity spectrum, though in the case of bacteria and PNAN significantly higher concentrations of cells were seen in two of the most saline lakes. The autotrophic ciliate Mesodinium rubrum occurred in all but five of the lakes and was found at salinity levels up to 108‰. Heterotrophic ciliates were generally scarce. Dinoflagellates, particularly Gonyaulax c.f. tamarensis, Gyrodinium lachryma and Gymnodinium sp., occurred in the majority of the lakes. On the basis of chlorophyll a concentrations, nutrient levels and microplankton concentrations the lakes spanned the spectrum from ultra-oligotrophic to oligo/mesotrophic. The most saline lakes had much reduced species diversity compared with the less saline environments. Isolation from the marine environment has led to nutrient depletion, simplification and a truncated trophic structure. Received: 19 September 1996 / Accepted: 13 January 1997  相似文献   

6.
In much of the northern Great Plains, saline and hypersaline lacustrine brines are the only surface waters present. As a group, the lakes of this region are unique: there is no other area in the world that can match the concentration and diversity of saline lake environments exhibited in the prairie region of Canada and northern United States. The immense number of individual salt lakes and saline wetlands in this region of North America is staggering. Estimates vary from about one million to greater than 10 million, with densities in some areas being as high as 120 lakes/km2. Despite over a century of scientific investigation of these salt lakes, we have only in the last twenty years advanced far enough to appreciate the wide spectrum of lake types, water chemistries, and limnological processes that are operating in the modern settings. Hydrochemical data are available for about 800 of the lake brines in the region. Composition, textural, and geochemical information on the modern bottom sediments has been collected for just over 150 of these lakes. Characterization of the biological and ecological features of these lakes is based on even fewer investigations, and the stratigraphic records of only twenty basins have been examined. The lake waters show a considerable range in ionic composition and concentration. Early investigators, concentrating on the most saline brines, emphasized a strong predominance of Na+ and SO4 -2 in the lakes. It is now realized, however, that not only is there a complete spectrum of salinities from less than 1 ppt TDS to nearly 400 ppt, but also virtually every water chemistry type is represented in lakes of the region. With such a vast array of compositions, it is difficult to generalize. Nonetheless, the paucity of Cl-rich lakes makes the northern Great Plains basins somewhat unusual compared with salt lakes in many other areas of the world (e.g., Australia, western United States). Compilations of the lake water chemistries show distinct spatial trends and regional variations controlled by groundwater input, climate, and geomorphology. Short-term temporal variations in the brine composition, which can have significant effects on the composition of the modern sediments, have also been well documented in several individual basins. From a sedimentological and mineralogical perspective, the wide range of water chemistries exhibited by the lakes leads to an unusually large diversity of modern sediment composition. Over 40 species of endogenic precipitates and authigenic minerals have been identified in the lacustrine sediments. The most common non-detrital components of the modern sediments include: calcium and calcium-magnesium carbonates (magnesian calcite, aragonite, dolomite), and sodium, magnesium, and sodium-magnesium sulfates (mirabilite, thenardite, bloedite, epsomite). Many of the basins whose brines have very high Mg/Ca ratios also have hydromagnesite, magnesite, and nesquehonite. Unlike salt lakes in many other areas of the world, halite, gypsum, and calcite are relatively rare endogenic precipitates in the Great Plains lakes. The detrital fraction of the lacustrine sediments is normally dominated by clay minerals, carbonate minerals, quartz, and feldspars. Sediment accumulation in these salt lakes is controlled and modified by a wide variety of physical, chemical, and biological processes. Although the details of these modern sedimentary processes can be exceedingly complex and difficult to discuss in isolation, in broad terms, the processes operating in the salt lakes of the Great Plains are ultimately controlled by three basic factors or conditions of the basin: (a) basin morphology; (b) basin hydrology; and (c) water salinity and composition. Combinations of these parameters interact to control nearly all aspects of modern sedimentation in these salt lakes and give rise to four 'end member' types of modern saline lacustrine settings in the Great Plains: (a) clastics-dominated playas; (b) salt-dominated playas; (c) deep water, non-stratified lakes; and (d) deep water, "permanently" stratified lakes.  相似文献   

7.
Salinity represents a major structuring factor in aquatic habitats which strongly affects species richness. We studied the relationships among species richness, density and phylogenetic diversity of zooplankton communities along a natural salinity gradient in astatic soda pans in the Carpathian Basin (Hungary, Austria and Serbia). Diversity and density showed opposing trends along the salinity gradient. The most saline habitats had communities of one or two species only, with maximum densities well above 1000 ind l?1. Similarity of communities increased with salinity, with most of the highly saline communities being dominated by one highly tolerant calanoid copepod, Arctodiaptomus spinosus, which was at the same time the only soda‐water specialist. Salinity obviously constrained species composition and resulted in communities of low complexity, where few tolerant species ensure high biomass production in the absence of antagonistic interactions. The pattern suggests that environmental stress may result in highly constrained systems which exhibit high rates of functioning due to these key species, in spite of the very limited species pool.  相似文献   

8.
Aquatic macrophytes in saline lakes of the Canadian prairies   总被引:7,自引:4,他引:3  
Vascular macrophyte species richness decreases with increasing salinity. Only three species of submerged plants (Potamogeton pectinatus, Ruppia maritima, R. occidentalis) tolerate hypersaline waters (>50 g l-1, total of ionic constituents). Eight emergent species occur in more saline habitats but only five (Scirpus maritimus var. paludosus, Distichlisstricta, Puccinellia nuttalliana, Scirpus americanus, Triglochin maritima) occur commonly over a range of saline lakes into the hypersaline category. Usually, species tolerant of high salinities are found over the entire saline spectrum and even extend into subsaline waters (<3 g l-1) and thrive there. A major increase in the number of species occurs below 5 g l-1. As the water recedes plants such as Salicornia rubra, Suaeda calceoliformes, Hordeum jubatum and Sonchus arvensis invade.Submerged angiosperm distribution is controlled by total ion concentration and substrate texture plays no apparent role. Although angiosperms normally grow in all kinds of substrates, they occupy coarse substrates in Wakaw lake because suitable fine substrates are densely colonized by charophytes. In this lake light limited growth occurs to a depth of 5% of surface light. Light was not limiting in Redberry Lake but angiosperm growth was limited to the upper 8 m (10% or more of surface light). Thermal stratification and depth (pressure) were probably limiting istead. In meromictic Waldsea Lake the depth of the chemocline (6 m, 5% surface light) delimits angiosperm growth.  相似文献   

9.
Saline lakes of the Paroo,inland New South Wales,Australia   总被引:11,自引:11,他引:0  
B. V. Timms 《Hydrobiologia》1993,267(1-3):269-289
Twenty-five lakes from fresh to crystallizing brine in the semi-desert of northwestern New South Wales, Australia, were studied regularly for 27 months. The lakes are small, shallow and ephemeral. Chemically waters are mainly of the NaCl type. Seventy-four species of invertebrate occur in saline waters (>3 g l–1) with crustaceans such as Parartemia minuta, Apocyclops dengizicus, Daphniopsis queenslandensis, Diacypris spp. and Reticypris spp. dominant, particularly at higher salinities. The insects Tanytarsus barbitarsis and Berosus munitipennis are also important in meso- and hypersaline lakes. They are joined in hypo- and mesosaline waters by many others, including more beetles, odonatans, trichopterans, pyralids, notonectids, and corixids. Species richness declines with increasing salinity. There is a prominent inland faunal component mainly of crustaceans, including P. minuta, D. queenslandensis, R. walbu, Trigonocypris globulosa and Moina baylyi.  相似文献   

10.
Collections of algae, mainly planktonic, were made from 41 saline lakes in southern Saskatchewan ranging in salinity from 3.2 to 428 g l-1. Algae in 7 phyla, 8 classes, 42 families, 91 genera and 212 species and varieties were identified. Fourteen species were restricted to hypersaline (50 g l-1) waters and eleven of these were diatoms. In general, species diversity was inversely related to lake salinity. Algae that were important community constituents over a broad spectrum of salinities were the green algae Ctenocladus circinnatus, Dunaliella salina and Rhizoclonium hieroglyphicum, the blue-green Lyngbya Birgei, Microcystis aeruginosa, Oscillatoria tenuis, O. Utermoehli and Nodularia spumigena and the diatoms Melosira granulata, Stephanodiscus niagarae and Chaetoceros Elmorei. In general green algae were dominant when lake salinity exceeded 100 g l-1 although diatoms played important roles in most of these highly saline lakes except for Patience Lake.  相似文献   

11.
We have studied the activity and composition of several geochemically significant physiological groups of bacteria in more than twenty alkaline salt lakes of the north-east Mongolia steppe with water salinity from 3 to 390 g l?1 and pH values ranging from 9.0 to 10.6. Active and diverse microbial communities have been found in most of the lakes. The methanotrophic bacteria were represented by the Type I members. Among the culturable forms of sulfur-oxidizing bacteria obligately chemolithoautotrophic and haloalkaliphilic representatives of the genera Thioalkalimicrobium and Thioalkalivibrio were detected in the sediments at high numbers (up to 106 cells ml?1). The largest population of anaerobic phototrophic bacteria was represented by purple sulfur bacteria of the Ectothiorhodospiraceae family. Salinity was the key factor in determining the activity and the composition of the microbial communities. The most diverse and active prokaryotic populations, including aerobic and anaerobic phototrophic, methanogenic, methanotrophic, sulfur-oxidizing, sulfate-reducing and nitrifying bacteria, were found in lakes with salinity less than 60 g l?1. In hypersaline lakes with a salinity >100 g l?1, the sulfur cycle remained active due to the activity of extremely halotolerant and alkaliphilic sulfur bacteria, while other important functional groups responsible for nitrification and methane oxidation processes were not detected. Overall, the prokaryotic communities of the Mongolian alkaline salt lakes represent an interesting new example of a diverse community of haloalkaliphilic bacteria well adopted to a broad salinity range.  相似文献   

12.
Although salinity and aquatic biodiversity are inversely related in lake water, the relationship between types of salts and zooplankton communities is poorly understood. In this study, zooplankton species were related to environmental variables from 12 lakes: three saline lakes with water where the dominant anions were SO4 and CO3, four saline lakes with Cl-dominated water, and five dilute, subsaline (0.5–3 gl?1 total dissolved solids) lakes of variable anion composition. Although this study comprised only 12 lakes, distinct differences in zooplankton communities were observed among the two groups of chemically defined saline lakes. Canonical correspondence analysis identified total alkalinity, sulphate, chloride, calcium, sodium, potassium, and total phosphorus as all contributing to the first two ordination axes (λ1 = 0.97 and λ2 = 0.62, P<0.05). The rotifer Brachionus plicatilis and the harpactacoid copepod Cletocamptus sp. prevailed lakes with Cl-dominated water. In contrast, the calanoid copepods Leptodiaptomus sicilis and Diaptomus nevadensis were dominant in the SO4/CO3-dominated lake water with elevated potassium (79–128 mg l?1) and total phosphorus concentrations (1322-2915 μg l?1). The contrasting zooplankton species distribution among these two saline lake types is likely explained by variable selective pressure on zooplankton and their predators from differing physiological tolerances to salt stress and specific ions. While inland saline lakes with Cl as the dominant anion are relatively rare in Canada and SO4/CO3 are the common features, our study provided an opportunity to compare zooplankton communities across the two groups of lakes.  相似文献   

13.
Most Ethiopian lakes are parts of closed drainage systems and collectively form an extensive salinity series, here treated comparatively for geographical, chemical and algal characteristics. Chemical data are presented for 28 lakes and numerous inflows, including original analyses for 15 lakes, in which total ionic concentration and electrical conductivity vary over 4 orders of magnitude. The principal determinant of a lake's position in the series is the open or closed nature of its individual drainage. At present there are three major closed systems (Awash R. — Afar drainage, northern rift lakes, southern rift lakes), numerous crater lakes with seepage -in and -out, and two cryptodepressions with marine inputs. Salinity is primarily determined by evaporative concentration, enhanced in lakes associated with past marine influence or recent volcanic activity by readily soluble materials in the catchment, and by some thermal-reflux pathways. However, anomalously dilute closed lakes exist, indicative of other processes of solute loss (e.g. past basin overflow, reverse weathering, seepage-out).There are strong positive correlations between increasing salinity and the concentrations of Na+, alkalinity and Cl-. The last is used, in conjunction with other analyses of atmospheric precipitation, to estimate the marine and denudative contributions and the evaporative concentration factor, and to distinguish trends of ionic species during evaporative concentration. With several exceptions, affected by past penetration of sea water into the Danakil and L. Assal cryptodepressions, the most saline lakes are soda lakes with HCO3 - + CO inf3 sup2- and Na+ predominant and Ca2+ and Mg2+ largely eliminated. Soluble reactive silicate and phosphate tend to increase in concentration along the salinity series, but the unknown dynamics of algal growth are likely to introduce variance. Concentrations in some lakes are extremely high, e.g. > 40 mg SiO2 l-1 and > 1 mg PO4-P l-1.Phytoplankters recorded from individual lakes are tabulated and where available the community biomass concentration as chlorophyll a is given. Lakes of high salinity-alkalinity are typically very productive in terms of phytoplankton biomass and photosynthetic rates (exceptions: the very deep L. Shala and the very saline L. Abhe), supported in part by relatively high concentrations of phosphorus and inorganic carbon. Many species are of restricted salinity-alkalinity range, being characteristic of waters where levels are low (e.g. desmids, Melosira spp.), intermediate (e.g. Planctonema lauterborni), or high (e.g. Spirulina platensis). Phytoflagellates are most strongly represented in waters with higher concentrations of the bivalent cations Ca2+ and Mg2+. The common cyanophyte Microcystis aeruginosa can tolerate a wide salinity range, here as elsewhere.  相似文献   

14.
B. V. Timms 《Hydrobiologia》1983,105(1):165-177
The summer benthos of 24 lakes ranging from 1–204 g l-1 salinity contained 27 species of macroinvertebrates. The worm Antipodrilus timmsi, the ostracod Mytilocypris splendida, the amphipod Austrochiltonia subtenuis, the chironomids Procladius spp. and Chironomus duplex aand the snail Coxiella striata were common at lower salinities (3—ca. 30 g l-1) while the crustaceans Australocypris robusta and Haloniscus searlei, the chironomid Tanytarsus barbitarsis and a ceratopogonid larva dominated in salinities ca. 20–100 g l-1. Small ostracods were common from 40–150 g l-1. Diversity changed little with salinity. Mean dry biomass ranged from 0–3.94 g m-2; distribution between lakes was negatively skewed with a peak around 7 g l-1 salinity. Within many lakes, there was considerable spatial heterogeneity which in some cases seemed to result from different bottom characteristics or to point source enrichment. Many groups contributed to the standing crop at low to moderate salinities, and at high salinities crustaceans were important. The lakes were grouped into two low salinity associations, an association which comprised the Red Rock Lakes and a cluster of highly saline lakes. This reflects the grouping of species into halobiont, halophilic and salt-tolerant freshwater species.  相似文献   

15.
Inland salt waters of southern Africa   总被引:5,自引:5,他引:0  
Inland salt lakes are widely distributed in southern Africa: they are particularly common in South Africa, but many occur in Namibia and Botswana. All are shallow, and most are ephemeral with salinities that are not very high (mostly < 50 g l−1). Fringing zones of halophytes or submerged macrophytes are neither well-developed nor taxonomically diverse. The Cyanobacteria, especially Nodularia spumigena, often dominate the phytoplankton. The fauna of the Makgadikgadi area (northeast Botswana) is diverse and is similar to that of East African salt lakes. The aquatic fauna of salt water south of the Makgadikgadi Basin, on the other hand, is extremely depauperate, has no well-defined assemblage confined to saline waters, and appears mostly to comprise tolerant freshwater forms. Lovenula falcifera and Metadiaptomus transvaalensis (diaptomid copepods), Moina micrura (Cladocera) and Brachionus plicatilis (Rotifera) are frequently encountered zooplankton species, a few species of insects (Anisops sp., beetles, chironomids and ephydrids) are the principal non-planktonic macroinvertebrates. Artemia ‘salina’ is occasionally present, but may be an introduced form. The avifauna, in contrast to the aquatic macroinvertebrate fauna, is rich, with the greater and lesser flamingo often common.  相似文献   

16.
There are over one hundred mineralized lakes in Khakasia with areas in excess of 0.01 km2 including periodically dry lakes. These saline lakes are situated within the Chebakovo-Balakhtinskaya and Yuzhno-Minusinsk depressions of the Minusinsk intermontane trough, bounded by Kuznetsk Alatau, Western and Eastern Sayan mountains. The depressions are characterised by steppe landscape, low topographic relief and an arid climate (annual rainfall ca. 300 mm y–1). The mineralisation of the various lakes ranges from some 2 to 150 g l–1. Mg++, Na+ and Ca++ cations, SO4 = and Cl anions dominate the composition of soluble salts. The degree of variation of the lakes' mineralisation increases in dry periods. The majority of lakes are associated with synclinal structures and terrigenous red-bed Upper Devonian clastic deposits which bear indicators of accumulation in an evaporite environment (the presence of gypsum layers). Some mineral lakes are situated in Carboniferous carbonate-terrigenous deposits, containing scattered pyroclastics and features of evaporite sedimentation. The high salinity of the lakes is explained (i) by the availability of readily soluble minerals in Palaeozoic strata (gypsum, anhydrite, halite and others), which may be dissolved in groundwater and transported to lake catchments, and (ii) by the high degree of surface water evaporation due to the arid climate. The mineralized waters of some lakes can be recommended for balneological purposes. A deterioration is noted in the ecological status of some saline lakes due to anthropogenic contamination.  相似文献   

17.
Cumming  Brian F.  Smol  John P. 《Hydrobiologia》1993,(1):179-196
Diatoms were identified and enumerated from the surface sediments of 65 lakes located on the Cariboo and Chilcotin Plateaux (British Columbia, Canada). These lakes span a large gradient in lakewater ionic concentration (fresh through hypersaline) and composition, as well as other physical/chemical variables. Almost all of the study lakes had higher salinities in the late-summer than in the spring. The lakes with spring salinities >8 g l–1 showed the largest seasonal increases in salinity. Ionic composition was similar in the spring and late-summer for most lakes. Both ionic concentration (i.e. salinity) and composition were important environmental variables that could account for the different diatom floras in the lakes. Diatom assemblages characteristic of carbonate-dominated and sulfate-dominated waters were identified. Other variables such as water depth and phosphorus concentration were also important.The majority (87%) of diatom taxa had estimated salinity optima < 3 g l–1 Halophilic diatom taxa had broader tolerances to salinity when compared to the fresh water taxa, however taxa with narrow and broad tolerances could be identified across the salinity gradient. Species diversity was weakly but significantly correlated to lakewater salinity (r 2 = 0.18 to 0.3, P < 0.05).Salinity inference models were developed based on the relationship between the diatom assemblages and the spring, late-summer and average salinity. The correlations between the measured and diatominferred salinity, based on the spring (r = 0.95), late-summer (r = 0.94) and average (r = 0.95) salinity data, are high because there was an extremely strong correlation (r = 0.98) between the log transformed spring and late-summer measured salinities. These salinity reconstruction models provide a tool that can be used to infer past climatic changes as part of paleolimnological studies from appropriate closed-basin lakes in British Columbia.  相似文献   

18.
Recognition of evaporite formations from continental Tertiary basins of Spain provides evidence that trace fossils (including rhizoliths) can be abundant in some saline lake systems and their study helps in palaeoenvironmental interpretation of ancient continental evaporite sequences. Six main types of trace fossils have been distinguished and include: (1) networks of small rhizoliths; (2) large rhizoliths; (3) tangle-patterned small burrows; (4) isolated large burrows; (5) L-shaped traces; and (6) vertebrate tracks. Rhizoliths were related to both marginal areas of hypersaline lakes and lakes of moderately high saline waters. In these settings, pedoturbation resulted from colonization by grasses and bushes of distinct lake subenvironments. The activity of burrowing invertebrate faunas was especially intense in lakes of moderately concentrated brines from which gypsum was the main evaporite mineral deposited. A specific gypsum lithofacies (‘bioturbated gypsum deposits') forming thick, massive beds has a widespread occurrence in many of the basins. Tangle-patterned small burrows and minor isolated large burrows constitute the typical trace fossil types within the gypsum. The traces are interpreted as having been caused by burrowing insect larvae, probably chironomids, coleopterans and annelids. The behaviour of these organisms in recent lake environments yields information about the salinity range of lake waters from which gypsum precipitated. Concentration values averaging 100–150 g/l may be thus deduced though some organisms involved in the formation of the traces can tolerate higher salinities. The combined analysis of lithofacies and trace fossils from the lacustrine evaporite sequences contributes to the study of distinct saline lake subenvironments as well as changes in the sedimentary evolution of the lake systems. Consequently, trace fossils can provide valuable insight for palaeoenvironmental analysis of at least some evaporite formations that accumulated in continental settings.  相似文献   

19.
A. N. Egorov 《Hydrobiologia》1993,267(1-3):13-21
There are >3500 lakes of area >0.1 km2 in Mongolia. Most have salinities >1 g 1–1 Of these saline lakes, 12 have areas > 50 km2 each, 10, areas > 100 km2, and 2, areas > 1000 km2. Limnological investigations of salt lakes include morphometric studies, and investigations of bottom sediments, thermal regimes, chemical features, and biological (including fish) characteristics. Data from these investigations now provide a much clearer picture of the limnology of saline lakes in central Asia.  相似文献   

20.
Comparative limnology of Sambhar and Didwana lakes (Rajasthan,NW India)   总被引:1,自引:1,他引:0  
Two alkaline saline inland lakes of Indian arid region were studied during 1984 and 1985, to assess functioning and interaction of various environmental and biological factors. Changes in physical and chemical variables, planktonic composition, chlorophyll content and phytoplankton primary productivity were examined.Salinity in both lakes fluctuated from almost fresh water (1.80), to hypersaline (300) and acted as the main controlling factor for almost all the biotic parameters. Maximum total alkalinities were 2162 mg l–1 and 2090 mg l–1, respectively in Sambhar and Didwana lakes. Dissolved oxygen ranged from completely anoxic conditions to maxima of 11.68 and 7.29 mg 1–1, respectively in Sambhar and Didwana lakes. Nutrient enrichment in the lakes was low.The phytoplankton species composition of Sambhar lake was reduced from an earlier reported 20 genera to only 11 (Nostoc, Microcystis, Spirulina, Aphanocapsa, Oscillatoria, Merismopedia, Nitzschia, Navicula, Synedra, Cosmarium and Closterium). Phytoplankton of Didwana was composed of only 9 genera including Anabaena and Nodularia. Sambhar lake, which once contained Artemia, is now totally devoid of them. On the other hand, Artemia was the most dominant zooplankter in Didwana lake at a salinity range of 15–288. Other zooplankters such as Moina, Cyclops and Brachionus flourished at lower salinity levels in Didwana lake. The seasonal quantitative and qualitative phyto- and zooplankton changes in relation to salinity are documented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号