首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Multiple heat shock cognate (hsc70) cDNA clones were isolated from the mouse embryonal carcinoma cell line F9. They all encode a single 72-kDa protein, which is constitutively expressed in all mouse cell lines and tissues tested, and which is only slightly induced by hyperthermia. hsc70 RNA is very abundant in F9 stem cells and brain, but very little is found in 14-day-old embryos. Upon differentiation of F9 stem cells induced by retinoic acid and cyclic AMP, expression of the hsc70 gene decreases only slightly, suggesting that hsc70 is highly expressed in early mouse development and is then down-regulated towards the end of embryogenesis. In adult tissues only the brain retains the high level of hsc70 gene expression found in F9 stem cells. We also show that expression of hsc70 protein and clathrin is uncoupled in F9 cells, indicating that the uncoating activity of coated vesicles may not be the only function of hsc70 protein.  相似文献   

4.
5.
6.
7.
We have studied the expression of c-src and c-abl proto-oncogenes in early mouse development using embryonal carcinoma (EC) cells as a model system, and compared this to the expression pattern in adult tissues. In all three EC lines tested (F9, PC13, and P19), c-src and c-abl mRNA can be detected. When F9 and PC13 are induced to differentiate they form endodermal cells characteristic of the early embryo, and we found no change in c-src or c-abl expression. In contrast, P19 cells showed increased levels of both mRNAs both mRNAs when induced to differentiate along the neural pathway by retinoic acid, whereas differentiation along the muscle pathway by dimethyl sulfoxide resulted in decreased levels of c-abl expression. These results are consistent with the idea that c-src and c-abl have important functions in the differentiation of the cell types of the later embryo, but not in those of the early embryo.  相似文献   

8.
9.
《The Journal of cell biology》1990,111(5):1785-1792
The properties and inducibility of the heat shock protein 70 (hsp 70) gene products were examined during differentiation of mouse testicular cells by one and two-dimensional gel electrophoresis and immunoblotting. Low levels of the 72- and 73-kD heat shock proteins normally found in mouse cell lines were detected in the mouse testis. A novel isoform with a relative molecular mass of 73 kD (called 73T) was also observed, in the presence or absence of heat shock. 73T was shown to be produced by germ cells since it was not detected in testes from mutant mice devoid of germ cells. Furthermore, 73T was found only in adult mouse testicular cells, not in testes from animals that lack meiotic germ cells. 73T was synthesized in enriched cell populations of both meiotic prophase and postmeiotic cells, but was not inducible by in vitro heat shock. In the adult testis, low levels of the bona fide 72-kD heat-inducible (hsp72) were induced in response to elevated temperatures. In contrast, in testes from animals in which only somatic cells and premeiotic germ cells were present, there was a substantial induction of hsp 72. It is suggested that hsp 72 is inducible in the somatic compartment and possibly in the premeiotic germ cells, but not in germ cells which have entered meiosis and which are expressing members of the hsp 70 gene family in a developmentally regulated fashion.  相似文献   

10.
HSP47 is an endoplasmic reticulum (ER)-resident molecular chaperone involved in collagen production. This study examined the stress-induced pattern of hsp47 gene expression in Xenopus cultured cells and embryos. Sequence analysis revealed that protein encoded by the hsp47 cDNA exhibited 70-77% identity with fish, avian and mammalian HSP47. In A6 kidney epithelial cells hsp47 mRNA and HSP47 were present constitutively and inducible by heat shock but not ER stressors including tunicamycin and A23187, both of which enhanced BiP mRNA. Furthermore A23187 treatment inhibited constitutive accumulation of hsp47 mRNA and retarded heat-induced accumulation of hsp47 and hsp70 mRNA. Interestingly, hsp47 gene expression but not hsp70 or BiP mRNA accumulation was enhanced by treatment with a procollagen-specific stressor, beta-aminopropionitrile. In Xenopus embryos hsp47 mRNA was present constitutively throughout development. In tailbud embryos hsp47 mRNA was enriched in tissues associated with collagen production including notochord, somites and head region. Heat shock-induced accumulation of hsp47 mRNA was enhanced primarily in embryonic tissues already exhibiting hsp47 mRNA accumulation. These studies suggest that the pattern of Xenopus hsp47 gene expression is similar to hsp70 in response to heat shock but also displays unique features including a response to a procollagen-specific stressor and preferential expression in collagen-containing tissues.  相似文献   

11.
The gene lin-28 was originally identified through a mutant of the nematode Caenorhabditis elegans displaying defects in developmental timing. It is expressed stage-specifically in tissues throughout the animal and is required for cell fates to be expressed at the appropriate stage of larval development. lin-28 encodes a cytoplasmic protein with a unique pairing of RNA-binding motifs. Diverse animals possess Lin-28 homologues and mouse Lin-28 is expressed in embryos, embryonic stem cells and embryonal carcinoma cells, but not in some differentiated cell types. To assess whether mammalian Lin-28 may function as a developmental timing regulator, we examined adult and embryonic tissues of the mouse for its expression. We observed Lin-28 protein in many diverse tissues of the embryo through the period of organogenesis and that it persists in some tissues in the adult. In addition to an overall down-regulation during embryogenesis, in at least two tissues Lin-28 expression shows temporal regulation, as opposed to cell type or tissue-specific regulation: in the developing bronchial epithelium, where it is present in the developing lung and absent in the adult, and in a subset of cells developing along the crypt-villus axis of the intestine. Interestingly, unlike epithelia, cardiac and skeletal muscle continuously express Lin-28, suggesting an ongoing need for its activity there. We also observed that Lin-28 expression is repressed during the retinoic acid-induced differentiation of mouse P19 cells into neuronal cells, suggesting that down-regulation of Lin-28 in some tissues may occur in response to hormonal signals that govern development.  相似文献   

12.
13.
In a model system of cultured rat cardiac cells, the expression of the heat shock protein hsp68 was studied after simulating ischemia. We observed both an increase in hsp68 mRNA levels and hsp68 synthesis, while under normal conditions hsp68 and its mRNA could not be detected. Using an antibody against hsp70 and hsp68, immunofluorescence studies showed that during 'ischemia', when hsp68 is not yet synthesized, hsp70 migrated into the nucleus. These results demonstrate that the expression of hsp68 can be used as a marker for the occurrence of ischemia. Furthermore, these findings support the fact that this in vitro system is a suitable model for the study on myocardial infarction.  相似文献   

14.
Heat-inducibility of two reporter constructs expressing lacZ gene under the control of mouse and Xenopus hsp70 promoters was tested in zebrafish (Danio rerio) embryos using a transient expression system. Cells expressing beta-galactosidase were stained blue by histochemical staining and their average number per embryo was used as an indicator of the expression level of the reporter gene. Both constructs were heat-inducible in the embryonic tissues and showed similar heat dependence (increasing expression levels from 35-36 degrees C up to 39 degrees C with an apparent decrease at 40 degrees C), resembling that of the zebrafish hsp70 genes. However, their induction kinetics were different, which might be due to differences in their 5' UTRs. Spatial expression patterns of the two hsp/lacZ constructs and an endogenous hsp70 gene were mostly similar on the RNA level. These results indicate that our approach is applicable for in vivo analysis of the heat-shock response and that exogenous heat-shock promoters may be useful for inducible expression of transgenes in fish.  相似文献   

15.
Most mammalian cells respond to brief incubation at elevated temperatures by enhanced or new synthesis of a set of heat-shock proteins (hsp). In mouse cells, as determined by SDS--one-dimensional gel electrophoresis, the most prominent hsps have molecular masses of approximately 89,000, 70,000, and 68,000 Da. When the heat-shock response of the mouse erythroleukemia cell line D1B, or two other DBA/2 cell lines (707C1 and 745C2), was examined by [35S]methionine labelling, following heat shocks of 10 min at 42 or 44 degrees C, or 1 h at 45 degrees C, no protein band corresponding to hsp 68 was observed. However, the synthesis of both hsp 89 and hsp 70 was enhanced. Northern blot analysis of cytoplasmic RNA extracted from control and stressed cells indicated that hsp 68 mRNA was absent, even after stresses of up to 1 h at 45 degrees C. Differentiation induced by dimethyl sulphoxide (DMSO) (monitored by the induction of globin synthesis) had no effect on hsp 68 expression in D1B cells; also, hsp 68 could not be induced at various stages of differentiation (0-72 h). Southern blot analysis showed that all three hsp-68 genes were present and not rearranged, and apparently did not carry any deletion in their 5' ends. To determine whether methylation could be involved in maintaining the genes in their silent state, we treated cells with 10 microM 5-azacytidine for 48 h. No hsp 68 expression was observed following such treatment in either undifferentiated or DMSO-induced differentiated D1B cells. Furthermore, Southern blot analysis of MspI/HpaII-digested genomic D1B DNA did not display any differences in methylation patterns around the promoter region of the probed gene compared with control cells, indicating that methylation is not involved in hsp-68 repression. When chimeric plasmids carrying the bacterial chloramphenicol acetyl transferase gene under regulation of the mouse hsp-68 or Drosophila hsp-70 promoters were transfected into D1B cells, minimal (2-fold) or no induction was observed, in contrast with the 60-fold induction seen in a control myeloma cell line. These results suggest a trans-acting mechanism of hsp-68 repression in erythroleukemia cells.  相似文献   

16.
17.
The expression of type VIII collagen is restricted, in adult mammals, to specialized extracellular matrices and to a select subset of blood vessels. We have examined the distribution of type VIII collagen in sequential stages of mouse and chicken embryos and found a temporal and spatially restricted pattern of expression during cardiogenesis. Type VIII collagen was first detected by immunocytochemistry on Day 11 in the developing mouse embryo and at stage 19 in the chicken embryo. The distribution of this protein was rapidly modulated during cardiac morphogenesis. Initially (Day 11 in the mouse embryo), type VIII collagen was associated with cardiac myoblasts. From Days 15 to 18, the immunoreactive component was progressively diminished in the myocardium; however, this collagen was observed in the subendocardial layer of the atrioventricular canal and later in the cardiac jelly (or the myocardial basement membrane, an area associated with the formation of cardiac valves). On Day 17, type VIII collagen was also detected in the subendothelium (intima) and tunica media of large vessels. Neonatal and adult hearts contained low to undetectable levels of type VIII collagen. The presence of type VIII collagen was confirmed by immunoblot analysis of heart extracts at different stages of development. A major 185-kDa component, as well as polypeptides of 68 and 15 kDa, reacted with anti-type VIII collagen IgG. Exposure of heart extracts to hyaluronidase or reducing agent eliminated immunoreactivity of the 185-kDa component but not that of the 68- and 15-kDa polypeptides. Type VIII collagen therefore appears to be associated with a hyaluronidase-sensitive component of the extracellular matrix during a temporally restricted stage of embryonic cardiogenesis. The contribution of this collagen to cardiac morphogenesis might reside, in part, in its ability to influence the differentiation of the myocardium and formation of the cardiac valves.  相似文献   

18.
The identity of embryonic stem cells (ESCs) is controlled by a set of pluripotency genes, including Oct4, Sox2, Nanog, and Fgf4. How their expression is repressed during differentiation and reactivated during reprogramming is largely unknown. Here, using mouse ESCs as well as F9 and P19 cells (mouse embryonal carcinoma cell lines, P19 being considered further differentiated than F9 cells) as models, we found that HDAC inhibitors elevated Fgf4 expression in P19 cells, but reduced it in F9 cells. We also observed that HDAC inhibitors enhanced the expression of Fgf4 and a subset of pluripotency genes in differentiated ESCs, but reduced their expression in undifferentiated and less differentiated ESCs. Mechanistically, we observed more HDAC1 recruitment and a weaker association of histone 4 lysine 5 acetylation at the Fgf4 enhancer in P19 cells compared to F9 cells. Additionally, we demonstrated the interaction between Sox2 and HDAC1 both in vitro and in vivo, implicating a possible role for Sox2 in the recruitment of HDAC1 to the Fgf4 enhancer. We also found that Nanog bound to the Fgf4 enhancer, and this binding was stronger in F9 cells, indicating the involvement of Nanog in the regulation of Fgf4 expression in undifferentiated and less differentiated pluripotent stem cells. This study uncovers an important role of HDAC1 and histone modifications in the repression of Fgf4 and perhaps other pluripotency genes during ESC differentiation. Our results also suggest that HDAC inhibitors may promote reprogramming partially through activating pluripotency genes at some intermediate stages.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号