首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Summary By homogenizing rice leaves in liquid nitrogen, it was possible to isolate intact chloroplasts and, subsequently, pure rice chloroplast DNA from the purified chloroplasts. The DNA was digested by several restriction enzymes and fragments were fractionated by agarose gel electrophoresis. The sum of the fragment sizes generated by the restriction enzymes showed that the total length of the DNA is 130 kb. A circular physical map of fragments, generated by digestion with SalI, PstI, and PvuII, has been constructed. The circular DNA contains two inverted repeats of about 20 kb separated by a large, single copy region of about 75 kb and a short, single copy region of about 15 kb. The location of the gene for the large subunit of ribulose 1,5-bisphosphate carboxylase (Fraction I protein) and the 32 KD photosystem II reaction center gene were determined by using as probes tobacco chloroplast DNAs containing these genes. Rice chloroplast DNA differs from chloroplast DNAs of wheat and corn as well as from dicot chloroplast DNAs by having the 32 KD gene located 20 kb removed from the end of an inverted repeat instead of close to the end, as in other plants.  相似文献   

2.
J D Palmer  W F Thompson 《Cell》1982,29(2):537-550
We examined the arrangement of sequences common to seven angiosperm chloroplast genomes. The chloroplast DNAs of spinach, petunia and cucumber are essentially colinear. They share with the corn chloroplast genome a large inversion of approximately 50 kb relative to the genomes of three legumes--mung bean, pea and broad bean. There is one additional rearrangement, a second, smaller inversion within the 50 kb inversion, which is specific to the corn genome. These two changes are the only detectable rearrangements that have occurred during the evolution of the species examined (corn, spinach, petunia, cucumber and mung bean) whose chloroplast genomes contain a large inverted repeat sequence of 22-25 kb. In contrast, we find extensive sequence rearrangements in comparing the pea and broad bean genomes, both of which have deleted one entire segment of the inverted repeat, and also in comparing each of these to the mung bean genome. Thus there is a relatively stable arrangement of sequences in those genomes with the inverted repeat and a much more dynamic arrangement in those that have lost it. We discuss several explanations for this correlation, including the possibility that the inverted repeat may play a direct role in maintaining a conserved arrangement of chloroplast DNA sequences.  相似文献   

3.
4.
5.
Transformation of chloroplast ribosomal RNA (rRNA) genes in Chlamydomonas has been achieved by the biolistic process using cloned chloroplast DNA fragments carrying mutations that confer antibiotic resistance. The sites of exchange employed during the integration of the donor DNA into the recipient genome have been localized using a combination of antibiotic resistance mutations in the 16S and 23S rRNA genes and restriction fragment length polymorphisms that flank these genes. Complete or nearly complete replacement of a region of the chloroplast genome in the recipient cell by the corresponding sequence from the donor plasmid was the most common integration event. Exchange events between the homologous donor and recipient sequences occurred preferentially near the vector:insert junctions. Insertion of the donor rRNA genes and flanking sequences into one inverted repeat of the recipient genome was followed by intramolecular copy correction so that both copies of the inverted repeat acquired identical sequences. Increased frequencies of rRNA gene transformants were achieved by reducing the copy number of the chloroplast genome in the recipient cells and by decreasing the heterology between donor and recipient DNA sequences flanking the selectable markers. In addition to producing bona fide chloroplast rRNA transformants, the biolistic process induced mutants resistant to low levels of streptomycin, typical of nuclear mutations in Chlamydomonas.  相似文献   

6.
Comparisons of chloroplast DNA restriction fragments in four species of Caulerpa revealed that patterns between the species were different, with few and possibly no homologous bands. Two forms of Caulerpa sertularioides also revealed different patterns, and it is possible that the forms are separate species. The chloroplast genome in Caulerpa sertularioides f sertularioides (S. G. Gmelin) Howe is 131.4 kb in size and lacks large repeat units. The discovery of another green-algal chloroplast genome that lacks an inverted repeat indicates that this feature is either not ancestral to the Chlorophyceae or has been lost several times. Several gene clusters commonly found in chloroplast DNAs were found to occur in Caulerpa chloroplast DNA, for example, psbD/C, atpF/H, and psaA/B. The 16S and 23s rRNA, which are typically adjacent, contained in an inverted repeat, and cotranscribed, are over 40 kb apart. Genes rps12 and tufA, members of the str operon in eubacteria, are over 50 kb in distance from each other in Caulerpa. The gene order in Caulerpa is unlike any other chloroplast genome characterized to date.  相似文献   

7.
We constructed a complete physical map and a partial gene map of the chloroplast genome of Cyclotella meneghiniana Kützing clone 1020-1a (Bacillariophyceae). The 128-kb circular molecule contains a 17-kb inverted repeat, which divides the genome into single copy regions of65 kb and 29 kb. This is the largest genome and inverted repeat found in any diatom examined to date. In addition to the 16S and 23S ribosomal RNA genes, the inverted repeat contains both the ndhD gene (as yet unexamined in other diatoms) and the psbA gene (located similarly in one of two other examined diatoms). The Cyclotella chloroplast genome exists as two equimolar populations of inversion isomers that differ in the relative orientation of their single copy sequences. This inversion heterogeneity presumably results from intramolecular recombination within the inverted repeat. For the first time, we map the ndhD, psaC, rpofi, rpoCl, and rpoC2 genes to the chloroplast genome of a chlorophyll c-containing alga. While the Cyclotella chloroplast genome retains some prokaryotic and land plant gene clusters and operons, it contains a highly rearranged gene order in the large and small single copy regions compared to all other examined diatom, algal, and land plant chloroplast genomes.  相似文献   

8.
Summary The chloroplast DNAs (cpDNAs) of Oenothera berteriana and Oe. odorata (subsection Munzia) were examined by restriction endonuclease analysis with Sal I, Pvu II, Kpn I, Pst I, Hind III, and Bam HI. The fragment patterns show that these cpDNAs have all 133 restriction sites in common as well as a lot of individual bands. Nevertheless the cpDNAs of the two species can be distinguished by distinct differences in size between a small number of fragments. The 42 cleavage sites produced by Sal I, Pvu II and Kpn I were mapped on the circular cpDNAs. This was achieved by an approach which combined experimental and mathematical procedures. The overall serial order of the fragments was found to be the same for both cpDNAs. The size differences of individual fragments in the Sal I, Pvu II and Kpn I patterns between Oe. berteriana and Oe. odorata cpDNA are located within five regions scattered along the plastid chromosome. Two of these regions have been localized in the larger and one in the smaller of the two single-copy parts of the cpDNA molecule. The remaining two overlap the borders between the large single-copy and each of the duplicated parts of the molecule. The positions of distinct restriction sites are altered among the two Oenothera plastome DNAs by 0.02–0.4 MDa (30–600 base pairs). These alterations probably result from insertions/deletions.Abbreviations cpDNA chloroplast, plastid DNA - Oe. Oenothera - MDa Megadalton - rRNA, rDNA ribosomal RNA, DNA Dedicated to Professor Berthold Schwemmle, Tübingen, on the occasion of his 60th birthday  相似文献   

9.
The plastid genome from subclover, Trifolium subterraneum, is unusual in a variety of respects, compared with other land-plant chloroplast DNAs. Gene mapping of subclover chloroplast DNA reveals major structural reorganization of the genome. Ten clusters of genes are rearranged in both order and orientation. Eight large inversions are sufficient to explain this reorganization; however, the actual evolutionary changes may have been more complex. For example, a fine-scale analysis of a set of ribosomal protein genes reveals the occurrence of insertions, deletions, and transpositions. Associated with this unusually unstable genome are two structural features potentially involved in the rearrangements. A dispersed family of repeats, with each element about 1 kb in length, is present in at least six copies. A survey of a wide taxonomic range of species indicates that these elements are unique to the chloroplast DNAs of subclover and two closely related species. Several of the repeated elements are associated with genomic rearrangements, and one repeat is inserted within a normally highly conserved series of genes. This set of dispersed repeats may be the first family of transposable elements found in any organelle genome. In addition, the subclover genome is much larger than those in other closely related legumes, even when one takes into account the presence of the repeated elements. Some of the extra DNA has no sequence similarity to other chloroplast genomes and may represent insertion of DNA from another genome. These unusual features are not found in the structurally stable chloroplast genomes of other vascular plants and may, therefore, be implicated in the rapid and major reorganization of the chloroplast DNA in subclover.  相似文献   

10.
The chloroplast genome sequence of Coffea arabica L., the first sequenced member of the fourth largest family of angiosperms, Rubiaceae, is reported. The genome is 155 189 bp in length, including a pair of inverted repeats of 25 943 bp. Of the 130 genes present, 112 are distinct and 18 are duplicated in the inverted repeat. The coding region comprises 79 protein genes, 29 transfer RNA genes, four ribosomal RNA genes and 18 genes containing introns (three with three exons). Repeat analysis revealed five direct and three inverted repeats of 30 bp or longer with a sequence identity of 90% or more. Comparisons of the coffee chloroplast genome with sequenced genomes of the closely related family Solanaceae indicated that coffee has a portion of rps19 duplicated in the inverted repeat and an intact copy of infA . Furthermore, whole-genome comparisons identified large indels (> 500 bp) in several intergenic spacer regions and introns in the Solanaceae, including trnE (UUC)– trnT (GGU) spacer, ycf4 – cemA spacer, trnI (GAU) intron and rrn5 – trnR (ACG) spacer. Phylogenetic analyses based on the DNA sequences of 61 protein-coding genes for 35 taxa, performed using both maximum parsimony and maximum likelihood methods, strongly supported the monophyly of several major clades of angiosperms, including monocots, eudicots, rosids, asterids, eurosids II, and euasterids I and II. Coffea (Rubiaceae, Gentianales) is only the second order sampled from the euasterid I clade. The availability of the complete chloroplast genome of coffee provides regulatory and intergenic spacer sequences for utilization in chloroplast genetic engineering to improve this important crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号