首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Heinonsalo  J.  Hurme  K.-R.  Sen  R. 《Plant and Soil》2004,259(1-2):111-121
In northern boreal forests, podzolic soils prevail that comprise of a distinct upper organic humus/mor (O) horizon that is supported by underlying eluvial (E) and illuvial (B) mineral horizons. The dominant tree species, Scots pine (Pinus sylvestris L.), is known to be highly dependent on root symbiosis with ectomycorrhizal fungi that develop in constituent podzol horizons for growth in these nutrient limited soils. The aim of this microcosm-based study was a quantification of photosynthetically fixed 14C allocation, following standard pulse-feeding of 7-month-old Scots pine seedling shoots, to respective root and mycorrhizosphere compartments that developed in the reconstructed podzol (O, E and B) profile. Biomass of roots and mycorrhizas decreased with increasing soil depth but no soil origin, control forest vs. clear-cut area, related differences were observed. Similarly, no major soil origin- or podzol horizon-related differences in categorised ectomycorrhizal morphotypes and number of mycorrhizas, in relation to pooled root and mycorrhiza biomass, were detected. However, the total recovery of 14C-label was significantly higher in clear-cut soil microcosms compared to control counterparts. A significant finding was equivalent 14C-carbon allocation to roots and ectomycorrhizas in all three major, organic and mineral, podzol profile horizons studied. These carbon allocation data provide additional support for direct (or indirect) roles of roots and symbiotic mycorrhizal fungi in mineral weathering and biodegradation of organic ligands that are central for plant acquisition of growth limiting nutrients and the podzolization process in boreal forest ecosystems.  相似文献   

2.
Acid forest soils in the Bohemian Forest in Central Europe are biogeochemically imbalanced in organic C, N and P processing. We hypothesized that these imbalances can be due to different temperature sensitivities of soil enzyme activities and their affinities to substrate in litter and organic soil horizons. We measured potential activities of five main soil enzymes (β-glucosidase, cellobiohydrolase, Leu-aminopeptidase, Ala-aminopeptidase, and phosphatase) responsible for organic carbon, nitrogen and phosphorus acquisition. We also modeled potential in situ enzyme activities and nutrient release based on continuous in situ temperature measurements. We determined basic kinetic parameters (Km, Vmax), enzyme efficiencies (kcat) and temperature sensitivities (Ea and Q10) according to Michaelis–Menten kinetic and modified Arrhenius models. Our results showed significant differences in substrate affinities between the litter and organic soil horizons. Higher aminopeptidase affinity (lower Km) in the litter soil horizon can lead to leaching of peptidic compounds to lower soil horizons. β-Glucosidase and phosphatase showed high temperature response following the Arrhenius model. However, both aminopeptidases showed no or even decreased activity with increasing temperature. The aminopeptidase temperature insensitivity means that peptidic compounds are degraded at the same or even lower rate in warmer and colder periods of the year in acid forest soils. This imbalance results in different release of available nutrients from plant litter and soil organic matter which may affect bacterial and fungal community composition and nutrient leaching from these ecosystems.  相似文献   

3.
Black shales are high organic matter-rich dark coloured mudstones those are often deposited during ??oceanic anoxia events??. Most of the black shale horizons are rich in arsenic far above their average crustal abundance and are susceptible to weathering eventually leaching high As contents to the surrounding environment causing As enrichment in soil and water which adversely affect the living beings. Numerous arsenic contaminations are being reported from black shale hosted areas globally, hence, making extremely crucial to understand the processes of enrichment, leaching and broader prospective of environmental hazards. Few studies have shown arsenic concentrations as high as 6,000?mg/kg within black shales causing groundwater enrichment up to hundreds mg/L. Arsenic is commonly attached to sulphide mineral structure and partly to organic matter and clay contents during deposition and diagenetic processes. Majority of sulphide bound arsenic becomes available to oxidative dissolution processes in presence of atmospheric oxygen and water which is further triggered by certain microbial community such as Acidophilus ferrooxidans hence, enhancing arsenic release. Physical weathering processes carry the arsenic-rich shale constituents to the depositional site where it is dissolved subsequently. Chemical diffusion and mechanical transport are two prime processes transporting arsenic from black shale horizons to the water bodies or soil columns, while air pollutions are caused by combustions of organic matter-rich coaly shales.  相似文献   

4.
In this article we discuss the possible significance of biological processes, and of fungi in particular, in weathering of minerals. We consider biological activity to be a significant driver of mineral weathering in forest ecosystems. In these environments fungi play key roles in organic matter decomposition, uptake, transfer and cycling of organic and inorganic nutrients, biogenic mineral formation, as well as transformation and accumulation of metals. The ability of lichens, mutualistic symbioses between fungi and photobionts such as algae or cyanobacteria, to weather minerals is well documented. The role of mycorrhizal fungi forming symbioses with forest trees is less well understood, but the mineral horizons of boreal forests are intensively colonised by mycorrhizal mycelia which transfer protons and organic metabolites derived from plant photosynthates to mineral surfaces, resulting in mineral dissolution and mobilisation and redistribution of anionic nutrients and metal cations. The mycorrhizal mycelia, in turn provide efficient systems for the uptake and direct transport of mobilised essential nutrients to their host plants which are large sinks. Since almost all (99.99 %) non-suberised lateral plant roots involved in nutrient uptake are covered by ectomycorrhizal fungi, most of this exchange of metabolites must take place through the plant–fungus interface. This idea is still consistent with a linear relationship between soil mineral surface area and weathering rate since the mycelia that emanate from the tree roots will have a larger area of contact with minerals if the mineral surface area is higher. Although empirical models based on bulk soil solution chemistry may fit field data, we argue that biological processes make an important contribution to mineral weathering and that a more detailed mechanistic understanding of these must be developed in order to predict responses to environmental changes and anthropogenic impact.  相似文献   

5.
Once the weathering of parent material ceases to supply significant inputs of phosphorus (P), vegetation depends largely on the decomposition of litter and soil organic matter and the associated mineralization of organic P forms to provide an adequate supply of this essential nutrient. At the same time, the decomposition of litter is often characterized by the immobilization of nutrients, suggesting that nutrient availability is a limiting factor for this process. Immobilization temporally decouples nutrient mineralization from decomposition and may play an important role in nutrient retention in low-nutrient ecosystems. In this study, we used a common substrate to study the effects of native soil P availability as well as artificially elevated P availability on litter decomposition rates in a lowland Amazonian rain forest on highly weathered soils. Although both available and total soil P pools varied almost three fold across treatments, there was no significant difference in decomposition rates among treatments. Decomposition was rapid in all treatments, with approximately 50% of the mass lost over the 11-month study period. Carbon (C) and nitrogen (N) remaining and C:N ratios were the most effective predictors of amount of mass remaining at each time point in all treatments. Fertilized treatments showed significant amounts of P immobilization (P < 0.001). By the final collection point, the remaining litter contained a quantity equivalent to two-thirds of the initial P and N, even though only half of the original mass remained. In these soils, immobilization of nutrients in the microbial biomass, late in the decomposition process, effectively prevents the loss of essential nutrients through leaching or occlusion in the mineral soil.  相似文献   

6.

Background and Aim

Biotic and abiotic factors contribute in shaping the distribution through the soil profile of elements released by mineral weathering; among them, leaching and biocycling dominate in temperate environments. We evaluated if the intensity of leaching and biocycling of nutrients can be modulated by element deficiencies linked to the abundance of serpentine in the soil parent material, i.e. if the most deficient elements are more efficiently retained.

Methods

We selected twelve poorly developed soils from Northern Italian beech stands, with variable amounts of serpentinites in the parent material, and determined total and exchangeable Ca, Mg and K, as well as an index of abundance of serpentine minerals.

Results

The total element content depended on the abundance of serpentines, while only exchangeable Mg was related to the parent material. The vertical trend of Ca and K indicated the role of biocycling in all soils, but the relative availability of Ca (ratio between exchangeable and total content) was much higher in the top horizons of serpentine-rich soils.

Conclusions

The different element availability among soils suggested that the vertical distribution of available elements was linked to the parent material and that losses were limited in serpentine-rich soils, probably because plants take up the deficient elements as soon as they are released from litter and thus limit their leaching in deeper soil horizons.  相似文献   

7.
Root proliferation into the Oa and Oe soil horizons in tropical forests is often substantial and allows direct cycling of nutrients from the organic matter; this was thought to be an adaptation to the low nutrient supply in infertile soils. In this study, we show that experimentally increased litter inputs promote root proliferation into the Oi and Oe horizons in a relatively fertile soil, suggesting that it is a response to a more readily available nutrient source rather than an adaptation to nutrient shortage, and the absence of root mats on fertile tropical soils is simply a consequence of the lack of persistent organic horizons due to high decomposition rates.  相似文献   

8.
Surficial soil development was studied in four wetland basins created on the floodplain of the Des Plaines River near Chicago, Illinois, USA. These studies determined changes in the spatial distribution of plant-available nutrients as a result of establishing two different wetland hydrologic regimes. Three wetland basins had mineral soils and one an organic soil. A geostatistical analysis including kriging of collected data indicated that all soil parameters showed significant changes in their spatial structure as a result of the water inputs and unidirectional flows. The degree of spatial variability as indicated by autocorrelation in the soil data (i.e., points closer to one another are more similar than points further apart due to the influence of landscape processes) declined for all parameters except Mg+2. Temporal changes in the spatial patterns of extractable phosphorus (P) and percent organic carbon (OC) tended to be inverse; P declined in areas where OC increased and vice versa. The spatial pattern of these changes was dissimilar in the mineral soils as compared to the organic soil and was related to patterns of primary productivity. Zones of P uptake and OC accumulation were also related to wetland hydrology and primary productivity. Changes in the distribution of nutrients, particularly P, may be viewed as a result of nutrient spirals within the wetlands. By comparison, the reorganization in the concentrations of K+ and Ca+2 appear to have been mediated by cation exchange processes. The formation of new concentration gradients was strongly related to both flow pathways and the different water inflow rates. The formation of concentration gradients in exchangeable cations was not reflected in the average concentrations within each basin. Mean values changed significantly in only a few instances. Reducing data in this way missed important biogeochemical changes occurring within the experimental wetland basins. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Aarnio  T.  Derome  J.  Martikainen  P. J. 《Plant and Soil》1995,168(1):523-531
The effects of slow and fast-release fertilizers (P, K, Mg) on the movement and availability of nutrients in acid forest soil were studied. Fast-release superphosphate, potassium chloride and magnesium sulphate and slow-release apatite (P) and biotite (K, Mg) were applied alone or together with urea or urea+limestone. The nutrient content in the organic horizon was determined one growing season and three growing seasons after the application, and in the mineral layer after one growing season. The movement of nutrient ions in the organic horizon was studied by an ion exchange resin bag method during a 5-month period following application. The fast-release salts immediately increased the soluble P and exchangeable K and Mg contents in the organic and mineral soils and in the resin bags. After three growing seasons the effect of K application in the organic layer was non-detectable and that of P had clearly diminished. Apatite gradually increased soluble P content in the organic layer, but biotite had only a minor effect on the K and Mg contents. The nutrients from the fast-release fertilizers had clearly become available and mobile in the year of application and were thus susceptible to leaching. The rate of nutrient release from apatite and biotite is slower and the added nutrients are retained in the organic horizon. Slow-release compounds, like apatite and biotite, might be potential fertilizers for counteracting acidic deposition and subsequent nutrient losses.  相似文献   

10.
Ericoid mycorrhizal fungi (ERM) may specialize in capturing nutrients from their host's litter as a strategy for regulating nutrient cycles in terrestrial ecosystems. In spite of their potential significance, we know little about the structure of ERM fungal communities and the genetic basis of their saprotrophic traits (e.g., genes encoding extracellular enzymes). Rhododendron maximum is a model ERM understory shrub that influences the nutrient cycles of montane hardwood forests in the southern Appalachians (North Carolina, USA). We sampled ERM roots of R. maximum from organic and mineral soil horizons and identified root fungi by amplifying and sequencing internal transcribed spacer (ITS) ribosomal DNA (rDNA) collected from cultures and clones. We observed 71 fungal taxa on ERM roots, including known symbionts Rhizoscyphus ericae and Oidiodendron maius, putative symbionts from the Helotiales, Chaetothyriales, and Sebacinales, ectomycorrhizal symbionts, and saprotrophs. Supporting the idea that ERM fungi are adept saprotrophs, richness of root-fungi was greater in organic than in mineral soil horizons. To study the genetic diversity of oxidative enzymes that contribute to decomposition, we amplified and sequenced a portion of genes encoding multicopper oxidases (MCOs) from ERM ascomycetes. Most fungi possessed multiple copies of MCO sequences with strong similarities to known ferroxidases and laccases. Our findings indicate that R. maximum associates with a taxonomically and ecologically diverse fungal community. The study of MCO gene diversity and expression may be useful for understanding how ERM root fungi regulate the cycling of nutrients between the host plant and the soil environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号