首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The cell cycle-dependent and proliferation-associated expression of the enzyme DNA methyltransferase has been evaluated immunocytochemically in synchronized L-132 human embryonic lung cells, using the anti-DNA methyltransferase monoclonal antibody M1F6D7/5C10. DNA methyltransferase-reactivity was firstly seen in mid-G1 cells. An intense and granular reaction in the cell nuclei with a sparing of the nucleoli was observed in addition to a homogenous and faint cytoplasmic staining. The staining intensity in the cell nuclei increased progressively up to mitosis. In early mitotic cells an intense perichromosomal staining was observed in addition to a homogenous staining of cyto- and karyoplasm after the resolving of the core membrane. In late mitosis the staining intensity decreased rapidly. Early G1 cells and density inhibited, resting G0 cells showed no DNA methyltransferase reactivity at all. Our results indicate that anti-DNA methyltransferase monoclonal antibodies could become valuable tools to detect proliferating cells in cell cultures and tissues.  相似文献   

2.
Methylation-specific fluorescence in situ hybridization (MeFISH) was developed for microscopic visualization of DNA methylation status at specific repeat sequences in individual cells. MeFISH is based on the differential reactivity of 5-methylcytosine and cytosine in target DNA for interstrand complex formation with osmium and bipyridine-containing nucleic acids (ICON). Cell nuclei and chromosomes hybridized with fluorescence-labeled ICON probes for mouse major and minor satellite repeats were treated with osmium for crosslinking. After denaturation, fluorescent signals were retained specifically at satellite repeats in wild-type, but not in DNA methyltransferase triple-knockout (negative control) mouse embryonic stem cells. Moreover, using MeFISH, we successfully detected hypomethylated satellite repeats in cells from patients with immunodeficiency, centromeric instability and facial anomalies syndrome and 5-hydroxymethylated satellite repeats in male germ cells, the latter of which had been considered to be unmethylated based on anti-5-methylcytosine antibody staining. MeFISH will be suitable for a wide range of applications in epigenetics research and medical diagnosis.  相似文献   

3.
Hemimethylated duplex DNAs prepared from 5-azacytidine-treated cells.   总被引:20,自引:2,他引:18       下载免费PDF全文
Duplex heavy-light (HL) DNAs synthesized in the presence of brdUrd and methylation inhibitors were separated from bulk cellular DNA by CsCl density gradient centrifugation and analysed for 5-methylcytosine (5mC) contents by HPLC. DNAs synthesized in the presence of 5 mM ethionine or 2 mg/ml cycloleucine were not detectably hypomethylated, was undermethylated with respect to control DNA. The heavy, or H-strand, in which up to 5% of the cytosine residues were replaced by intact 5-azacytosine, was undermethylated and the HL duplex DNA was therefore strand asymmetrically methylated. This duplex DNA served as an efficient substrate for a crude DNA methyltransferase preparation which transferred the methyl group from S-adenosylmethionine specifically into cytosine residues within the hypomethylated H strand. Increasing levels of incorporated 5-azacytosine inhibited the action of the methyltransferase suggesting that incorporation of 5-azacytosine into DNA may be responsible for the inhibitory effect of 5-azacytidine on DNA methylation.  相似文献   

4.
Intracellular distribution of DNA methyltransferase during the cell cycle   总被引:2,自引:0,他引:2  
The intracellular distribution of DNA methyltransferase has been analyzed in synchronously proliferating human cells. The localization of DNA methyltransferase was determined immunocytochemically using monoclonal antibodies directed against this enzyme. DNA methyltransferase was found to accumulate predominantly in nuclei with weak cytoplasmic staining. The DNA methyltransferase antigen was absent in early G1 phase, appeared in late G1 prior to the onset of DNA synthesis and persisted throughout S and G2 phases of the cell cycle. Mitotic cells showed a particularly strong staining intensity. These results show that DNA methyltransferase levels fluctuate during the cell cycle. This has possible implications on the stability of the DNA methylation pattern.  相似文献   

5.
Mutual antagonism between DNA methylation and H3K27me3 histone methylation suggests a dynamic crosstalk between these epigenetic marks that could help ensure correct gene expression programmes. Work from Manzo et al ( 2017 ) now shows that an isoform of de novo DNA methyltransferase DNMT3A provides specificity in the system by depositing DNA methylation at adjacent “shores” of hypomethylated bivalent CpG islands (CGI) in mouse embryonic stem cells (mESCs). DNMT3A1‐directed methylation appears to be instructive in maintaining the H3K27me3 profile at the hypomethylated bivalent CGI promoters of developmentally important genes.  相似文献   

6.
A naturally occurring methylation inhibitor isolated from rabbit liver and named methinin inhibits a number of methyltransferases. Methinin is a low-molecular-weight compound (1,400) that has an active amine group. This compound inhibits the DNA methyltransferase of human erythroleukemia cells (K562) in vitro. When the K562 cells were grown in medium containing methinin, fetal hemoglobin was produced. Small but detectable amounts of adult hemoglobin were also produced. Methinin was not toxic to these cells. The overall rate of genomic DNA methylation was reduced by 60% in cells grown in medium containing methinin. Southern blots of genomic DNA from methinin-treated cells and untreated cells hybridized to a 32P-labeled globin gene probe showed that one site in the globin gene region was hypomethylated. Methinin is a naturally occurring compound which inhibits DNA methylation both in vitro and in vivo.  相似文献   

7.
In vertebrates, DNA methylation plays an important role in the regulation of gene expression and embryogenesis. DNA methyltransferase, which catalyzes the introduction of a methyl group at the 5th position of cytosine in the CpG sequence, is highly accumulated in mouse oocytes and is excluded from nuclei [Carlson et al. (1992) Genes Dev. 6, 2536-2541]. In this study, we examined the expression level and localization of Xenopus DNA methyltransferase in oocytes during oogenesis. The DNA methyltransferase protein was detectable in stage III oocytes and increased thereafter, until the oocytes had matured. The rate of DNA methyltransferase synthesis rapidly increased after stage IV oocytes. Different from in mouse oocytes, DNA methyltransferase was equally distributed in the nuclear and post-nuclear fractions, in stage VI oocytes. DNA methyltransferase translocated into nuclei was uniformly localized in the nuclear matrix, and the accumulated DNA methyltransferase in stage VI nuclei had DNA methylation activity.  相似文献   

8.
9.
In tumors, DNA is often globally hypomethylated compared to DNA extracted from normal tissues. This observation is usually made after extraction and exhaustive digestion of DNA followed by analysis of nucleosides by chromatography or digestion with restriction enzymes, gel analysis, and hybridization. This approach provides an average value which does not give information on the various cell subpopulations included in heterogeneous samples. Therefore an immunochemical technique was set up with the aim of demonstrating, in a population of mixed cells, the possibility of detecting the presence of individual nuclei containing hypomethylated DNA, on a cell-by-cell basis. Monoclonal antibodies to 5-methylcytidine were used to label cells grown in vitro. Under appropriate fixation and permeabilization conditions, interphase nuclei were labeled. Quantitative differences in the labeling were detected between Epstein-Barr virus-transformed cells and normal peripheral blood monocytes by flow cytometry analysis. Similar differences were observed by fluorescence microscopy. Both results were confirmed by Southern transfer and hybridization of DNA fragments generated by restriction enzyme digestion. This observation, which is in accordance with the occurrence of global DNA hypomethylation in tumors as established by chromatography, opens the field for the analysis of fresh tumor samples by flow cytometry and microscopy.  相似文献   

10.
Over 20% of the cytosine bases in frog virus 3 DNA are methylated at the 5-carbon position. To determine whether this high degree of methylation is the result of a virus-specific enzyme, we examined the kinetics of induction and the substrate specificity of a DNA methyltransferase from frog virus 3-infected fathead minnow cells. A novel DNA methyltransferase activity appeared in the cytoplasm of infected cells at 3 h postinfection. This activity was induced in the absence of viral DNA replication and was therefore probably an early viral enzyme. In contrast to the methyltransferase activity extracted from uninfected cell nuclei, the cytoplasmic enzyme showed a strong template preference for double-stranded over single-stranded and for unmethylated over hemimethylated DNA. The dinucleotide sequence dCpdG was a necessary and sufficient exogenous substrate for methylation in vitro. A mutant of frog virus 3, isolated as resistant to 5-azacytidine and having unmethylated virion DNA, did not induce cytoplasmic DNA methyltransferase, leading to the conclusion that this activity is coded for by the virus.  相似文献   

11.
12.
This report identifies L-ethionine as an inducer of differentiation in murine erythroleukemia cells. When Friend erythroleukemia cells are grown in the presence of 4mM L-ethionine, globin mRNA accumulates and in 4-5 days, 25-30% of the cells in the culture contain hemoglobin. Incubation of the cells with bromodeoxyuridine prevents both ethionine-induced accumulation of globin mRNA and erythroide differentiation. At the concentration where L-ethionine acts as an inducer of FL cell differentiation it inhibits methylation of DNA and tRNA in vivo but does not prevent macromolecular synthesis or cell division. To establish whether a link existed between inhibition of a specific methyltransferase and activation of globin synthesis in FL cells, we examined the degree of hypomethylation of DNA and tRNA from FL cells induced to differentiate with dimethylsulfoxide and butyrate. In contrast to the tRNA from ethionine-treated cells, tRNA from cells induced by butyrate or Me2SO cannot be methylated in vitro using homologous enzymes. DNA isolated from cells exposed to any of the three inducers, however, was significantly hypomethylated when compared with DNA from uninduced cells. These data suggest that methylation of DNA may play a role in the regulation of gene expression.  相似文献   

13.
14.
The effect of gamma radiation on DNA methylation   总被引:4,自引:0,他引:4  
The effect of 60Co gamma radiation on DNA methylation was studied in four cultured cell lines. In all cases a dose-dependent decrease in 5-methylcytosine was observed at 24, 48, and 72 h postexposure to 0.5-10 Gy. Nuclear DNA methyltransferase activity decreased while cytoplasmic activity increased in irradiated (10 Gy) V79A03 cells as compared to controls. No DNA demethylase activity was detected in the nuclei of control or irradiated V79A03 cells. Additionally, gamma radiation resulted in the differentiation of C-1300 N1E-115 cells, a mouse neuroblastoma line, in a dose- and time-dependent manner. These results are consistent with the hypothesis that (1) genes may be turned on following radiation via a mechanism involving hypomethylation of cytosine and (2) radiation-induced hypomethylation results from decreased intranuclear levels of DNA methyltransferase.  相似文献   

15.
DNA from mammalian cells has been shown to contain significant amounts of 5-methyl cytosine resulting from enzymatic transfer of methyl groups from s-adenosylmethionine to cytosine residues in the DNA polymer. The function of this modification is not known. We have found that DNA synthesized during chemically induced differentiation of friend erythroleukemia cells is hypomethylated, as measured by its ability to accept methyl groups transferred by homologous DNA methyltransferases in vitro. The extent of hypomethylation detected by this sensitive method is small, a decrease of less than 1.6 percent in 5-methylcytosine content. Hypomethylated DNA can be isolated from friend erythroleukemia cells grown in the presence of dimethyl sulfoxide, butyrate, hexamethylene-bis- acetamide, pentamethylene-bis acetamide, and ethionine. However, hypomethylated DNA is found only under conditions where differentiation is actually induced. DNA isolated from cells of a dimethyl sulfoxide- resistant subclone grown in the presence of that agent is not hypomethylated, although DNA of these cells becomes hypomethylated after growth in the presence of inducers that can trigger their differentiation. We also find that the DNA of friend erythroleukemia cells does not become hypomethylated when the cells are exposed to inducing agents in the presence of substances that inhibit differentiation. These results suggest a close link between genome modification by methylation and differentiation of friend erythroleukemia cells.  相似文献   

16.
When [3H] Actinomycin D (Act. D) is used to interact with nuclei and nucleoli in vitro, it binds preferentially to nucleolar chromatin. The preferential binding is no longer detectable, when purified nuclear and nucleolar DNAs are used. In parallel, Act. D preferentially inhibits nucleolar over nuclear RNA synthesis when chromatin templates are used, and the preferential inhibition is lost when purified nuclear and nucleolar DNAs are used. It is concluded: 1) the preferential inhibition of nucleolar over nuclear RNA synthesis by Act. D is a direct reflection of the preferential binding of Act. D to the nucleolar chromatin; and 2) the nucleolar chromosomal proteins, not the nucleolar DNA, confer the preferential binding of Act. D.  相似文献   

17.
The levels of DNA methyltransferase in nuclei from 9 tumorigenic and 9 nontumorigenic cell lines were examined. In all but 2 cases, the extractable methyltransferase activity was 4-3000-fold higher in tumorigenic than in nontumorigenic cells. Tumorigenic and nontumorigenic cells from four species were grown in the presence of various concentrations (10(-8)-10(-6) M) of an inhibitor of the methylase enzyme, 5-aza-2'-deoxycytidine (5-aza-dCyd). The reduction of 5-methylcytosine content in newly replicated DNA in the presence of 5-aza-dCyd was used to determine the relative methylase activity in each cell line. In all 4 cases, tumorigenic cells required larger doses of drug to inhibit DNA methylation to the same extent as their nontumorigenic counterparts. The relative rates of incorporation of [3H]5-aza-dCyd were determined for each cell line, and tumorigenic cells were shown to incorporate equal or greater amounts of 5-aza-dCyd into DNA compared to nontumorigenic cells. These results showed that the differences in the inhibition of DNA methylation in response to 5-aza-dCyd were not due to differences in the ability of these cells to incorporate the drug. Thus, it was demonstrated by two independent methods that tumorigenic cells contained higher levels of methylating capacity than nontumorigenic cells. This overabundance of methyltransferase may alter DNA methylation patterns and affect phenotypic stability.  相似文献   

18.
It has been reported that DNA methyltransferase 1-deficient (Dnmt1-/-) embryonic stem (ES) cells are hypomethylated (20% CpG methylation) and die through apoptosis when induced to differentiate. Here, we show that Dnmt[3a-/-,3b-/-] ES cells with just 0.6% of their CpG dinucleotides behave differently: the majority of cells within the culture are partially or completely blocked in their ability to initiate differentiation, remaining viable while retaining the stem cell characteristics of alkaline phosphatase and Oct4 expression. Restoration of DNA methylation levels rescues these defects. Severely hypomethylated Dnmt[3a-/-,3b-/-] ES cells have increased histone acetylation levels, and those cells that can differentiate aberrantly express extraembryonic markers of differentiation. Dnmt[3a-/-,3b-/-] ES cells with >10% CpG methylation are able to terminally differentiate, whereas Dnmt1-/- ES cells with 20% of the CpG methylated cannot differentiate. This demonstrates that successful terminal differentiation is not dependent simply on adequate methylation levels. There is an absolute requirement that the methylation be delivered by the maintenance enzyme Dnmt1.  相似文献   

19.
A DNA methyltransferase was isolated from a eucaryotic, Chlorella-like green alga infected with the virus PBCV-1. The enzyme recognized the sequence GATC and methylated deoxyadenosine solely in GATC sequences. Host DNA, which contains GATC sequences, but not PBCV-1 DNA, which contains GmATC sequences, was a good substrate for the enzyme in vitro. The DNA methyltransferase activity was first detected about 1 h after viral infection; PBCV-1 DNA synthesis and host DNA degradation also began at about this time. The appearance of the DNA methyltransferase activity required de novo protein synthesis, and the enzyme was probably virus encoded. Methylation of DNAs with the PBCV-1-induced methyltransferase conferred resistance of the DNAs to a PBCV-1-induced restriction endonuclease enzyme described previously (Y. Xia, D. E. Burbank, L. Uher, D. Rabussay, and J. L. Van Etten, Mol. Cell. Biol. 6:1430-1439). We propose that the PBCV-1-induced methyltransferase protects viral DNA from the PBCV-1-induced restriction endonuclease and is part of a virus-induced restriction and modification system in PBCV-1-infected Chlorella cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号