首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
After fruit development has been triggered by pollination, the abscission zone (AZ) in the pedicel strengthens its adhesion to keep the fruit attached. Unpollinated flowers are shed at their respective AZs, whereas an enlargement of the same tissue is observed in pollinated flowers. After the fruit has developed and is fully ripened, shedding occurs easily at the AZ, indicating an acceleration of abscission. Cell wall degradation and synthesis may play important roles in these processes; however, little is understood. In this report, we have visualized changes in polysaccharide distribution in the AZs of pollinated versus unpollinated flowers and in the ripened fruits using immunohistochemistry. During floral abscission, a large increase was observed in LM15 labeling of xyloglucan specifically at the AZ in the abscising pedicel. LM5 and LM6 labeling of galactan and arabinan, respectively, also increased—LM5 throughout the pedicel and LM6 at the basal side of the AZ. The results suggest that xyloglucan, pectic galactan and arabinan play key roles in the abscission process. During fruit abscission, unlike in floral abscission, no AZ-specific cell wall polysaccharide deposition was observed; however, high autofluorescence was seen in the AZ of over-ripe fruit pedicels, suggesting secondary cell wall synthesis and lignification of the AZ prior to fruit abscission.  相似文献   

2.
To develop antibody probes for the neutral side chains of pectins, antisera were generated to a pectic galactan isolated from tomato (Lycopersicon esculentum) pericarp cell walls and to a (1[->]4)-[beta]-galactotetraose-bovine serum albumin neoglycoprotein. The use of these two antisera in immunochemical assays and immunolocalization studies indicated that they had very similar specificities. A monoclonal antibody (LM5) was isolated and characterized subsequent to immunization with the neoglycoprotein. Hapten inhibition studies revealed that the antibody specifically recognized more than three contiguous units of (1[->]4)-[beta]-galactosyl residues. The antigalactan antibody was used to immunolocalize the galactan side chains of pectin in tomato fruit pericarp and tomato petiole cell walls. Although the LM5 epitope occurs in most cell walls of the tomato fruit, it was absent from both the locular gel and the epidermal and subepidermal cells. Furthermore, in contrast to other anti-pectin antibodies, LM5 did not label the cell wall thickenings of tomato petiole collenchyma.  相似文献   

3.
The structure of arabinan and galactan domains in association with cellulose microfibrils was investigated using enzymatic and alkali degradation procedures. Sugar beet and potato cell wall residues (called 'natural' composites), rich in pectic neutral sugar side chains and cellulose, as well as 'artificial' composites, created by in vitro adsorption of arabinan and galactan side chains onto primary cell wall cellulose, were studied. These composites were sequentially treated with enzymes specific for pectic side chains and hot alkali. The degradation approach used showed that most of the arabinan and galactan side chains are in strong interaction with cellulose and are not hydrolysed by pectic side chain-degrading enzymes. It seems unlikely that isolated arabinan and galactan chains are able to tether adjacent microfibrils. However, cellulose microfibrils may be tethered by different pectic side chains belonging to the same pectic macromolecule.  相似文献   

4.
The class of cell wall polysaccharides that undergoes the most extensive modification during tomato (Lycopersicon esculentum) fruit ripening is pectin. De-esterification of the polygalacturonic acid backbone by pectin methylesterase facilitates the depolymerization of pectins by polygalacturonase II (PGII). To investigate the spatial aspects of the de-esterification of cell wall pectins and the subsequent deposition of PGII, we have used antibodies to relatively methylesterified and nonesterified pectic epitopes and to the PGII protein on thin sections of pericarp tissue at different developmental stages. De-esterification of pectins and deposition of PGII protein occur in block-like domains within the cell wall. The boundaries of these domains are distinct and persistent, implying strict, spatial regulation of enzymic activities. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins strongly associated with cell walls of pericarp tissue at each stage of fruit development show ripening-related changes in this protein population. Western blots of these gels with anti-PGII antiserum demonstrate that PGII expression is ripening-related. The PGII co-extracts with specific pectic fractions extracted with imidazole or with Na2CO3 at 0[deg]C from the walls of red-ripe pericarp tissue, indicating that the strong association between PGII and the cell wall involves binding to particular pectic polysaccharides.  相似文献   

5.
Pectin is a complex polysaccharide and an integral part of the primary plant cell wall and middle lamella, contributing to cell wall mechanical strength and cell adhesion. To understand the structure–function relationships of pectin in the cell wall, a set of transgenic potato lines with altered pectin composition was analysed. The expression of genes encoding enzymes involved in pectin acetylation, degradation of the rhamnogalacturonan backbone and type and length of neutral side chains, arabinan and galactan in particular, has been altered. Upon crossing of different transgenic lines, some transgenes were not transmitted to the next generation when these lines were used as a pollen donor, suggesting male sterility. Viability of mature pollen was severely decreased in potato lines with reduced pectic arabinan, but not in lines with altered galactan side chains. Anthers and pollen of different developmental stages were microscopically examined to study the phenotype in more detail. Scanning electron microscopy of flowers showed collapsed pollen grains in mature anthers and in earlier stages cytoplasmic protrusions at the site of the of kin pore, eventually leading to bursting of the pollen grain and leaking of the cytoplasm. This phenomenon is only observed after the microspores are released and the tapetum starts to degenerate. Timing of the phenotype indicates a role for pectic arabinan side chains during remodelling of the cell wall when the pollen grain is maturing and dehydrating.  相似文献   

6.

Background and Aims

In seed plants, the ability of guard cell walls to move is imparted by pectins. Arabinan rhamnogalacturonan I (RG1) pectins confer flexibility while unesterified homogalacturonan (HG) pectins impart rigidity. Recognized as the first extant plants with stomata, mosses are key to understanding guard cell function and evolution. Moss stomata open and close for only a short period during capsule expansion. This study examines the ultrastructure and pectin composition of guard cell walls during development in Funaria hygrometrica and relates these features to the limited movement of stomata.

Methods

Developing stomata were examined and immunogold-labelled in transmission electron microscopy using monoclonal antibodies to five pectin epitopes: LM19 (unesterified HG), LM20 (esterified HG), LM5 (galactan RG1), LM6 (arabinan RG1) and LM13 (linear arabinan RG1). Labels for pectin type were quantitated and compared across walls and stages on replicated, independent samples.

Key Results

Walls were four times thinner before pore formation than in mature stomata. When stomata opened and closed, guard cell walls were thin and pectinaceous before the striated internal and thickest layer was deposited. Unesterified HG localized strongly in early layers but weakly in the thick internal layer. Labelling was weak for esterified HG, absent for galactan RG1 and strong for arabinan RG1. Linear arabinan RG1 is the only pectin that exclusively labelled guard cell walls. Pectin content decreased but the proportion of HG to arabinans changed only slightly.

Conclusions

This is the first study to demonstrate changes in pectin composition during stomatal development in any plant. Movement of Funaria stomata coincides with capsule expansion before layering of guard cell walls is complete. Changes in wall architecture coupled with a decrease in total pectin may be responsible for the inability of mature stomata to move. Specialization of guard cells in mosses involves the addition of linear arabinans.  相似文献   

7.
The Cnr ( C olourless n on- r ipening) tomato ( Lycopersicon esculentum Mill.) mutant has an aberrant fruit-ripening phenotype in which fruit do not soften and have reduced cell adhesion between pericarp cells. Cell walls from Cnr fruit were analysed in order to assess the possible contribution of pectic polysaccharides to the non-softening and altered cell adhesion phenotype. Cell wall material (CWM) and solubilised fractions of mature green and red ripe fruit were analysed by chemical, enzymatic and immunochemical techniques. No major differences in CWM sugar composition were detected although differences were found in the solubility and composition of the pectic polysaccharides extracted from the CWM at both stages of development. In comparison with the wild type, the ripening-associated solubilisation of homogalacturonan-rich pectic polysaccharides was reduced in Cnr. The proportion of carbohydrate that was chelator-soluble was 50% less in Cnr cell walls at both the mature green and red ripe stages. Chelator-soluble material from ripe-stage Cnr was more susceptible to endo-polygalacturonase degradation than the corresponding material from wild-type fruit. In addition, cell walls from Cnr fruit contained larger amounts of galactosyl- and arabinosyl-containing polysaccharides that were tightly bound in the cell wall and could only be extracted with 4 M KOH, or remained in the insoluble residue. The complexity of the cell wall alterations that occur during fruit ripening and the significance of different extractable polymer pools from cell walls are discussed in relation to the Cnr phenotype.  相似文献   

8.
The function of the arabinan and galactan side-chains of pectin remains unknown. We describe 13C NMR experiments designed to yield spectra from the most mobile polymer components of hydrated cell walls isolated from a range of plant species. In pectin-rich cell walls, these corresponded to the pectic side-chains. The arabinan side-chains were in general more mobile than the galactans, but the long galactan side-chains of potato pectin showed high mobility. Due to motional line-narrowing effects these arabinan and galactan chains gave 13C NMR spectra of higher resolution than has previously been observed from 'solid' biopolymers. These spectra were similar to those reported for the arabinan and galactan polymers in the solution state, implying time-averaged conformations resembling those found in solution. The mobility of the highly esterified galacturonan in citrus cell walls overlapped with the lower end of the mobility range characteristic of the pectic side-chains. The cellulose-rich cell walls of flax phloem fibres gave spectra of low intensity corresponding to mobile type II arabinogalactans. Cell walls from oat coleoptiles appeared to contain no polymers as mobile as the pectic arabinans and galactans in primary cell walls of the other species examined. These properties of the pectic side-chains suggest a role in interacting with water.  相似文献   

9.
Brecht JK  Huber DJ 《Plant physiology》1988,88(4):1037-1041
Enzymically active cell wall from ripe tomato (Lycopersicon esculentum Mill.) fruit pericarp release uronic acids through the action of wall-bound polygalacturonase. The potential involvement of products of wall hydrolysis in the induction of ethylene synthesis during tomato ripening was investigated by vacuum infiltrating preclimacteric (green) fruit with solutions containing pectin fragments enzymically released from cell wall from ripe fruit. Ripening initiation was accelerated in pectin-infiltrated fruit compared to control (buffer-infiltrated) fruit as measured by initiation of climacteric CO2 and ethylene production and appearance of red color. The response to infiltration was maximum at a concentration of 25 micrograms pectin per fruit; higher concentrations (up to 125 micrograms per fruit) had no additional effect. When products released from isolated cell wall from ripe pericarp were separated on Bio-Gel P-2 and specific size classes infiltrated into preclimacteric fruit, ripening-promotive activity was found only in the larger (degree of polymerization >8) fragments. Products released from pectin derived from preclimacteric pericarp upon treatment with polygalacturonase from ripe pericarp did not stimulate ripening when infiltrated into preclimacteric fruit.  相似文献   

10.
The localization of cell wall polysaccharides of the fused petals of monocotyledonous Sandersonia aurantiaca flowers has been identified using antibodies directed to pectin and xyloglucan epitopes and detection by fluorescence microscopy. Cross sections of the petal tissue were taken from cut flowers in bud and at various stages of maturity and senescence. Patterns of esterification in pectin backbones were identified by JIM5 and 2F4 labelling. Pectic galactan and arabinan side branches were detected by LM5 and LM6, respectively, while fucosylated xyloglucan was identified by CCRC-M1. The labelling patterns highlighted compositional differences between walls of the outer/inner epidermis compared to the spongy parenchyma cells of the interior mesophyll for fucosylated xyloglucan and arabinan. Partially esterified homogalacturonan was present in the junction zones of the outer epidermis and points of contact between cells of the mesophyll, and persisted throughout senescence. Pectic galactans were ubiquitous in the outer and inner epidermal cell walls and walls of the interior mesophyll at flower opening, whereas pectic arabinan was found predominantly in the epidermal cells. Galactan was lost from walls of all cells as flowers began to senesce, while fucosylated xyloglucan appeared to increase over this time. Such differences in the location of polysaccharides and the timing of changes suggest distinct combinations of certain polysaccharides offer mechanical and rheological advantages that may assist with flower opening and senescence.  相似文献   

11.
Post‐harvest storage is largely limited by fruit softening, a result of cell wall degradation. Pectin methylesterase (PE) (EC 3.1.1.11) is a major hydrolase responsible for pectin de‐esterification in the cell wall, a response to fruit ripening. Two major PE isoforms, PE1 and PE2, have been isolated from tomato (Solanum lycopersicon) pericarp tissue and both have previously been down‐regulated using antisense suppression. In this paper, PE1 and PE2 double antisense tomato plants were successfully generated through crossing the two single antisense lines. In the double antisense fruit, approximately 10% of normal PE activity remained and ripening associated pectin de‐esterification was almost completely blocked. However, double antisense fruit softened normally during ripening. In tomato fruit, the PE1 isoform was found to contribute little to total PE activity and have little effect on the degree of esterification of pectin. In contrast, the other dominant fruit isoform, PE2, has a major impact on de‐esterification of total pectin. PE2 appears to act on non‐CDTA‐soluble pectin during ripening and on CDTA‐soluble pectin before the start of ripening in a potentially block‐wise fashion.  相似文献   

12.
Regulation of tomato fruit growth by epidermal cell wall enzymes   总被引:12,自引:0,他引:12  
Water relations of tomato fruit and the epidermal and pericarp activities of the putative cell wall loosening and tightening enzymes Xyloglucan endotransglycosylase (XET) and peroxidase were investigated, to determine whether tomato fruit growth is principally regulated in the epidermis or pericarp. Analysis of the fruit water relations and observation of the pattern of expansion of tomato fruit slices in vitro , has shown that the pericarp exerts tissue pressure on the epidermis in tomato fruit, suggesting that the rate of growth of tomato fruit is determined by the physical properties of the epidermal cell walls. The epidermal activities of XET and peroxidase were assayed throughout fruit development. Temporal changes in these enzyme activities were found to correspond well with putative cell wall loosening and stiffening during fruit development. XET activity was found to be proportional to the relative expansion rate of the fruit until growth ceased, and a peroxidase activity weakly bound to the epidermal cell wall appeared shortly before cessation of fruit expansion. No equivalent peroxidase activity was detected in pericarp tissue of any age. It is therefore plausible that the expansion of tomato fruit is regulated by the combined action of these enzyme activities in the fruit epidermis.  相似文献   

13.
Rhamnogalacturonan (RG) I is a branched pectic polysaccharide in plant cell walls. Rhamnogalacturonan lyase (eRGL) from Aspergillus aculeatus is able to cleave the RG I backbone at specific sites. Transgenic potato (Solanum tuberosum L.) plants were made by the introduction of the gene encoding eRGL, under the control of the granule-bound starch synthase promoter. The eRGL protein was successfully expressed and translated into an active form, demonstrated by eRGL activity in the tuber extracts. The transgenic plants produced tubers with clear morphological alterations, including radial swelling of the periderm cells and development of intercellular spaces in the cortex. Sugar compositional analysis of the isolated cell walls showed a large reduction in galactosyl and arabinosyl residues in transgenic tubers. Immunocytochemical studies using the LM5 (galactan) and LM6 (arabinan) antibodies also showed a large reduction in galactan and arabinan side-chains of RG I. Most of the remaining LM5 epitopes were located in the expanded middle lamella at cell corners of eRGL tubers, which is in contrast to their normal location in the primary wall of wild type tubers. These data suggest that RG I has an important role in anchoring galactans and arabinans at particular regions in the wall and in normal development of the periderm.  相似文献   

14.
 The development of pectin structural features during the differentiation of cambial derivatives was investigated in aspen (Populus tremula L. × P. tremuloides Michx.) using biochemical and immunocytochemical methods. Comparisons were also made between active and resting tissues. Active tissues, in particular cambial cells and phloem derivatives, were characterized by a high pectin content. Use of antibodies raised against arabinan side chains of rhamnogalacturonan 1 (LM6), as well as biochemical analysis, revealed an obvious decrease from the cortex to the differentiating xylem. Galactan side chains, detected with LM5 antibodies, were present mainly in the cambial zone and enlarging xylem cells. In contrast, they were totally absent from sieve-tube cell walls. Image analysis of LM5 immunogold labelling in the cambial zone showed a clustered distribution of galactan epitopes in the radial walls, a distribution which might result from the association of two different periodic processes, namely the exocytosis of galactan and wall expansion. Cessation of cambial activity was characterized by cell wall thickening accompanied by a sharp decrease in the relative amount of pectin and a lowering of the degree of methylesterification. The data provide evidence that the walls of phloem and xylem cells differ in their pectin composition even at a very early stage of commitment. These differences offer useful tools for identifying the initial cells among their immediate neighbours. Received: 12 June 1999 / Accepted: 20 October 1999  相似文献   

15.
Changes in pectin, hemicelluloses and cellulose in the cell walls of outer pericarp tissues of kiwifruit (Actinidia deliciosa cv. Hayward) were determined during development. An extensive amylase digestion was employed to remove possible contaminating starch before and after fractionation of wall polysaccharides. An initial treatment of crude cell walls with alpha-amylase and iso-amylase or DMSO, was found to be insufficient removing the contaminating starch from wall polysaccharides. After EDTA and alkaline extraction, the pectic and hemicellulose fractions were again treated with the combination of alpha-amylase and iso-amylase. The amounts of predominant pectic sugars Gal, Rha and Ara, unaffected by the first and second amylase digestion, decreased markedly during the early fruit enlargement (8-12 weeks after anthesis, WAA), then increased during 16-20 WAA, and finally declined during fruit maturity (20-25 WAA). The molecular-mass of pectic polysaccharides decreased during fruit enlargement (8-16 WAA), and then changed little during fruit maturity. The higher molecular-mass components of hemicelluloses in HC-I and HC-II fractions detected at the early stage of fruit enlargement (8-12 WAA) were degraded at the late stage of fruit enlargement (16 WAA), but then remained stable at the much lower molecular-mass till fruit maturity. The amount of Xyl in the HC-II fraction decreased during the early fruit enlargement and fruit maturity, an observation that was consistent with xyloglucan (XG) content. The gel permeation profiles of XG showed a slight increase in higher molecular-mass components during 8-12 WAA, but thereafter there was no significant down-shift of molecular-mass until harvest time. The cellulose fraction increased steadily during fruit enlargement through maturity, but the XG contents in HC-I and HC-II fractions remained at a low level during these stages. Methylation analysis of HC-I and HC-II fractions confirmed the low level of XG in the hemicellulosic fractions. It was suggested that pectin in the outer pericarp of kiwifruit was degraded at the early stage of fruit enlargement, but XG remains constant during fruit enlargement and maturation.  相似文献   

16.
The formation of an extracellular matrix surface network (ECMSN), and associated changes in the distribution of arabinogalactan-protein and pectin epitopes, have been studied during somatic embryogenesis (SE) and callogenesis of Trifolium nigrescens Viv. Scanning electron microscopy observations revealed the occurrence of an ECMSN on the surface of cotyledonary-staged somatic embryos as well as on the peripheral, non-regenerating callus cells. The occurrence of six AGP (JIM4, JIM8, JIM13, JIM16, LM2, MAC207) and four pectin (JIM5, JIM7, LM5, LM6) epitopes was analysed during early stages of SE, in cotyledonary-staged somatic embryos and in non-embryogenic callus using monoclonal antibodies. The JIM5 low methyl-esterified homogalacturonan (HG) epitope localized to ECMSN on the callus surface but none of the epitopes studied were found to localize to ECMSN over mature somatic embryos. The LM2 AGP epitope was detected during the development of somatic embryos and was also observed in the cell walls of meristematic cells from which SE was initiated. The pectic epitopes JIM5, JIM7, LM5 and LM6 were temporally regulated during SE. The LM6 arabinan epitope, carried by side chains of rhamnogalacturonan-I (RG-I), was detected predominantly in cells of embryogenic swellings, whilst the LM5 galactan epitope of RG-I was uniformly distributed throughout the ground tissue of cotyledonary-staged embryoids but not detected at the early stages of SE. Differences in the distribution patterns of low and high methyl-esterified HG were detected: low ester HG (JIM5 epitope) was most abundant during the early steps of embryo formation and highly methyl-esterified form of HG (JIM7 epitope) became prevalent during embryoid maturation.  相似文献   

17.
Date palm (Phoenix dactylifera) is an important crop providing a valuable nutrition source for people in many countries including the Middle East and North Africa. In recent years, the amount of rain in North Africa and especially in the Tunisian palm grove areas has dropped significantly. We investigated the growth and cell wall remodelling of fruits harvested at three key development stages from trees grown with or without water supply. During development, cell wall solubilization and remodelling was characterized by a decrease of the degree of methylesterification of pectin, an important loss of galactose content and a reduction of the branching of xylan by arabinose in irrigated condition. Water deficit had a profound effect on fruit size, pulp content, cell wall composition and remodelling. Loss of galactose content was not as important, arabinose content was significantly higher in the pectin‐enriched extracts from non‐irrigated condition, and the levels of methylesterification of pectin and O‐acetylation of xyloglucan were lower than in irrigated condition. The lower levels of hydrophobic groups (methylester and O‐acetyl) and the less intensive degradation of the hydrophilic galactan, arabinan and arabinogalactan in the cell wall may be implicated in maintaining the hydration status of the cells under water deficit.  相似文献   

18.
Excessive softening is the main factor limiting fruit shelf life and storage. Transgenic plants modified in the expression of cell wall modifying proteins have been used to investigate the role of particular activities in fruit softening during ripening, and in the manufacture of processed fruit products. Transgenic experiments show that polygalacturonase (PG) activity is largely responsible for pectin depolymerization and solubilization, but that PG-mediated pectin depolymerization requires pectin to be de-methyl-esterified by pectin methylesterase (PME), and that the PG -subunit protein plays a role in limiting pectin solubilization. Suppression of PG activity only slightly reduces fruit softening (but extends fruit shelf life), suppression of PME activity does not affect firmness during normal ripening, and suppression of -subunit protein accumulation increases softening. All these pectin-modifying proteins affect the integrity of the middle lamella, which controls cell-to-cell adhesion and thus influences fruit texture. Diminished accumulation of either PG or PME activity considerably increases the viscosity of tomato juice or paste, which is correlated with reduced polyuronide depolymerization during processing. In contrast, suppression of -galactosidase activity early in ripening significantly reduces fruit softening, suggesting that the removal of pectic galactan side-chains is an important factor in the cell wall changes leading to ripening-related firmness loss. Suppression or overexpression of endo-(1\to4)-d-glucanase activity has no detectable effect on fruit softening or the depolymerization of matrix glycans, and neither the substrate nor the function for this enzyme has been determined. The role of xyloglucan endotransglycosylase activity in softening is also obscure, and the activity responsible for xyloglucan depolymerization during ripening, a major contributor to softening, has not yet been identified. However, ripening-related expansin protein abundance is directly correlated with fruit softening and has additional indirect effects on pectin depolymerization, showing that this protein is intimately involved in the softening process. Transgenic work has shown that the cell wall changes leading to fruit softening and textural changes are complex, and involve the coordinated and interdependent activities of a range of cell wall-modifying proteins. It is suggested that the cell wall changes caused early in ripening by the activities of some enzymes, notably -galactosidase and ripening-related expansin, may restrict or control the activities of other ripening-related enzymes necessary for the fruit softening process.  相似文献   

19.
20.
Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca2+) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue–tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号