首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the role of K(+) channels in the attenuated pulmonary artery (PA) contractility characteristic of acute Pseudomonas pneumonia. Contractility of PA rings from the lungs of control or pneumonia rats was assessed in vitro by obtaining cumulative concentration-response curves to the contractile agonists KCl, phenylephrine, or PGF(2 alpha) on PA rings before and after treatment with K(+) channel blockers. In rings from pneumonia rats, paxilline (10 microM), tetraethylammonium (2 mM) (blockers of large-conductance Ca(2+)-activated K(+) channels), and glybenclamide (ATP-sensitive K(+) channel blocker, 80 microM) had no significant effect on the attenuated contractile responses to KCl, phenylephrine, and PGF(2 alpha). However, 4-aminopyridine (2 mM), a blocker of voltage-gated K(+) channels (delayed rectifier K(+) channel) reversed this depressed contractility. Therefore, large-conductance Ca(2+)-activated K(+) and ATP-sensitive K(+) channels do not contribute to the attenuated PA contractility observed in this model of acute pneumonia. In contrast, 4-aminopyridine enhances contraction in PA rings from pneumonia lungs, consistent with involvement of a voltage-gated K(+) channel in the depressed PA contractility in acute pneumonia. Unraveling the precise mechanism of attenuated contractility in pneumonia could lead to innovative therapies for the pulmonary vascular abnormalities associated with this disease.  相似文献   

2.
Previous studies using the patch-clamp technique demonstrated the presence of a small conductance Cl(-) channel in the apical membrane of respiratory gill cells in primary culture originating from sea bass Dicentrarchus labrax. We used the same technique here to characterize potassium channels in this model. A K(+) channel of 123 +/- 3 pS was identified in the cell-attached configuration with 140 mM KCl in the bath and in the pipette. The activity of the channel declined rapidly with time and could be restored by the application of a negative pressure to the pipette (suction) or by substitution of the bath solution with a hypotonic solution (cell swelling). In the excised patch inside-out configuration, ionic substitution demonstrated a high selectivity of this channel for K(+) over Na(+) and Ca(2+). The mechanosensitivity of this channel to membrane stretching via suction was also observed in this configuration. Pharmacological studies demonstrated that this channel was inhibited by barium (5 mM), quinidine (500 microM), and gadolinium (500 microM). Channel activity decreased when cytoplasmic pH was decreased from 7.7 to 6.8. The effect of membrane distension by suction and exposure to hypotonic solutions on K(+) channel activity is consistent with the hypothesis that stretch-activated K(+) channels could mediate an increase in K(+) conductance during cell swelling.  相似文献   

3.
Understanding of the molecular architecture necessary for selective K(+) permeation through the pore of ion channels is based primarily on analysis of the crystal structure of the bacterial K(+) channel KcsA, and structure:function studies of cloned animal K(+) channels. Little is known about the conduction properties of a large family of plant proteins with structural similarities to cloned animal cyclic nucleotide-gated channels (CNGCs). Animal CNGCs are nonselective cation channels that do not discriminate between Na(+) and K(+) permeation. These channels all have the same triplet of amino acids in the channel pore ion selectivity filter, and this sequence is different from that of the selectivity filter found in K(+)-selective channels. Plant CNGCs have unique pore selectivity filters; unlike those found in any other family of channels. At present, the significance of the unique pore selectivity filters of plant CNGCs, with regard to discrimination between Na(+) and K(+) permeation is unresolved. Here, we present an electrophysiological analysis of several members of this protein family; identifying the first cloned plant channel (AtCNGC1) that conducts Na(+). Another member of this ion channel family (AtCNGC2) is shown to have a selectivity filter that provides a heretofore unknown molecular basis for discrimination between K(+) and Na(+) permeation. Specific amino acids within the AtCNGC2 pore selectivity filter (Asn-416, Asp-417) are demonstrated to facilitate K(+) over Na(+) conductance. The selectivity filter of AtCNGC2 represents an alternative mechanism to the well-known GYG amino acid triplet of K(+) channels that has been identified as the critical basis for K(+) over Na(+) permeation through the pore of ion channels.  相似文献   

4.
Mitochondrial ATP-sensitive potassium channel (mitoKATP) is a main factor of regulation of K+ exchange in mitochondria. Using photon correlation spectroscopy we have shown diazoxide-induced increase of hydrodynamic diameter of mitochondrial particles from the rat myometrium. Selective channel blocker glybenclamide partially eliminates this effect. By means of Rhodamine-123 fluorescence it was shown that activation of ATP-sensitive K(+)-channel in mitochondria caused partial depolarization of the mitochondrial membrane. This effect was absolutely blocked by glybenclamide. In the presence of valinomycine and diazoxide together, depolarization also was detected, but in this case glybenclamide failed to restore mitochondrial potential. Thus, activation of mitoKATP from the rat myometrium causes the increase of the hydrodynamic diameter of organelles and partial depolarization of the inner membrane.  相似文献   

5.
6.
7.
Mechanisms of ion channel clustering by cytoplasmic membrane-associated guanylate kinases such as postsynaptic density 95 (PSD-95) and synapse-associated protein 97 (SAP97) are poorly understood. Here, we investigated the interaction of PSD-95 and SAP97 with voltage-gated or Kv K(+) channels. Using Kv channels with different surface expression properties, we found that clustering by PSD-95 depended on channel cell surface expression. Moreover, PSD-95-induced clusters of Kv1 K(+) channels were present on the cell surface. This was most dramatically demonstrated for Kv1.2 K(+) channels, where surface expression and clustering by PSD-95 were coincidentally promoted by coexpression with cytoplasmic Kvbeta subunits. Consistent with a mechanism of plasma membrane channel-PSD-95 binding, coexpression with PSD-95 did not affect the intrinsic surface expression characteristics of the different Kv channels. In contrast, the interaction of Kv1 channels with SAP97 was independent of Kv1 surface expression, occurred intracellularly, and prevented further biosynthetic trafficking of Kv1 channels. As such, SAP97 binding caused an intracellular accumulation of each Kv1 channel tested, through the accretion of SAP97 channel clusters in large (3-5 microm) ER-derived intracellular membrane vesicles. Together, these data show that ion channel clustering by PSD-95 and SAP97 occurs by distinct mechanisms, and suggests that these channel-clustering proteins may play diverse roles in regulating the abundance and distribution of channels at synapses and other neuronal membrane specializations.  相似文献   

8.
KCNE peptides are a class of type I transmembrane beta subunits that assemble with and modulate the gating and ion conducting properties of a variety of voltage-gated K(+) channels. Accordingly, mutations that disrupt the assembly and trafficking of KCNE-K(+) channel complexes give rise to disease. The cellular mechanisms responsible for ensuring that KCNE peptides assemble with voltage-gated K(+) channels have yet to be elucidated. Using enzymatic deglycosylation, immunofluorescence, and quantitative cell surface labeling experiments, we show that KCNE1 peptides are retained in the early stages of the secretory pathway until they co-assemble with specific K(+) channel subunits; co-assembly mediates KCNE1 progression through the secretory pathway and results in cell surface expression. We also address an apparent discrepancy between our results and a previous study in human embryonic kidney cells, which showed wild type KCNE1 peptides can reach the plasma membrane without exogenously expressed K(+) channel subunits. By comparing KCNE1 trafficking in three cell lines, our data suggest that the errant KCNE1 trafficking observed in human embryonic kidney cells may be due, in part, to the presence of endogenous voltage-gated K(+) channels in these cells.  相似文献   

9.
10.
To identify proteins that regulate potassium channel activity and expression, we performed functional screening of mammalian cDNA libraries in yeast that express the mammalian K(+) channel Kir2.1. Growth of Kir2.1-expressing yeast in media with low K(+) concentration is a function of K(+) uptake via Kir2.1 channels. Therefore, the host strain was transformed with a human cDNA library, and cDNA clones that rescued growth at low K(+) concentration were selected. One of these clones was identical to the protein of unknown function isolated previously as gamma-aminobutyric acid receptor-interacting factor 1 (GRIF-1) (Beck, M., Brickley, K., Wilkinson, H., Sharma, S., Smith, M., Chazot, P., Pollard, S., and Stephenson, F. (2002) J. Biol. Chem. 277, 30079-30090). GRIF-1 specifically enhanced Kir2.1-dependent growth in yeast and Kir2.1-mediated (86)Rb(+) efflux in HEK293 cells. Quantitative microscopy and flow cytometry analysis of immunolabeled surface Kir2.1 channel showed that GRIF-1 significantly increased the number of Kir2.1 channels in the plasma membrane of COS and HEK293 cells. Physical interaction of Kir2.1 channel and GRIF-1 was demonstrated by co-immunoprecipitation from HEK293 lysates and yeast two-hybrid assay. In vivo association of Kir2.1 and GRIF-1 was demonstrated by co-immunoprecipitation from brain lysate. Yeast two-hybrid assays showed that an N-terminal region of GRIF-1 interacts with a C-terminal region of Kir2.1. These results indicate that GRIF-1 binds to Kir2.1 and facilitates trafficking of this channel to the cell surface.  相似文献   

11.
Membrane voltage controls the passage of ions through voltage-gated K (K(v)) channels, and many studies have demonstrated that this is accomplished by a physical gate located at the cytoplasmic end of the pore. Critical to this determination were the findings that quaternary ammonium ions and certain peptides have access to their internal pore-blocking sites only when the channel gates are open, and that large blocking ions interfere with channel closing. Although an intracellular location for the physical gate of K(v) channels is well established, it is not clear if such a cytoplasmic gate exists in all K(+) channels. Some studies on large-conductance, voltage- and Ca(2+)-activated K(+) (BK) channels suggest a cytoplasmic location for the gate, but other findings question this conclusion and, instead, support the concept that BK channels are gated by the pore selectivity filter. If the BK channel is gated by the selectivity filter, the interactions between the blocking ions and channel gating should be influenced by the permeant ion. Thus, we tested tetrabutyl ammonium (TBA) and the Shaker "ball" peptide (BP) on BK channels with either K(+) or Rb(+) as the permeant ion. When tested in K(+) solutions, both TBA and the BP acted as open-channel blockers of BK channels, and the BP interfered with channel closing. In contrast, when Rb(+) replaced K(+) as the permeant ion, TBA and the BP blocked both closed and open BK channels, and the BP no longer interfered with channel closing. We also tested the cytoplasmically gated Shaker K channels and found the opposite behavior: the interactions of TBA and the BP with these K(v) channels were independent of the permeant ion. Our results add significantly to the evidence against a cytoplasmic gate in BK channels and represent a positive test for selectivity filter gating.  相似文献   

12.
Smooth muscle membrane potential is determined, in part, by K(+) channels. In the companion paper to this article, we demonstrated that superior mesenteric arteries from rats made hypertensive with N(omega)-nitro-l-arginine (l-NNA) are depolarized and express less K(+) channel protein compared with those from normotensive rats. In the present study, we used patch-clamp techniques to test the hypothesis that l-NNA-induced hypertension reduces the functional expression of K(+) channels in smooth muscle. In whole cell experiments using a Ca(2+)-free pipette solution, current at 0 mV, largely due to voltage-dependent K(+) (K(V)) channels, was reduced approximately 60% by hypertension (2.7 +/- 0.4 vs. 1.1 +/- 0.2 pA/pF). Current at +100 mV with 300 nM free Ca(2+), largely due to large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels, was reduced approximately 40% by hypertension (181 +/- 24 vs. 101 +/- 28 pA/pF). Current blocked by 3 mM 4-aminopyridine, an inhibitor of many K(V) channel types, was reduced approximately 50% by hypertension (1.0 +/- 0.4 vs. 0.5 +/- 0.2 pA/pF). Current blocked by 1 mM tetraethylammonium, an inhibitor of BK(Ca) channels, was reduced approximately 40% by hypertension (86 +/- 14 vs. 53 +/- 19 pA/pF). Differences in BK(Ca) current magnitude are not attributable to changes in single-channel conductance or Ca(2+)/voltage sensitivity. The data support the hypothesis that l-NNA-induced hypertension reduces K(+) current in vascular smooth muscle. Reduced molecular and functional expression of K(+) channels may partly explain the depolarization and augmented contractile sensitivity of smooth muscle from l-NNA-treated rats.  相似文献   

13.
LeBoeuf B  Garcia LR 《Genetics》2012,190(3):1025-1041
Variations in K(+) channel composition allow for differences in cell excitability and, at an organismal level, provide flexibility to behavioral regulation. When the function of a K(+) channel is disrupted, the remaining K(+) channels might incompletely compensate, manifesting as abnormal organismal behavior. In this study, we explored how different K(+) channels interact to regulate the neuromuscular circuitry used by Caenorhabditis elegans males to protract their copulatory spicules from their tail and insert them into the hermaphrodite's vulva during mating. We determined that the big current K(+) channel (BK)/SLO-1 genetically interacts with ether-a-go-go (EAG)/EGL-2 and EAG-related gene/UNC-103 K(+) channels to control spicule protraction. Through rescue experiments, we show that specific slo-1 isoforms affect spicule protraction. Gene expression studies show that slo-1 and egl-2 expression can be upregulated in a calcium/calmodulin-dependent protein kinase II-dependent manner to compensate for the loss of unc-103 and conversely, unc-103 can partially compensate for the loss of SLO-1 function. In conclusion, an interaction between BK and EAG family K(+) channels produces the muscle excitability levels that regulate the timing of spicule protraction and the success of male mating behavior.  相似文献   

14.
Past work has shown that delta-opioid receptor (DOR) activation by [D-Ala(2),D-Leu(5)]-enkephalin (DADLE) attenuated the disruption of K(+) homeostasis induced by hypoxia or oxygen-glucose deprivation (OGD) in the cortex, while naltrindole, a DOR antagonist blocked this effect, suggesting that DOR activity stabilizes K(+) homeostasis in the cortex during hypoxic/ischemic stress. However, several important issues remain unclear regarding this new observation, especially the difference between DOR and other opioid receptors in the stabilization of K(+) homeostasis and the underlying mechanism. In this study, we asked whether DOR is different from micro-opioid receptors (MOR) in stabilizing K(+) homeostasis and which membrane channel(s) is critically involved in the DOR effect. The main findings are that (1) similar to DADLE (10 microM), H-Dmt-Tic-NH-CH (CH(2)--COOH)-Bid (1-10 microM), a more specific and potent DOR agonist significantly attenuated anoxic K(+) derangement in cortical slice; (2) [D-Ala(2), N-Me-Phe(4), glycinol(5)]-enkephalin (DAGO; 10 microM), a MOR agonist, did not produce any appreciable change in anoxic disruption of K(+) homeostasis; (3) absence of Ca(2+) greatly attenuated anoxic K(+) derangement; (4) inhibition of Ca(2+)-activated K(+) (BK) channels with paxilline (10 microM) reduced anoxic K(+) derangement; (5) DADLE (10 microM) could not further reduce anoxic K(+) derangement in the Ca(2+)-free perfused slices or in the presence of paxilline; and (6) glybenclamide (20 microM), a K(ATP) channel blocker, decreased anoxia-induced K(+) derangement, but DADLE (10 microM) could further attenuate anoxic K(+) derangement in the glybenclamide-perfused slices. These data suggest that DOR, but not MOR, activation is protective against anoxic K(+) derangement in the cortex, at least partially via an inhibition of hypoxia-induced increase in Ca(2+) entry-BK channel activity.  相似文献   

15.
ATP-sensitive K(+) (K(ATP)) channels in the heart are normally closed by high intracellular ATP, but are activated during ischemia to promote cellular survival. These channels are heteromultimers composed of Kir6.2 subunit, an inwardly rectifying K(+) channel core, and SUR2A, a regulatory subunit implicated in ligand-dependent regulation of channel gating. Here, we have shown that the muscle form (M-LDH), but not heart form (H-LDH), of lactate dehydrogenase is directly physically associated with the sarcolemmal K(ATP) channel by interacting with the Kir6.2 subunit via its N-terminus and with the SUR2A subunit via its C-terminus. The species of LDH bound to the channel regulated the channel activity despite millimolar concentration of intracellular ATP. The presence of M-LDH in the channel protein complex was required for opening of K(ATP) channels during ischemia and ischemia-resistant cellular phenotype. We conclude that M-LDH is an integral part of the sarcolemmal K(ATP) channel protein complex in vivo, where, by virtue of its catalytic activity, it couples the metabolic status of the cell with the K(ATP) channels activity that is essential for cell protection against ischemia.  相似文献   

16.
Voltage-dependent inward-rectifying (K(in)) and outward-rectifying (K(out)) K(+) channels are capable of mediating K(+) fluxes across the plasma membrane. Previous studies on guard cells or heterologously expressed K(+) channels provided evidence for the requirement of ATP to maintain K(+) channel activity. Here, the nucleotide and Mg(2+) dependencies of time-dependent K(in) and K(out) channels from maize subsidiary cells were examined, showing that MgATP as well as MgADP function as channel activators. In addition to K(out) channels, these studies revealed the presence of another outward-rectifying channel type (MgC) in the plasma membrane that however gates in a nucleotide-independent manner. MgC represents a new channel type distinguished from K(out) channels by fast activation kinetics, inhibition by elevated intracellular Mg(2+) concentration, permeability for K(+) as well as for Na(+) and insensitivity towards TEA(+). Similar observations made for guard cells from Zea mays and Vicia faba suggest a conserved regulation of channel-mediated K(+) and Na(+) transport in both cell types and species.  相似文献   

17.
In order to assess the role of different classes of K(+) channels in recirculation of K(+) across the basolateral membrane of rabbit distal colon epithelium, the effects of various K(+) channel inhibitors were tested on the activity of single K(+) channels from the basolateral membrane, on macroscopic basolateral K(+) conductance, and on the rate of Na(+) absorption and Cl(-) secretion. In single-channel measurements using the lipid bilayer reconstitution system, high-conductance (236 pS), Ca(2+)-activated K(+) (BK(Ca)) channels were most frequently detected; the second most abundant channel was a low-conductance K(+) channel (31 pS) that exhibited channel rundown. In addition to Ba(2+) and charybdotoxin (ChTX), the BK(Ca) channels were inhibited by quinidine, verapamil and tetraethylammonium (TEA), the latter only when present on the side of the channel from which K(+) flow originates. Macroscopic basolateral K(+) conductance, determined in amphotericin-permeabilised epithelia, was also markedly reduced by quinidine and verapamil, TEA inhibited only from the lumen side, and serosal ChTX was without effect. The chromanol 293B and the sulphonylurea tolbutamide did not affect BK(Ca) channels and had no or only a small inhibitory effect on macroscopic basolateral K(+) conductance. Transepithelial Na(+) absorption was partly inhibited by Ba(2+), quinidine and verapamil, suggesting that BK(Ca) channels are involved in basolateral recirculation of K(+) during Na(+) absorption in rabbit colon. The BK(Ca) channel inhibitors TEA and ChTX did not reduce Na(+) absorption, probably because TEA does not enter intact cells and ChTX is 'knocked off' its extracellular binding site by K(+) outflow from the cell interior. Transepithelial Cl(-) secretion was inhibited completely by Ba(2+) and 293B, partly by quinidine but not by the other K(+) channel blockers, indicating that the small (<3 pS) K(V)LQT1 channels are responsible for basolateral K(+) exit during Cl(-) secretion. Hence different types of K(+) channels mediate basolateral K(+) exit during transepithelial Na(+) and Cl(-) transport.  相似文献   

18.
ATP-sensitive K(+) (K(ATP)) channels, composed of inward rectifier K(+) (Kir)6.x and sulfonylurea receptor (SUR)x subunits, are expressed on cellular plasma membranes. We demonstrate an essential role for SUR2 subunits in trafficking K(ATP) channels to an intracellular vesicular compartment. Transfection of Kir6.x/SUR2 subunits into a variety of cell lines (including h9c2 cardiac cells and human coronary artery smooth muscle cells) resulted in trafficking to endosomal/lysosomal compartments, as assessed by immunofluorescence microscopy. By contrast, SUR1/Kir6.x channels efficiently localized to the plasmalemma. The channel turnover rate was similar with SUR1 or SUR2, suggesting that the expression of Kir6/SUR2 proteins in lysosomes is not associated with increased degradation. Surface labeling of hemagglutinin-tagged channels demonstrated that SUR2-containing channels dynamically cycle between endosomal and plasmalemmal compartments. In addition, Kir6.2 and SUR2 subunits were found in both endosomal and sarcolemmal membrane fractions isolated from rat hearts. The balance of these K(ATP) channel subunits shifted to the sarcolemmal membrane fraction after the induction of ischemia. The K(ATP) channel current density was also increased in rat ventricular myocytes isolated from hearts rendered ischemic before cell isolation without corresponding changes in subunit mRNA expression. We conclude that an intracellular pool of SUR2-containing K(ATP) channels exists that is derived by endocytosis from the plasma membrane. In cardiac myocytes, this pool can potentially play a cardioprotective role by serving as a reservoir for modulating surface K(ATP) channel density under stress conditions, such as myocardial ischemia.  相似文献   

19.
Two major K(+) channels are expressed in T cells, (i) the voltage-dependent K(V)1.3 channel and (ii) the Ca(2+)-activated K(+) channel KCa 3.1 (IKCa channel). Both critically influence T cell effector functions in vitro and animal models in vivo. Here we identify and characterize TWIK-related acid-sensitive potassium channel 1 (TASK1) and TASK3 as an important third K(+) conductance on T lymphocytes. T lymphocytes constitutively express TASK1 and -3 protein. Application of semi-selective TASK blockers resulted in a significant reduction of cytokine production and cell proliferation. Interference with TASK channels on CD3(+) T cells revealed a dose-dependent reduction ( approximately 40%) of an outward current in patch clamp recordings indicative of TASK channels, a finding confirmed by computational modeling. In vivo relevance of our findings was addressed in an experimental model of multiple sclerosis, adoptive transfer experimental autoimmune encephalomyelitis. Pretreatment of myelin basic protein-specific encephalitogenic T lymphocytes with TASK modulators was associated with significant amelioration of the disease course in Lewis rats. These data introduce K(2)P channels as novel potassium conductance on T lymphocytes critically influencing T cell effector function and identify a possible molecular target for immunomodulation in T cell-mediated autoimmune disorders.  相似文献   

20.
Jin M  Berrout J  Chen L  O'Neil RG 《Cell calcium》2012,51(2):131-139
The mouse cortical collecting duct (CCD) M-1 cells were grown to confluency on coverslips to assess the interaction between TRPV4 and Ca(2+)-activated K(+) channels. Immunocytochemistry demonstrated strong expression of TRPV4, along with the CCD marker, aquaporin-2, and the Ca(2+)-activated K(+) channels, the small conductance SK3 (K(Ca)2.3) channel and large conductance BKα channel (K(Ca)1.1). TRPV4 overexpression studies demonstrated little physical dependency of the K(+) channels on TRPV4. However, activation of TRPV4 by hypotonic swelling (or GSK1016790A, a selective agonist) or inhibition by the selective antagonist, HC-067047, demonstrated a strong dependency of SK3 and BK-α activation on TRPV4-mediated Ca(2+) influx. Selective inhibition of BK-α channel (Iberiotoxin) or SK3 channel (apamin), thereby depolarizing the cells, further revealed a significant dependency of TRPV4-mediated Ca(2+) influx on activation of both K(+) channels. It is concluded that a synergistic cross-talk exists between the TRPV4 channel and SK3 and BK-α channels to provide a tight functional regulation between the channel groups. This cross-talk may be progressive in nature where the initial TRPV4-mediated Ca(2+) influx would first activate the highly Ca(2+)-sensitive SK3 channel which, in turn, would lead to enhanced Ca(2+) influx and activation of the less Ca(2+)-sensitive BK channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号