首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
For the conservation of biodiversity, heathlands present important ecosystems throughout Europe. The formerly widespread habitats are nowadays restricted to small and isolated remnants. Without land use heathland vegetation undergoes succession and, in addition, the increasing amount of atmospheric nitrogen deposition has resulted in an encroachment of grasses. In the present study we analysed the effects of succession and grass encroachment on Orthoptera in a coastal heathland on the Baltic island of Hiddensee, Germany. Vegetation, microclimate, soil humidity and Orthoptera were sampled in the five main stages of heathland succession, namely grey dunes, dwarf-shrub heath, grassy heath, heath with shrubs, and birch forest. Vegetation and environmental parameters showed strong differences among the successional stages. Orthoptera species richness was highest in transitional stages. The high proportion of grasses offer favourable habitat conditions for graminivorous, chorto- and thamnobiont species. Orthoptera density was highest in grey dunes. Threatened and specialised species were restricted to the young stages grey dunes and dwarf-shrub heath. Hence, in order to maintain a high diversity of Orthoptera in heathlands, maintaining different successional stages is of critical importance and this should be integrated into heathland management practices.  相似文献   

2.
Changes in coastal heath vegetation were measured for 6 years following a wildfire and the data compared with the pre-fire vegetation. For the first 2 years changes were related to time; after that environmental factors dominated the process of regeneration. During the first 4 years plant species spread rapidly and maximum species diversity per plot was reached 4 years after the fire. About the same time many species consolidated their position in the community; this being shown by cover levels greater than before the fire for some species. Six years after the fire the vegetation is still dynamic and very different when compared with the heath before burning.  相似文献   

3.
Phosphorus (P) is an important nutrient in tundra ecosystems that co-limits or in some cases limits primary production. The availability of P is largely driven by soil characteristics, e.g., pH, organic carbon, and abundance of P-sorbing elements such as aluminium (Al) or iron (Fe). We tested how vegetation and soil properties relate to P availability across different tundra vegetation types. The different soil P fractions in the organic horizon were measured and plant foliar nitrogen (N) to P ratio and a plant bioassay was used as indicators of plant nutrient status. Microbial bioassays were used to study microbial respiration kinetics and in response to carbon, N, and P amendments. The distribution of P fractions differed significantly across vegetation types; labile fractions of P were less abundant in meadow sites compared to heath sites. Calcium-phosphates seemed to be an important P-fraction in meadows, but were only found in lower concentrations in the heath. There were only small differences in NaOH–extractable P between the vegetation types and this correlated with the distribution of oxalate-extractable Al. Plant N:P ratios and the plant bioassay indicated decreasing P availability from dry heath to mesic heath to mesic meadow. The microbial bioassay suggests that the heterotrophic microbial community is C-limited with N as a secondary limiting nutrient although there were indications that microbial P availability was lower in the meadow sites. Overall, we suggest that the observed variations in soil P across vegetation types are affecting both plant and microbial function although the differences seem to be relatively small.  相似文献   

4.
Aims and Methods Mostly due to land use changes, European heathlands have become increasingly rare. In addition, the increasing amount of atmospheric nitrogen deposition has resulted in an encroachment of grasses and a loss in species diversity. Despite many investigations, information about the precise environmental parameters that determine the development and maintenance of heathland vegetation is still insufficient. In order to determine the environmental factors that control heath succession and grass encroachment, and to develop appropriate management schemes, we studied the influence of several soil and microclimate parameters on species composition and vegetation characteristics in five successional stages in a coastal heathland on the island of Hiddensee, north-east Germany, where the encroachment of Carex arenaria has become a major problem.Important findings We recorded the highest plant species richness in grey dune and birch forest plots, while the encroachment of C. arenaria let to a significant decline in plant species richness. The most important environmental factors influencing species richness and distribution of single species were microclimate, soil moisture, soil pH and the C/N ratio. While many studies reported the importance of differences in nutrient availability, we found no significant correlations between soil nutrient availability and vegetation pattern. Environmental conditions in dense C. arenaria stands, especially soil properties (e.g. soil pH), showed great differences in comparison to the other successional stages. However, no correlations between the encroachment of C. arenaria and single environmental factors were found. Our results show that not only soil nutrients are important abiotic factors in heaths but that also microclimate and soil moisture play an important role and that many factors are involved in heath succession and in the promotion of grass encroachment. Management plans for the conservation and restoration of heathlands should therefore focus on the specific site conditions and should take several abiotic and biotic factors into account.  相似文献   

5.
D. M. Pegtel 《Plant Ecology》1994,114(2):109-121
Arnica montana, one of the character species of the replacement plant communityViolion caninae on sandy acid humic podzol, is declining in the Netherlands since 1950. Locally, it is even extinct.This process of decline may be attributed to (i) autonomic succession; (ii) increased rate of acidification of the soil and/or (iii) change in competitive relations amongArnica and more productive plant species, such as the successive dominantDeschampsia flexuosa. This paper examines the last two hypothesized factors, supposedly being regulated by atmospheric input of N-input, by (a) describing the habitat characteristics of a seemingly still healthy individual-rich population ofArnica and (b) growingArnica andDeschampsia in mixed humic podzol soil (mainly A1 horizon) fertilized with variously-composed nutrient solutions in order to assess the nutrient supplying capacity of the podzol soil and species-specific nutritional demands related to their respective growth capabilities.The results suggest that an increased rate of soil acidification yielding extra supply of ionic Al and Mn is presumably of less importance. The implications of growth rate differences amongArnica andDeschampsia as related to their nutritional demands are likely far more important.Arnica grows more slowly thanDeschampsia in fertilized humus podzol. The latter species has a much more efficient use of nutrients. Furthermore, both species differ in K-nutrition if NH4 + is the dominant N-source, a situation normally occurring in acid podzolic soils.Deschampsia possesses the capability to adapt its metabolic nutrition (avoiding nutritional imbalances) to a wide range of nutrient supplies thereby maintaining a rather constant level of growth.Arnica, on the contrary, lacks this capability. These results are discussed in the framework of competitive relations among co-occurring plant species in the plant communityViolion caninae. It is concluded that maintenance ofArnica and likely other character species of that alliance — all characterized by a low growth rate — will only be achieved when the plant community is properly managed by trampling, mowing or light levels of grazing (low stocking rate). Of prime importance is to maintain a low and relatively open vegetation structure at a relatively low level of nutrient supply.  相似文献   

6.
7.
With the intensification of agricultural practices, formerly species rich marginal grassland communities of high botanical value in the Netherlands have been fertilized or manured since the first part of the twentieth century. This type of land use resulted in a dramatic decrease of the original plant species-richness. In the early 1970's yearly nutrient input to many of these grasslands was ceased as a nature management practice, while hay-cropping was continued. This type of grassland management is carried out to decrease overall nutrient supplying ability of the soil to plant cover in order to restore their original high botanical richness. The effect of this management on the type and the extent of nutrient deficiency was studied by comparing the short-term shoot responsiveness of undisturbed turfs to added nutrients and the nutrient status of fieldgrown dominants of four hay-field communities which were not fertilized for 3, 7, 20 or 25 years.Contrary to expectation, hay-cropping without input of additional nutrients did not impose an increase of species-richness of grassland on gley podzol. During early vegetation change strong inadequacy of N supply and moderate inadequacy of K supply by the soil regulate (shoot) growth. P-deficiency was not established. Prolonged discontinuation of fertilizer application caused concomitant inadequate supplies of N, K and P. In the last field (25 years unfertilized), nutrient deficiencies could not be detected by shoot growth responses to added nutrients but only by a low nutrient status. It appeared that during this type of vegetation change N-deficiency is the most pronounced and that K-deficiency developes much more rapidly than P-deficiency. The strong decline in total aerial pool sizes of N, K and P also emphasizes these simultaneously occurring shifts.We conclude that cut grassland composition on gley podzol soil is regulated by co-deficiencies of at least the soil phytoavailable macronutrients nitrogen, potassium and phosphorus. The absence of change in plant species number is likely not regulated by the nutrient supplying ability of the soil. Seed dispersal from elsewhere seems to be the most important factor.  相似文献   

8.
Parthenium hysterophorus (Asteraceae) is a noxious plant that is considered one of the most invasive species in the world. We studied changes in the composition of plant species and soil properties related to the invasion of P. hysterophorus in three grassland communities of central Nepal. We collected vegetation and soil data along transects that were established in densely invaded to non-invaded areas within homogenous grassland stands. We found significant differences between invaded, transitional and non-invaded plots in species composition and soil properties. There were fewer species in non-invaded than transitional and invaded plots. By P. hysterophorus invasion both native and non-native species were supported or replaced, respectively. The concentrations of soil nitrogen and organic matter were significantly higher in transitional and invaded plots than in non-invaded plots. Soil pH, phosphorus and potassium were highest in the invaded plots, lowest in the non-invaded and intermediate in the transitional plots. Due to changes in above-ground vegetation and below-ground soil nutrient contents, P. hysterophorus invasion is likely to have an overall negative effect on the functioning of the entire ecosystem. Therefore, management of noxious P. hysterophorus is necessary to prevent future problems.  相似文献   

9.
The regeneration of coastal heath after disturbance by mineral sand mining was studied on mid-seral stages from 4 to 11 years old at Hawks Nest, N.S.W. The main purpose was to gain some understanding of factors influencing recolonization by pioneer species of small mammals such as Pseudomys novaehollandiae. Changes in floristics and vegetation structure with time were studied as possible contributing factors together with environmental variables. An apparently linear relationship was found between plant species diversity (X1) and P. novaehollandiae biomass which was also correlated with an index representing the proportion of heath species present (X2). Both plant species diversity and P. novaehollandiae biomass showed a linear increase with regeneration age. A multiple regression analysis revealed a predictive equation explaining 96% of the variation in P. novaehollandiae biomass (Y): Y=-7.92 + 1.21X1+3.92X2 - 3.09X3 The third variable (X3) is a measure of soil hardness. A path diagram using contribution coefficients based on a partial correlation analysis included the effects of vegetation structure below 50 cm and regeneration age. On mid-seral stages after sand mining P. novaehollandiae is associated with areas having a variety of heath plants, with vegetation cover below 50 cm and softer substrates; its abundance increases with increasing regeneration age and with the total amount of vegetation present. A minimum of 20 years is seen to be necessary for both total amount of vegetation and P. novaehollandiae biomass to reach values encountered on control plots of undisturbed heath.  相似文献   

10.

Question

Do the effects of fire regimes on plant species richness and composition differ among floristically similar vegetation types?

Location

Booderee National Park, south‐eastern Australia.

Methods

We completed floristic surveys of 87 sites in Sydney Coastal dry sclerophyll vegetation, where fire history records have been maintained for over 55 years. We tested for associations between different aspects of the recent fire history and plant species richness and composition, and whether these relationships were consistent among structurally defined forest, woodland and heath vegetation types.

Results

The relationship between fire regime variables and plant species richness and composition differed among vegetation types, despite the three vegetation types having similar species pools. Fire frequency was positively related to species richness in woodland, negatively related to species richness in heath, and unrelated to species richness in forest. These different relationships were explained by differences in the associations between fire history and species traits among vegetation types. The negative relationship between fire frequency and species richness in heath vegetation was underpinned by reduced occurrence of resprouting species at high fire frequency sites (more than four fires in 55 years). However, in forest and woodland vegetation, resprouting species were not negatively associated with fire frequency.

Conclusions

We hypothesize that differing relationships among vegetation types were underpinned by differences in fire behaviour, and/or biotic and abiotic conditions, leading to differences in plant species mortality and post‐fire recovery among vegetation types. Our findings suggest that even when there is a high proportion of shared species between vegetation types, fires can have very different effects on vegetation communities, depending on the structural vegetation type. Both research and management of fire regimes may therefore benefit from considering vegetation types as separate management units.  相似文献   

11.
We tested if subalpine heath vegetation in northern Italy recovered after experimental perturbation of soil nutrient availability (fertilization) and species composition (removal of co-dominant dwarf shrubs). Species cover was assessed non-destructively before the start of the treatments (1995), at the end of the treatments (1999) and 4 years after the treatments ended (2003). Shrub removal had rather modest effects on heath vegetation, except for mosses which decreased significantly in removal plots. Fertilization decreased the cover of shrubs, mosses, and some graminoids but increased the cover of Festuca rubra. Fertilization converted heath to grassland, but the response of graminoid species was individualistic. Fertilization decreased vascular species richness and evenness, probably through negative effects of shading and litter accumulation on plant growth or recruitment. The vegetation had not recovered completely 4 years after the perturbations had stopped. This suggests that, in contrast to rapid responses to species removal and fertilization, recovery from these perturbations was rather slow, presumably because recovery was affected by long-term biotic interactions and species controls on ecosystem properties.  相似文献   

12.
An improved knowledge of how contrasting types of plant communities and their associated soil biota differ in their responses to climatic variables is important for better understanding the future impacts of climate change on terrestrial ecosystems. Elevational gradients serve as powerful study systems for answering questions on how ecological processes can be affected by changes in temperature and associated climatic variables. In this study, we evaluated how plant and soil microbial communities, and abiotic soil properties, change with increasing elevation in subarctic tundra in northern Sweden, for each of two dominant but highly contrasting vegetation types, namely heath (dominated by woody dwarf shrubs) and meadow (dominated by herbaceous species). To achieve this, we measured plant community characteristics, microbial community properties and several soil abiotic properties for both vegetation types across an elevation gradient of 500 to 1000 m. We found that the two vegetation types differed not only in several above‐ and belowground properties, but also in how these properties responded to elevation, pointing to important interactive effects between vegetation type and elevation. Specifically, for the heath, available soil nitrogen and phosphorus decreased with elevation whereas fungal dominance increased, while for the meadow, idiosyncratic responses to elevation for these variables were found. These differences in belowground responses to elevation among vegetation types were linked to shifts in the species and functional group composition of the vegetation. Our results highlight that these two dominant vegetation types in subarctic tundra differ greatly not only in fundamental aboveground and belowground properties, but also in how these properties respond to elevation and are therefore likely to be influenced by temperature. As such they highlight that vegetation type, and the soil abiotic properties that determine this, may serve as powerful determinants of how both aboveground and belowground properties respond to strong environmental gradients.  相似文献   

13.
Soil pH was measured at two different spatial scales in coastal dunes on Norderney, North Sea, and in Mecklenburg-Vorpommern, Baltic Sea, Germany. Relationships between the variability in soil pH, species richness and species diversity are presented. Species richness and diversity were highest in grey dunes, where soil pH was at intermediate levels; both variables were lower in yellow and brown dunes. The variability in pH increased with increasing species diversity and also with scale. Overall, soil pH variability decreased with increasing vegetation cover. The lowest pH heterogeneity was found in heath dominated by Empetrum nigrum L. and grey dunes dominated by Campylopus introflexus (Hedw.) Brid. Increasing abundance of dominant species and decreasing species diversity of vegetation apparently reduces soil heterogeneity. Decreasing species diversity of vegetation is likely to explain decreasing variability in soil pH.  相似文献   

14.
A core question involving both plant physiology and community ecology is whether traits from different organs are coordinated across species, beyond pairwise trait correlations. The strength of within‐community trait coordination has been hypothesized to increase along gradients of environmental harshness, due to the cost of adopting ecological strategies out of the viable niche space supported by the abiotic conditions. We evaluated the strength of trait relationship and coordination in a stressful environment using 21 leaf and stem traits of 21 deciduous and evergreen woody species from a heath vegetation growing on coastal sandy plain in northeastern South America. The study region faces marked dry season, high soil salinity and acidity, and poor nutritional conditions. Results from multiple factor analyses supported two weak and independent axes of trait coordination, which accounted for 25%–29% of the trait variance using phylogenetically independent contrasts. Trait correlations on the multiple factor analyses main axis fit well with the global plant economic spectrum, with species investing in small leaves and dense stems as opposed to species with softer stems and large leaves. The species’ positions on the main functional axis corresponded to the competitor‐stress‐tolerant side of Grime's CSR triangle of plant strategies. The weak degree of trait coordination displayed by the heath vegetation species contradicted our expectation of high trait coordination in stressful environmental habitats. The distinct biogeographic origins of the species occurring in the study region and the prevalence of a regional environmental filter coupled with local homogeneous conditions could account for prevalence of trait independence we observed.  相似文献   

15.
Questions: How does draining affect the composition of vegetation? Are certain functional groups favoured? Can soil parameters explain these differences? Location: Central Faroe Islands, treeless islands in the northern boreal vegetation zone. Since 1987, an area of 21 km2 at 100–200 m a.s.l. was drained in order to provide water for hydro‐electric production. Method: Vegetation and soil of a drained area and a control, undrained neighbouring area of approximately the same size were sampled in 2007. Six sites were sampled in each area. The vegetation was classified with cluster analysis. Results: Four plant communities were defined in the area: Calluna vulgarisEmpetrum nigrumVaccinium myrtillus heath, Scirpus cespitosusEriophorum angustifolium blanket mire, Carex bigelowiiRacomitrium lanuginosum moss‐heath, Narthecium ossifragumCarex panacea mire. Heath was more extensively distributed within, and was the dominant community of the drained area, whereas moss‐heath was more extensive in the undrained area. Blanket mire and mire had approximately the same distribution in both areas. For the blanket mire, species composition indicated drier conditions in the drained than in the undrained area. The drained area had higher frequencies of woody species and lichens, grasses had finer roots and available soil phosphate was considerably higher, whereas the undrained area had higher frequencies of grasses and sedges. Conclusion: The dominant plant communities were different in the two areas, which indicated that the blanket mire was drying in the drained area. Higher concentration of soil phosphate in the drained area also indicated increased decomposition of organic soils owing to desiccation.  相似文献   

16.
Effects of N-deposition on ion trapping by B-horizons of Danish heathlands   总被引:2,自引:1,他引:1  
Nielsen  Knud Erik  Hansen  B.  Ladekarl  Ulla L.  Nørnberg  Per 《Plant and Soil》2000,223(1-2):267-278
Coastal and inland heaths constitute a dominating fraction of the relatively few semi-natural ecosystems in Denmark. At the inland heath, the soil forming factors have been active with the same vegetation type during the last 2000 years, whereas at the coastal heath, these soil forming factors have only been active over a couple of hundred years, due to the activity of windblown sand. Effects on ion-balance and soil processes of nitrogen deposition on a young dune heath and an old inland heath have been investigated. Different levels of NH4NO3have been applied to the two heathlands, and rain, throughfall water and soil water chemistry below the experimental plots have been analysed. Results show that the ability to retain added, as well as deposited, nitrogen requires the presence and the integrity of a humifyed H-subhorizon. When the mor-layer for some reason breaks down, the nutrients will be retained by the B-horizons as a kind of back-up, and most probably be reused by the new vegetation. One year after destructive heather beetles attack on the inland heath, the mor-layer started to decompose. A large translocation of organic compounds, complexed associated cations and nitrogen-species, started from the mor-layer to the top of the B-horizon where they precipitate. The podzolic B-horizons can be seen as nutrient trap to the mor-layer. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Seed dispersal is a key process in plant community dynamics, and soil seed banks represent seed dispersal in time rather than in space. Despite their potential importance, seed bank dynamics in the Arctic are poorly understood. We investigated soil seed banks and corresponding plant community composition in three contrasting vegetation types in West Greenland, viz. dwarf shrub heaths, herb slopes and fell‐fields. Through germination testing, 31 species were documented in soil seed banks. All of these were herbaceous, while no dwarf‐shrub species, which represents the dominating growth form in the above‐ground vegetation, were emerging from the seed bank. Consequently, across vegetation types, the lowest similarity between seed bank and above‐ground vegetation was found in dwarf shrub heath. Nine plant species were exclusively found in seed bank, all of which were non‐clonal forbs. Seed bank size (total number of seeds) and species richness seemed to increase with the level of natural disturbance. Additionally, we examined the effect of different experimental light and temperature conditions on the quantity and diversity of germinating seeds. The difference in diversity in vegetation and seed bank at the species level will impact population dynamics, regeneration of vegetation after disturbances and its potential to respond to climate change.  相似文献   

18.
Abstract. Composition and density of the soil seed banks, together with seedling emergence in the field, were examined on Svalbard. 1213 soil samples were collected from six drymesic habitats in three regions representing various stages of colonization from bare moraines to full vegetation cover and spanning a range of typical nutrient and thermal regimes. Of the 165 vascular plant species native to Svalbard, 72 were present as mature plants at the study sites and of these 70% germinated seed. Proglacial soil had 12 seedlings per m2, disturbed Dryas heath 131, intact Dryas heath 91, polar heath 715, thermophilic heath 3113, and a bird cliff 10437 seedlings. Highest seed bank species richness was at the thermophilic heath (26 species). Seedlings of 27 species emerged in the field, with fewer seedlings in disturbed habitats (60 seedlings per m2) than in intact Dryas heath (142), suggesting that an absence of ‘safe sites’ limited seedling establishment in disturbed habitats. Measurement of seedling emergence in the field increased awareness of which species are able to germinate naturally. This may be underestimated by up to 31% if greenhouse trials alone are used, owing partly to unsuitability of greenhouse conditions for germination of some species and also to practical limitations of amount of soil sampled. Most thermophilic species failed to germinate and some species present at several sites only germinated from the thermophilic heath seed bank, suggesting that climate constrains recruitment from seeds in the High Arctic.  相似文献   

19.
Invasive nitrogen-fixing plants drive vegetation dynamics and may cause irreversible changes in nutrient-limited ecosystems through increased soil resources. We studied how soil conditioning by the invasive alien Lupinus nootkatensis affected the seedling growth of co-occurring native plant species in coastal dunes, and whether responses to lupin-conditioned soil could be explained by fertilisation effects interacting with specific ecological strategies of the native dune species. Seedling performance of dune species was compared in a greenhouse experiment using field-collected soil from within or outside coastal lupin stands. In associated experiments, we quantified the response to nutrient supply of each species and tested how addition of specific nutrients affected growth of the native grass Festuca arundinacea in control and lupin-conditioned soil. We found that lupin-conditioned soil increased seedling biomass in 30 out of 32 native species; the conditioned soil also had a positive effect on seedling biomass of the invasive lupin itself. Increased phosphorus mobilisation by lupins was the major factor driving these positive seedling responses, based both on growth responses to addition of specific elements and analyses of plant available soil nutrients. There were large differences in growth responses to lupin-conditioned soil among species, but they were unrelated to selected autecological indicators or plant strategies. We conclude that Lupinus nootkatensis removes the phosphorus limitation for growth of native plants in coastal dunes, and that it increases cycling of other nutrients, promoting the growth of its own seedlings and a wide range of dune species. Finally, our study indicates that there are no negative soil legacies that prevent re-establishment of native plant species after removal of lupins.  相似文献   

20.
Plant communities, soil organic matter and microbial communities are predicted to be interlinked and to exhibit concordant patterns along major environmental gradients. We investigated the relationships between plant functional type composition, soil organic matter quality and decomposer community composition, and how these are related to major environmental variation in non-acid and acid soils derived from calcareous versus siliceous bedrocks, respectively. We analysed vegetation, organic matter and microbial community compositions from five non-acidic and five acidic heath sites in alpine tundra in northern Europe. Sequential organic matter fractionation was used to characterize organic matter quality and phospholipid fatty acid analysis to detect major variation in decomposer communities. Non-acidic and acidic heaths differed substantially in vegetation composition, and these disparities were associated with congruent shifts in soil organic matter and microbial communities. A high proportion of forbs in the vegetation was positively associated with low C:N and high soluble N:phenolics ratios in soil organic matter, and a high proportion of bacteria in the microbial community. On the contrary, dwarf shrub-rich vegetation was associated with high C:N and low soluble N:phenolics ratios, and a high proportion of fungi in the microbial community. Our study demonstrates a strong link between the plant community composition, soil organic matter quality, and microbial community composition, and that differences in one compartment are paralleled by changes in others. Variation in the forb-shrub gradient of vegetation may largely dictate variations in the chemical quality of organic matter and decomposer communities in tundra ecosystems. Soil pH, through its direct and indirect effects on plant and microbial communities, seems to function as an ultimate environmental driver that gives rise to and amplifies the interactions between above- and belowground systems. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号