首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron-efficient (WF9 corn and Coker 227 oat) and Fe-inefficient (ys1 corn and TAM 0–312 oat) cultivars were comparatively tested for their response to Fe-deficiency stress induced by the use of either ferrous or ferric chelators. Corn and oats were grown in 20 M Fe with 0, 60, and 120 M BPDS and 40 M Fe with 0, 120, and 240 M BPDS and 20 M Fe with 0 and 40 M EDDHA. All four cultivars tested, both Fe-efficient and Fe-inefficient, continuously reduced Fe3+ to Fe2+ at a low level as evidenced by the production of Fe2+ (BPDS)3 in test nutrient solutions over time. Severity of chlorosis increased as more BPDS was added to the nutrient solutions for both WF9 and ys1 corn, but unlike corn, Coker 227 and TAM 0-312 oats were both able to obtain Fe from the Fe2+ (BPDS)3 complex and were less chlorotic as a result. In short-term (4-hour) in vivo measurements, iron-stressed WF9 (Fe-efficient) corn reduced more Fe3+ to Fe2+ than similarly stressed ys1 corn, Coker 227 oat or TAM 0-312 oat. Thus, at the same time that Fe-efficient WF9 corn reduces more Fe than the other cultivars, it is also unable to compete with BPDS for that Fe in the nutrient solution. These differences coupled with the observation that only Coker 227 oat produced measureable iron solubilizing substances (phytosiderophores) suggest that these two species differ in their mechanisms for obtaining Fe during Fe-deficiency stress.  相似文献   

2.
Release of phytosiderophores from barley (Hordeum vulgare L.) in response to Fe-deficiency stress prompted further testing of other graminaceous (grass) species for phytosiderophore release and results have prompted characterization of these plants into a Strategy II designation. This classification denotes an enhanced release of phytosiderophore in response to Fe-deficiency stress with a concomitant uptake of Fe by the plant. The objective of this study was to determine if Fe-inefficient and Fe-efficient corn (Zea mays L.) differ in their release of Fe solubilizing substances in response to Fe-deficiency stress. We have not identified the specific structure of these substances but refer to them as phytosiderophores to further characterize their behavior. By our indirect method, there was no measurable release of Fe solubilizing substances (phytosiderophores) from either the Fe-efficient WF9 or the Fe-inefficient ys1 corn despite WF9 being greener and apparently more Fe efficient than ys1. Fe-efficient Coker 227 oats (Avena byzantina C. Koch.) has been found to release a phytosiderophore whereas the Fe-inefficient TAM 0-312 does not. Iron-stressed Coker 227 oats released Fe solubilizing substances when grown in the same solution with WF9 corn which resulted in greening and Fe uptake by WF9 corn. Iron efficiency in these two graminaceous species appears to be controlled by different mechanisms.  相似文献   

3.
Summary The cause of leaf chlorosis, frequently observed on soybeans (Glycine max (L.) Merr.) grown on high pH soils of the Mississippi Blackland Prairie, is thought to be low Fe availability and restricted rooting. Three greenhouse experiments were conducted using two soils, Sumter, a Rendollic Eutrocrept and Okolona, a Typic Chromudert; nine soybean cultivars differing in Feefficiency; and trifluralin (α-α-α-trifluoro-2,6-dinitro-N, N-di-propyl-p-toludine). Trifluralin at rates greater than 0.56 kg/ha caused chlorosis which was more severe on the Sumter, a soil low in available Fe. Fe-efficient cultivars were more resistant to the chlorosis induced by trifluralin than the Fe-inefficient cultivars. It was concluded that the chlorosis is an Fe deficiency caused by reduced uptake. The herbicide-induced chlorosis can be avoided by proper dosage and placement of the herbicide.  相似文献   

4.
Kidd  P.S.  Díez  J.  Monterroso Martínez  C. 《Plant and Soil》2004,258(1):189-205
The effects of heavy metals on the growth, mineral composition (P, K, Fe and Mn) and metal accumulation of five populations of Cistus ladanifer subsp. ladanifer from NE Portugal were investigated in hydroponic experiments. Plants were exposed to increasing concentrations (0–2000 M) of one of eight heavy metals: Cd, Co, Cr, Cu, Mn, Ni, Pb or Zn. Populations of C. ladanifer, whose origin was ultramafic soils (S and UB) or soils developed on basic rocks (B), showed a higher tolerance to the metals Cd, Co, Cr, and Mn, and a considerable degree of tolerance to Ni. In contrast, populations originating on acid-rock soils (M and SC) showed higher tolerance to the metals Cu and Zn. Populations showed different patterns of metal accumulation and distribution in the plant parts, suggesting different mechanisms of metal tolerance are used. The more Cd-, Co- and Mn-tolerant populations (S, UB, B and SC (Cd)) showed accumulation of these three metals in the shoots (shoot:root metal concentration ratios (S:R) > 1). Shoot concentrations of up to 309 g Cd g–1, 2667 g Co g–1 and 6214 g Mn g–1 were found in these populations. The populations, UB and M, showed considerable tolerance to Ni and Zn, respectively. These populations accumulated up to 4164 g Ni g–1 and 7695 g Zn g–1 in their shoot tissues, and these metals were efficiently transported from the roots to aerial parts (S:R > 3 (Ni), S:R > 1 (Zn)). In contrast, the S and SC populations maintained higher growth rates in the presence of Ni and Zn, respectively, but showed exclusion mechanisms of metal tolerance: reduced Ni and Zn transport to shoots (S:R < 1). Cistus ladanifer was not able to efficiently transport Cr, Cu or Pb from its roots to its aerial parts (S:R ranged from 0–0.4). The more Cu-tolerant populations, M and SC, showed a greater restriction of Cu transport to the shoots than the ultramafic- or basic-rock populations. Significant changes in the plant mineral composition were found, however, concentrations were generally above mineral deficiency levels. Based on these preliminary results the possible usefulness of this plant for phytoremediation technologies is discussed. However, further investigations are necessary to evaluate its growth and metal accumulation under soil and field conditions.  相似文献   

5.
Bernards  Mark L.  Jolley  Von D.  Stevens  W. Bart  Hergert  Gary W. 《Plant and Soil》2002,241(1):105-113
Some maize (Zea mays L.) hybrids grown in high pH soil in Nebraska suffer from severely reduced yields caused by iron (Fe) deficiency chlorosis. Hybrids which recover from early season Fe-deficiency chlorosis and yield well are termed Fe-efficient or tolerant. Most Fe-efficient gramineous species respond to Fe-deficiency stress by releasing phytosiderophores (mugineic acid and its derivatives) into the rhizosphere, thereby increasing Fe availability and uptake of the Fe3+-phytosiderophore complex via a high affinity uptake system. Field-grown Fe-efficient maize recovers from Fe-deficiency chlorosis at a stage when nodal roots have become the dominant root system. Quantifying phytosiderophore release from hydroponically grown plants has been proposed as a viable alternative to time-consuming and variable field trials and has been used successfully to delineate among Fe-efficient and Fe-inefficient lines of oat (Avena sativa L.) and wheat (Triticum aestivum L.). Our objectives were (1) to determine if phytosiderophore release differed between nodal- and primary-root systems of maize, and (2) to compare phytosiderophore release from 12 hybrids. Root exudates secreted during daily 4-h collections were analyzed for their Fe-solubilizing ability, which was equated to phytosiderophore release. Nodal root systems released significantly more phytosiderophore than primary- or complete-root systems. In early experiments, an Fe-efficient hybrid (P3279) released more phytosiderophore from nodal roots than an Fe-inefficient hybrid (P3489). Tests of an additional 10 hybrids showed that phytosiderophore release varied significantly among the cultivars but did not clearly distinguish between hybrids classified as Fe-efficient or Fe-inefficient in individual company trials. We recommend using nodal roots when studying Fe-stress response mechanisms in maize.  相似文献   

6.
Summary Residual value of micronutrients pair (Fe × Ni) has been investigated in a Cu-deficient and P-responsive red soil by growing a second crop of maize in which maize had already been grown with factorial combination of 4 levels of Fe and Ni. Dry matter yield (shoots) has been found to be lower (50%) in comparison to first year. Due to combined Fe and Ni treatments the concentration and uptake of Fe by shoots increased significantly while reverse was the case in roots, showing synergistic effect of Ni on Fe absorption and its significant translocation to shoots. Concentration and uptake of Mn by shoots and roots decreased at higher levels of Fe and Ni. Concentration of P in shoots decreased whereas concentration and uptake of Zn by shoots remained unchanged. Under the combined effect of Fe × Ni, maize roots contained more of nutrients as compared to shoots. Thus roots appear to be responsible for the recycling of micro and macronutrients in soils.  相似文献   

7.
R. Hita  J. Torrent 《Plant and Soil》2005,271(1-2):341-350
Zinc can be toxic to plants growing on soils in areas of the Guadiamar River valley (southwestern Spain) affected by the spillage of pyritic sludge in April 1998. The shoots and the soil around the roots of two wild plants (viz. Amaranthus blitoides S. Wats., November 2000; and Xanthium strumarium L., June 2001) growing in the sludge-affected areas were sampled with the purpose of relating Zn phytoavailability to soil properties. The soils were calcareous and non-calcareous Entisols and Inceptisols which, after remediation, contained ploughed-in residual sludge and unevenly distributed industrial lime. Chemical extracts from the soils suggested that much of the sphalerite (ZnS) originally present in the sludge had weathered and Zn was partly bound to carbonates and Fe oxides, the total Zn concentration ranging from 37 to 2407 mg kg –1. To identify the soil properties that influenced Zn phytoavailability under controlled conditions, the soil samples (n=63) were homogenized and oilseed rape (Brassica napus var. Karola) was pot-grown on them in a growth chamber. The concentrations of Zn in oilseed rape shoots and roots were below phytotoxic levels, with mean ± standard deviation values of 142 ± 128 and 244 ± 328 mg kg –1 dry matter, respectively. Citrate/bicarbonate-extractable Zn in soil (Zn cb) was found to be the best predictor for the Zn concentration in both shoots and roots. Also, the Zn cb/Olsen P ratio exhibited a high predictive power for Zn in shoots as the likely result of the Zn-P interaction in soil. The shoot Zn concentration in the wild plants, generally lay below phytotoxic levels (the mean ± standard deviation values were 261 ± 255 and 200 ± 228 mg kg –1 dry matter for Amaranthus blitoides and Xanthium strumarium, respectively) and was not correlated with soil properties – by exception, there was slight correlation between the Zn concentration in Amaranthus blitoides and Zn cb/Olsen P. Such a lack of correlation can be ascribed to the local small-scale soil heterogeneity caused by remediation practices. The Zn concentration in wild plants growing on CaCO 3-poor soils was weakly correlated with Zn cb/Olsen P; no similar correlation was found in CaCO 3-rich soils, however. The wild plants growing on CaCO 3-poor and CaCO 3-rich soils differed little in Zn concentration; this suggests that further addition of lime to reduce Zn phytoavailability may be unjustified.  相似文献   

8.
为探讨油茶(Camellia oleifera)产地土壤和油茶果实中金属元素分布和富集特征,在油茶果实成熟期,对浙江5个油茶产地土壤及油茶果实中金属元素进行污染分析和富集能力评价。结果表明,浙江油茶产地土壤中Pb、Cr、Cd、As、Hg、Ni、Cu和Zn含量低于农用地土壤污染风险筛选值,综合污染等级为安全。个别产区常山县土壤中As、Ni、Cu和江山县土壤中Pb、Cr、Fe含量显著高于其他产地;常山和建德土壤中Cd单因子污染指数分别为0.93和0.81,处于污染警戒线。Cr、Ni、Cu、Zn主要分布在油茶籽中,Hg主要分布在壳中,Pb、Cd、As、Fe和Mn主要分布在青皮中。油茶籽中Cu、Fe、Mn的富集系数大于0.4,吸收能力强,Ni、Zn的富集系数小于0.4,具有一定吸收能力,Pb、Cr、Cd、As和Hg的富集系数小于0.1,吸收能力低;壳中Cu、Mn的富集系数大于0.4,吸收能力强,Fe的富集系数小于0.4,具有一定吸收能力,Pb、Cr、Cd、As、Hg、Ni、Zn的富集系数小于0.1,吸收能力低;青皮中Cu、Fe、Mn的富集系数大于0.4,吸收能力强,Pb、Cr、Cd、As、Hg、Ni、Zn的富集系数小于0.1,吸收能力低。浙江油茶主产区土壤质量安全,适合油茶种植。油茶果实对Cu、Fe、Mn有一定富集能力,对Pb、Cr、Cd、As和Hg无富集能力。  相似文献   

9.
Some effects of nickel toxicity on rye grass   总被引:3,自引:0,他引:3  
Summary Rye grass (Lolium perenne, cv.S-23) was grown for 4 weeks in a non-calcareous Seaton loam soil with varying amounts of Ni as NiSO4. The purpose of this investigation was to study the Ni toxicity and the relationship of Ni with other essential elements. Nickel depressed shoot yield at all levels except at the lowest levelviz 30 g Ni/g soil. Nickel concentration of 50 g/g in shoots did not reduce the dry matter production in rye grass although slight chlorosis did appear at this level. The Ni and Fe concentration of the shoots increased and that of Mn and Zn decreased with increasing rates of Ni application. Uptake of Mn and Zn decreased at all level of Ni. But Fe uptake showed a slight increase at the first two levels and a profound depression at the subsequent levels. The pattern of Ni uptake is different, being highest at the middle level and decreasing on both sides which showed that the increase of Ni concentration of shoots is not proportional to the reduction in the yield. The Ni–Fe ratio rather than Ni and Fe concentration in plants has shown better relationship with the toxic effects of Ni. The implications of Ni phytotoxicity are discussed with particular reference to serpentine soils.The work is a part of Ph.D. Thesis submitted to the University of Aberdeen, U.K.  相似文献   

10.
Knight  B.  Zhao  F.J.  McGrath  S.P.  Shen  Z.G. 《Plant and Soil》1997,197(1):71-78
The hyperaccumulator Thlaspi caerulescens J & C Presl. was grown in seven different soils collected from around Europe that had been contaminated with heavy metals by industrial activity or the disposal of sewage sludge to land. Zinc accumulation factors (shoot concentration/initial soil solution concentration) ranged from 3500–85 000 with a mean value of around 36 000. This compares with mean accumulation factors of 636, 66 and 122 for Cd, Ca and Mg, respectively. The concentration of Zn in the shoots was much greater than in the roots. The total removal of Zn and Cd ranged from 8 to 30 and from 0.02 to 0.5 mg kg-1 soil, respectively. The Zn concentration in shoots of T. caerulescens correlated, using a curvilinear relationship, with the initial Zn concentration in soil solution (R2 = total Zn 0.78; Zn2+ 0.80). There was no relationship between the uptake of Zn and the total Zn concentration in the soil. In most soils, solution pH increased only slightly after growth of T. caerulescens, indicating that acidification was not the mechanism used to mobilise Zn in the soil. Dissolved organic carbon concentrations generally increased but characterisation of the component organic compounds was not attempted. The concentrations of Zn and Cd in soil solution decreased considerably after growth of T. caerulescens. The percentages of Zn and Cd in soil solution present as free ions also decreased. However, the decrease of Zn in soil solution after growth accounted for only about 1% of the total Zn uptake by T. caerulescens. This was much lower than for Cd, Ca and Mg. The results suggest that either T. caerulescens was highly efficient at mobilising Zn which was not soluble initially, or the soils used had large buffering capacities to replenish soil solution Zn within a short time. This work highlights the need to investigate the role of root exudates on the mobilisation of Zn and Cd in soils by the hyperaccumulator T. caerulescens.  相似文献   

11.
Iron-stress Response in Mixed and Monocultures of Soybean Cultivars   总被引:3,自引:2,他引:1       下载免费PDF全文
Hawkeye (Fe-efficient) and PI-54619-5-1 (Fe-inefficient) soybeans (Glycine max [L.] Merr.) were grown in mixed and monoculture nutrient solutions to evaluate an inhibitory effect of PI-54619-5-1 on the uptake of Fe by Hawkeye. The ability of Hawkeye to take up Fe (Fe-stress response) was dependent on the degree of Fe stress (Fe deficiency) and was not the result of an inhibitory substance released by PI-54619-5-1 in mixed culture (Hawkeye + PI-54619-5-1).  相似文献   

12.
Ciceri  G.  Maran  Ciceri  Martinotti  W.  Queirazza  G. 《Hydrobiologia》1992,(1):501-517
Concentrations of the heavy metals Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured in sea water, suspended matter, sediments and pore water samples collected in a coastal area of the middle Tyrrhenian Sea. Concentration factors between pore water (extracted from the first centimeter of the sediments) and the overlying sea water (taken 30 cm above the sea bed) were less than 1 for Cr, Cu and Pb, 1–10 for Cd and Ni, 10–100 for Fe and Co, 100–1000 for Mn, and 1–100 for Zn.The benthic fluxes of heavy metals at the sediment-water interface were measured directly using in situ benthic chambers and calculated using Fick's first law during two experimental periods, one in 1986 and the other in 1988. The fluxes of Cu, Ni, Pb and Zn varied significantly over time; this appeared to be related to their relatively low ( 10) concentration factors. From the benthic chamber experiments, metals with positive fluxes were in the order: Mn > Fe > Co > Cd, while those with negative fluxes were: Zn > Pb > Ni Cu. Fluxes calculated using Fick's Law were: positive – Mn > Fe > Zn (or Zn > Fe) > Ni > Co > Cd, negative fluxes Pb > Cu > Cr.Measured (benthic chamber) and calculated (Fick's first law) fluxes for Co, Cd, Mn, Pb and Fe were comparable within an order of magnitude, although less agreement was found for Cu, Ni and Zn. Removal of Ni and Zn at the sediment-water interface has been proposed to explain the fact that the measured and calculated fluxes have opposite directions for these metals.  相似文献   

13.
Willows occur as volunteer vegetation on sediment-derived soils, such as dredged sediments, landfill cover or stockpile deposits, and are used as phytoremediators on such soils. The present study evaluates growth and metal uptake by Salix alba grown on a contaminated dredge sediment for 209 days under greenhouse conditions. At the end of the study, the aerial parts of the S. alba plants had grown to heights of between 80 and 117 cm. Biomass and Cd and Zn concentration in the roots, stems and leaves, at 70, 112 and 209 days, showed that Cd and Zn had been bioaccumulated, especially in the leaves.At the three sampling dates, Cd and Zn extractability and pH measurements were also carried out on samples of two soil layers (0–15 and 15–30 cm) from both the planted and the control pots. Cd and Zn extractability were assessed using single extraction procedures (0.01 M CaCl2; 1 M HNO3; CaCl2–TEA–DTPA). The two metals showed similar variations in CaCl2 and HNO3 extractabilities, but this was not the case for DTPA extractability. The greatest variations were observed in the upper soil layers of the control pots. In the planted pots, the CaCl2 extractability of Zn decreased in the upper layer, and the HNO3 extractability of Zn increased in the lower layer. The pH of the upper soil layer was always higher than the pH of the bottom layer. In addition, we monitored several parameters of the percolates from both the planted and the control sediments, including pH, Eh, conductivity, dissolved organic carbon, Zn and Cd concentrations, and presence of certain cations/anions. Dissolved organic carbon, and Cd and Zn concentrations increased steadily over time. There were no significant differences between the planted and the control pots. After 209 days, the characteristics of the control sediment reflected the effects of ageing in that the CaCl2-extractable Cd and Zn concentrations had decreased compared with the initial concentrations. Conversely, the concentrations of HNO3-extractable Cd and Zn had increased. A fraction of the metal initially extracted by CaCl2 (considered as exchangeable) became less available with time. After 112 days, the plants had extracted approximately 2.8 mg of Zn. At the same time, the CaCl2 extractability of Zn in the upper, rooted layer decreased by 2.6 mg. We can assume that S. alba extracted Zn from the pool of CaCl2-extractable Zn.  相似文献   

14.
Rice seedlings were grown in hydroponic culture to determine the effects of external Zn and P supply on plant uptake of Cd in the presence or absence of iron plaque on the root surfaces. Iron plaque was induced by supplying 50 mg l−1 Fe2+ in the nutrient solution for 2 day. Then 43-day-old seedlings were exposed to 10 μmol l−1 Cd together with 10 μmol l−1 Zn or without Zn (Zn–Cd experiment), or to 10 μmol l−1 Cd with 1.0 mmol l−1 P or without P (P–Cd experiment) for another 2 day. The seedlings were then harvested and the concentrations of Fe, Zn, P and Cd in dithionite–citrate–bicarbonate (DCB) extracts and in roots and shoots were determined. The dry weights of roots and shoots of seedlings treated with 50 mg l−1 Fe were significantly lower than when no Fe was supplied. Adsorption of Cd, Zn and P on the iron plaque increased when Fe was supplied but Cd concentrations in DCB extracts were unaffected by external Zn or P supply levels. Cd concentrations in shoots and roots were lower when Fe was supplied. Zn additions decreased Cd concentrations in roots but increased Cd concentrations in shoots, whereas P additions significantly increased shoot and root Cd concentrations and this effect diminished when Fe was supplied. The percentage of Cd in DCB extracts was significantly lower than in roots or shoots, accounting for up to 1.8–3.8% of the plant total Cd, while root and shoot Cd were within the ranges 57–76% and 21–40% respectively in the two experiments. Thus, the main barrier to Cd uptake seemed to be the root tissue and the contribution of iron plaque on root surfaces to plant Cd uptake was minor. The changes in plant Cd uptake were not due to Zn or P additions altering Cd adsorption on iron plaque, but more likely because Zn or P interfered with Cd uptake by the roots and translocation to the shoots.  相似文献   

15.
Using hyperaccumulator plants to phytoextract soil Ni and Cd   总被引:2,自引:0,他引:2  
Two strategies of phytoextraction have been shown to have promise for practical soil remediation: domestication of natural hyperaccumulators and bioengineering plants with the genes that allow natural hyperaccumulators to achieve useful phytoextraction. Because different elements have different value, some can be phytomined for profit and others can be phytoremediated at lower cost than soil removal and replacement. Ni phytoextraction from contaminated or mineralized soils offers economic return greater than producing most crops, especially when considering the low fertility or phytotoxicity of Ni rich soils. Only soils that require remediation based on risk assessment will comprise the market for phytoremediation. Improved risk assessment has indicated that most Zn + Cd contaminated soils will not require Cd phytoextraction because the Zn limits practical risk from soil Cd. But rice and tobacco, and foods grown on soils with Cd contamination without corresponding 100-fold greater Zn contamination, allow Cd to readily enter food plants and diets. Clear evidence of human renal tubular dysfunction from soil Cd has only been obtained for subsistence rice farm families in Asia. Because of historic metal mining and smelting, Zn + Cd contaminated rice soils have been found in Japan, China, Korea, Vietnam and Thailand. Phytoextraction using southern France populations of Thlaspi caerulescens appears to be the only practical method to alleviate Cd risk without soil removal and replacement. The southern France plants accumulate 10-20-fold higher Cd in shoots than most T. caerulescens populations such as those from Belgium and the UK. Addition of fertilizers to maximize yield does not reduce Cd concentration in shoots; and soil management promotes annual Cd removal. The value of Cd in the plants is low, so the remediation service must pay the costs of Cd phytoextraction plus profits to the parties who conduct phytoextraction. Some other plants have been studied for Cd phytoextraction, but annual removals are much lower than the best T. caerulescens. Improved cultivars with higher yields and retaining this remarkable Cd phytoextraction potential are being bred using normal plant breeding techniques.  相似文献   

16.
The distribution of labile Cd and Zn in two contrasting soils was investigated using isotopic exchange techniques and chemical extraction procedures. A sewage sludge amended soil from Great Billings (Northampton, UK) and an unamended soil of the Countesswells Association obtained locally (Aberdeen, UK) were used. 114Cd and 67Zn isotopes were added to a water suspension of each soil and the labile metal pool (E-value) determined from the isotope dilution. Samples were obtained at 13 time points from 1h to 50 days. For the sewage sludge amended soil, 29 g Cd g–1 (86% of total) and 806 g Zn g–1 (65% of total) were labile and for the Countesswells soil the value was 8.6 g Zn g–1 (13% of total); limits of detection prevented a Cd E-value from being measured in this soil. The size of the labile metal pool was also measured by growing plants for 90 days and determining the isotopic content of the plant tissue (L-value). Thlaspi caerulescensJ. & C. Presl (alpine penny cress), a hyperaccumulator of Zn and Cd, Taraxacum officinale Weber (dandelion) and Hordeum vulgare L. (spring barley) were used. L-values were similar across species and lower than the E-values. On average the L-values were 23±0.8 g Cd g–1 and 725±14 g Zn g–1 for the Great Billings soil and 0.29±0.16 g Cd g–1 and 7.3±0.3 g Zn g–1 for the Countesswells soil. The extractable metal content of the soils was also quantified by extraction using 0.1 M NaNO3, 0.01 M CaCl2, 0.5 M NaOH, 0.43 M CH3COOH and 0.05 M EDTA at pH 7.0. Between 1.3 and 68% of the total Cd and between 1 and 50% of the total Zn in the Great Billings soil was extracted by these chemicals. For the Countesswells soil, between 6 and 83% of the total Cd and between 0.1 and 7% of the total Zn was extracted. 0.05 M EDTA and 0.43 M CH3COOH yielded the greatest concentrations for both soils but these were less than the isotopic estimates. On the whole, E-values were numerically closer to the L-values than the chemical extraction values. The use of isotopic exchange provides an alternative estimate of the labile metal pool within soils compared to existing chemical extraction procedures. No evidence was obtained that T. caerulescens is able to access metal within the soil not freely available to the other plants species. This has implications for long term remediation strategies using hyperaccumulating plant species, which are unlikely to have any impact on non-labile Cd and Zn in contaminated soil.  相似文献   

17.
Heavy metal contamination of agricultural soils resulting from rapid industrialization and urbanization is of great concern because of potential health risk due to dietary intake of contaminated vegetables. The present study aims to evaluate the status of heavy metals contamination of agricultural soils and food crops around an urban-industrial region in India. Transfer factor values of Cu, Cr, Pb, Cd, Zn, and Ni from soil to vegetable was estimated. The mean heavy metal concentrations (mg/kg) in agricultural soils (Cu: 17.8, Cr: 27.3, Pb: 29.8, Cd: 0.43, Zn: 87, Mn: 306.6, Fe: 16984, and Ni: 53.8) were within allowable concentrations for Indian agricultural soil. The concentrations of Pb, Cd, Zn, and Ni in crops/vegetables exceeded the World Health Organization/Food and Agriculture Organization safe limits. Relative orders of transfer of metals from soil to edible parts of the crops/vegetables were Cd > Pb > Ni > Zn > Cu > Cr. The enrichment factors of heavy metals in soil indicated minor to moderately severe enrichment for Pb, Cd, and Ni; minor to moderate enrichment for Zn; no enrichment to minor enrichment for Mn; and no enrichment to moderate enrichment for Cu at different sites. Ecological risk index of soil showed considerable contamination in one of the wastewater irrigated sites.  相似文献   

18.
Two experiments were carried out in pots with three compartments, a central one for root and hyphal growth and two outer ones which were accessible only for hyphae of the arbuscular mycorrhizal fungus, Glomus mosseae ([Nicol. and Gerd.] Gerdemann and Trappe). In the first experiment, mycorrhizal and nonmycorrhizal bean (Phaseolus vulgaris L.) plants were grown in two soils with high geogenic cadmium (Cd) or nickel (Ni) contents. In the second experiment, mycorrhizal and nonmycorrhizal maize (Zea mays L.) or bean plants were grown in a non-contaminated soil in the central compartment, and either the Cd- or Ni-rich soil in the outer compartments. In additional pots, mycorrhizal plants were grown without hyphal access to the outer compartments. Root and shoot dry weight was not influenced by mycorrhizal inoculation, but plant uptake of metals was significantly different between mycorrhizal and nonmycorrhizal plants. In the first experiment, the contribution of mycorrhizal fungi to plant uptake accounted for up to 37% of the total Cd uptake by bean plants, for up to 33% of the total copper (Cu) uptake and up to 44% of the total zinc (Zn) uptake. In contrast, Ni uptake in shoots and roots was not increased by mycorrhizal inoculation. In the second experiment, up to 24% of the total Cd uptake and also up to 24% of the total Cu uptake by bean could be attributed to mycorrhizal colonisation and delivery by hyphae from the outer compartments. In maize, the mycorrhizal colonisation and delivery by hyphae accounted for up to 41% of the total Cd uptake and 19% of the total Cu uptake. Again, mycorrhizal colonisation did not contribute to Ni uptake by bean or maize. The results demonstrate that the arbuscular mycorrhizal fungus contributed substantially not only to Cu and Zn uptake, but also to uptake of Cd (but not Ni) by plants from soils rich in these metal cations. Deceased 21 September 1996 Deceased 21 September 1996  相似文献   

19.
It is important to use proper agronomic management to reduce cadmium (Cd) accumulation in plants, ensuring food safety. To find the most effective agronomic approach, the effect of foliar spraying and seed soaking of zinc (Zn) fertilizers on Cd accumulation in cucumbers (Cucumis sativus L.) grown in two soil Cd levels (2 and 5 mg kg?1 Cd) with and without an immobilizing amendment (red mud, RM) was investigated in the present study. The results showed that the treatment of foliar Zn or seed Zn significantly decreased the Cd concentration in cucumber shoots by about 12–36% in Cd-contaminated soils without amendment. Combined with RM treatment, the foliar Zn treatment further decreased the Cd concentration in cucumber shoots by up to 48–66% in Cd-contaminated soils. There were significant negative correlations between Cd and Zn concentrations in shoots of cucumbers grown in soils treated with RM and foliar Zn. The results revealed that the cucumber seedlings treated with RM and foliar Zn had a higher capacity for limiting the transfer of Cd to aboveground tissues. The results also suggested that increasing seed Zn concentrations sufficiently might act as an efficient, economic, and practical method for decreasing Cd uptake in crops grown in mildly Cd-contaminated and Zn-deficient soils.  相似文献   

20.
Summary This paper reviews the evidence for impacts of metals on the growth of selected plants and on the effects of metals on soil microbial activity and soil fertility in the long-term. Less is known about adverse long-term effects of metals on soil microorganisms than on crop yields and metal uptake. This is not surprising, since the effects of metals added to soils in sewage sludge are difficult to assess, and few long-term experiments exist. Controlled field experiments with sewage sludges exist in the UK, Sweden, Germany and the USA and the data presented here are from these long-term field experiments only. Microbial activity and populations of cyanobacteria,Rhizobium leguminosarum bv.trifolii, mycorrhizae and the total microbial biomass have been adversely affected by metal concentrations which, in some cases, are below the European Community's maximum allowable concentration limits for metals in sludge-treated soils. For example, N2-fixation by free living heterotrophic bacteria was found to be inhibited at soil metal concentrations of (mg kg–1): 127 Zn, 37 Cu, 21 Ni, 3.4 Cd, 52 Cr and 71 Pb. N2-fixation by free-living cyanobacteria was reduced by 50% at metal concentrations of (mg kg–1): 114 Zn, 33 Cu, 17 Ni, 2.9 Cd, 80 Cr and 40 Pb.Rhizobium leguminosarum bv.trifolii numbers decreased by several orders of magnitude at soil metal concentrations of (mg kg–1): 130–200 Zn, 27–48 Cu, 11–15 Ni, and 0.8–1.0 Cd. Soil texture and pH were found to influence the concentrations at which toxicity occurred to both microorganisms and plants. Higher pH, and increased contents of clay and organic carbon reduced metal toxicity considerably. The evidence suggests that adverse effects on soil microbial parameters were generally found at surpringly modest concentrations of metals in soils. It is concluded that prevention of adverse effects on soil microbial processes and ultimately soil fertility, should be a factor which influences soil protection legislation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号