首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
A family of repetitive elements from the cyanobacterium Anabaena sp. strain PCC 7120 was identified through the proximity of one element to the psbAI gene. Four members of this seven-member family were isolated and shown to have structures characteristic of bacterial insertion sequences. Each element is approximately 1,200 bp in length, is delimited by a 30-bp inverted repeat, and contains two open reading frames in tandem on the same DNA strand. The four copies differ from each other by small insertions or deletions, some of which alter the open reading frames. By using a system designed to trap insertion elements, one of the elements, denoted IS895, was shown to be mobile. The target site was not duplicated upon insertion of the element. Two other filamentous cyanobacterial strains were also found to contain sequences homologous to IS895.  相似文献   

2.
Use of the sacB gene (J. L. Ried and A. Collmer, Gene 57:239-246, 1987) provides a simple, effective, positive selection for double recombinants in Anabaena sp. strain PCC 7120, a filamentous cyanobacterium. This gene, which encodes the secretory levansucrase of Bacillus subtilis, was inserted into the vector portion of a suicide plasmid bearing a mutant version of a chromosomal gene. Cells of colonies in which such a plasmid had integrated into the Anabaena chromosome through single recombination were plated on solid medium containing 5% sucrose. Under this condition, the presence of the sacB gene is lethal. A small fraction of the cells from initially sucrose-sensitive colonies became sucrose resistant; the majority of these sucrose-resistant derivatives had undergone a second recombinational event in which the sacB-containing vector had been lost and the wild-type form of the chromosomal gene had been replaced by the mutant form. By the use of this technique, we mutated two selected genes in the chromosome of Anabaena sp. strain PCC 7120. The conditionally lethal nature of the sacB gene was also used to detect insertion sequences from this Anabaena strain. Sucrose-resistant colonies derived from cells bearing a sacB-containing autonomously replicating plasmid were analyzed. Five different, presumed insertion sequences were found to have inserted into the sacB gene of the plasmids in these colonies. One of them, denoted IS892, was characterized by physical mapping. It is 1.7 kilobases in size and is present in at least five copies in the genome of Anabaena sp. strain PCC 7120.  相似文献   

3.
4.
Mutants of Anabaena sp. strain PCC 7120 unable to grow aerobically on dinitrogen were isolated by mutagenesis with UV irradiation, followed by a period of incubation in yellow light and then by penicillin enrichment. A cosmid vector, pRL25C, containing replicons functional in Escherichia coli and in Anabaena species was constructed. DNA from wild-type Anabaena sp. strain PCC 7120 was partially digested with Sau3AI, and size-fractionated fragments about 40 kilobases (kb) in length were ligated into the phosphatase-treated unique BamHI site of pRL25C. A library of 1,054 cosmid clones was generated in E. coli DH1 bearing helper plasmid pDS4101. A derivative of conjugative plasmid RP-4 was transferred to this library by conjugation, and the library was replicated to lawns of mutant Anabaena strains with defects in the polysaccharide layer of the envelopes of the heterocysts. Mutant EF116 was complemented by five cosmids, three of which were subjected to detailed restriction mapping; a 2.8-kb fragment of DNA derived from one of the cosmids was found to complement EF116. Mutant EF113 was complemented by a single cosmid, which was also restriction mapped, and was shown to be complemented by a 4.8-kb fragment of DNA derived from this cosmid.  相似文献   

5.
The 3' region of the Anabaena variabilis nifD gene contains an 11-kilobase-pair element which is excised from the chromosome during heterocyst differentiation. We have sequenced the recombination sites which border the element in vegetative cells and the rearranged heterocyst sequences. In vegetative cells, the element was flanked by 11-base-pair direct repeats which were identical to the repeats present at the ends of the nifD element in Anabaena sp. strain PCC 7120 (Anabaena strain 7120). Although Anabaena strain 7120 and A. variabilis are quite distinct in many ways, the overall sequence similarity between the two strains for the regions sequenced was 96%. Like the Anabaena strain 7120 element, the A. variabilis element was excised in heterocysts to produce a functional nifD gene and a free circularized element which was neither amplified nor degraded. The Anabaena strain 7120 xisA gene is located at the nifK-proximal end of the nifD element and is required for excision of the element in heterocysts. The A. variabilis element also contained an xisA gene which could complement a defective Anabaena strain 7120 xisA gene. A. variabilis did not contain the equivalent of the Anabaena strain 7120 fdxN 55-kilobase-pair element.  相似文献   

6.
Y Cai 《Journal of bacteriology》1991,173(18):5771-5777
IS892, one of the several insertion sequence (IS) elements discovered in Anabaena sp. strain PCC 7120 (Y. Cai and C. P. Wolk, J. Bacteriol. 172:3138-3145, 1990), is 1,675 bp with 24-bp near-perfect inverted terminal repeats and has two open reading frames (ORFs) that could code for proteins of 233 and 137 amino acids. Upon insertion into target sites, this IS generates an 8-bp directly repeated target duplication. A 32-bp sequence in the region between ORF1 and ORF2 is similar to the sequence of the inverted termini. Similar inverted repeats are found within each of those three segments, and the sequences of these repeats bear some similarity to the 11-bp direct repeats flanking the 11-kb insertion interrupting the nifD gene of this strain (J. W. Golden, S. J. Robinson, and R. Haselkorn, Nature [London] 314:419-423, 1985). A sequence similar to that of a binding site for the Escherichia coli integration host factor is found about 120 bp from the left end of IS892. Partial nucleotide sequences of active IS elements IS892N and IS892T, members of the IS892 family from the same Anabaena strain, were shown to be very similar to the sequence of IS892.  相似文献   

7.
An 11-kilobase-pair element interrupts the nifD gene in vegetative cells of Anabaena sp. strain PCC 7120. The nifD element normally excises only from the chromosomes of cells that differentiate into nitrogen-fixing heterocysts. The xisA gene contained within the element is required for the excision. Shuttle vectors containing the Escherichia coli tac consensus promoter fused to various 5' deletions of the xisA gene were constructed and conjugated into Anabaena sp. strain PCC 7120 cells. Some of the expression plasmids resulted in excision of the nifD element in a high proportion of vegetative cells. Excision of the element required deletion of an xisA 5' regulatory region which presumably blocks expression in Anabaena sp. strain PCC 7120 vegetative cells but not in E. coli. Strains lacking the nifD element grew normally in medium containing a source of combined nitrogen and showed normal growth and heterocyst development in medium lacking combined nitrogen. The xisA gene was shown to be the only Anabaena gene required for the proper rearrangement in E. coli of a plasmid containing the borders of the nifD element.  相似文献   

8.
Summary Anabaena variabilis ATCC 29413 contains two cryptic plasmids. Clones of the smaller (41 kb) plasmid, designated pRDS1, in cosmid vectors were used to construct a physical map. A clone bank of pRDS1 constructed by ligating fragments from aXhoII digest of a pRDS1 cosmid clone into a mobilizable plasmid was used to locate an origin of replication of pRDS1. Because we were unable to cureA. variabilis of pRDS1, the clone bank was transferred by conjugation to another strain ofAnabaena sp., strain M-131. A 5.3 kb fragment of pRDS1 contained all of the sequences necessary for replication inAnabaena sp. strain M-131 as judged by the ability to rescue the hybrid vector from exconjugants in unchanged form after many generations. Hybrid plasmids derived from pRDS1, one bearing genes for luciferase, were also transferred by conjugation toA. variabilis, where they appeared to recombine with pRDS1.  相似文献   

9.
The 410-kb alpha megaplasmid of the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 was found to bear the nucA gene that encodes a sugar-nonspecific nuclease. That gene was mutated by insertion of a cassette that confers resistance to neomycin. The resulting strain, AMP2, was mated with a streptomycin-resistant derivative of Anabaena sp. strain PCC 7118, a strain that does not form heterocysts. Cells resistant to both neomycin and streptomycin that were derived from such matings were found to bear the neomycin resistance cassette of the donor strain in a larger megaplasmid characteristic of the recipient strain and did not form heterocysts. This is the first example of transfer of a genetic marker directly between strains of cyanobacteria in which incontrovertible physical evidence of transfer has been obtained. DNA sequences homologous to the nucA gene were present in 13 heterocyst-forming cyanobacteria that were tested but in none of six diverse unicellular strains that were examined.  相似文献   

10.
Genes for two subunits of acetyl-coenzyme A carboxylase, biotin carboxylase and biotin carboxyl carrier protein, have been cloned from Anabaena sp. strain PCC 7120. The two proteins are 181 and 447 amino acids long and show 40 and 57% identity to the corresponding Escherichia coli proteins, respectively. The sequence of the biotinylation site in Anabaena sp. strain PCC 7120 is MetLysLeu, not the MetLysMet found in other sequences of biotin-dependent carboxylases. The amino acid sequence of biotin carboxylase is also very similar (32 to 47% identity) to the sequence of the biotin carboxylase domain of other biotin-dependent carboxylases. Genes for these two subunits of acetyl-coenzyme A carboxylase are not linked in Anabaena sp. strain PCC 7120, contrary to the situation in E. coli, in which they are in one operon.  相似文献   

11.
以能分化异形胞的蓝细菌(Anabaenasp.PCC7120)为材料,采用重组PCR在体外对控制DNA复制起始的dnaA基因进行定点突变后克隆到整合质粒中,再通过三亲本杂交将整合质粒转移到Anabaena PCC7120中,以分离和筛选温度敏感型突变体。结果成功获得Anabaena PCC 7120 dnaA高温敏感性突变体。研究表明,利用重组PCR技术可在体外实现对Anabaena PCC 7120的dnaA的定点突变,并可通过同源重组双交换成功实行整合质粒中突变基因对野生型基因的置换,使突变基因插入到细胞染色体中,进而成功构建温度敏感型突变菌株。  相似文献   

12.
Two sequences with homology to a thioredoxin oligonucleotide probe were detected by Southern blot analysis of Anabaena sp. strain PCC 7120 genomic DNA. One of the sequences was shown to code for a protein with 37% amino acid identity to thioredoxins from Escherichia coli and Anabaena sp. strain PCC 7119. This is in contrast to the usual 50% homology observed among most procaryotic thioredoxins. One gene was identified in a library and was subcloned into a pUC vector and used to transform E. coli strains lacking functional thioredoxin. The Anabaena strain 7120 thioredoxin gene did not complement the trxA mutation in E. coli. Transformed cells were not able to use methionine sulfoxide as a methionine source or support replication of T7 bacteriophage or the filamentous viruses M13 and f1. Sequence analysis of a 720-base-pair TaqI fragment indicated an open reading frame of 115 amino acids. The Anabaena strain 7120 thioredoxin gene was expressed in E. coli, and the protein was purified by assaying for protein disulfide reductase activity, using insulin as a substrate. The Anabaena strain 7120 thioredoxin exhibited the properties of a conventional thioredoxin. It is a small heat-stable redox protein and an efficient protein disulfide reductase. It is not a substrate for E. coli thioredoxin reductase. Chemically reduced Anabaena strain 7120 thioredoxin was able to serve as reducing agent for both E. coli and Anabaena strain 7119 ribonucleotide reductases, although with less efficiency than the homologous counterparts. The Anabaena strain 7120 thioredoxin cross-reacted with polyclonal antibodies to Anabaena strain 7119 thioredoxin. However, this unusual thioredoxin was not detected in extracts of Anabaena strain 7120, and its physiological function is unknown.  相似文献   

13.
Multiple rpoD-related genes of cyanobacteria.   总被引:3,自引:0,他引:3  
Genomes of many eubacterial strains have been shown to encode for multiple rpoD-related genes. In this report, we describe the identification of the multiple rpoD-related genes of cyanobacterial strains. DNAs of three cyanobacterial strains, Anabaena sp. PCC7120, Synechococcus sp. PCC7942, and Synechocystis sp. PCC6803, were examined by Southern hybridization, using a synthetic probe designed for detecting rpoD or rpoD-related genes. Four or five hybridization signals were found in each DNA. Four DNA regions of Synechococcus sp. PCC7942 corresponding to the hybridization signals were cloned and partially sequenced. The sequence data indicate the presence of genes, named rpoD1, rpoD2, rpoD3, and rpoD4, whose products are highly similar to the basic structure of the principal sigma factors of eubacterial strains. The rpoD1 gene showed the greatest similarity to the sigA gene of Anabaena sp. PCC7120.  相似文献   

14.
15.
The activities of uptake of thirteen 14C-labeled amino acids were determined in nine cyanobacteria, including the unicellular strains Synechococcus sp. strain PCC 7942 and Synechocystis sp. strain PCC 6803; the filamentous strain Pseudanabaena sp. strain PCC 6903, and the filamentous, heterocyst-forming strains Anabaena sp. strains PCC 7120 and PCC 7937; Nostoc sp. strains PCC 7413 and PCC 7107; Calothrix sp. strain PCC 7601 (which is a mutant unable to develop heterocysts); and Fischerella muscicola UTEX 1829. Amino acid transport mutants, selected as mutants resistant to some amino acid analogs, were isolated from the Anabaena, Nostoc, Calothrix, and Pseudanabaena strains. All of the tested cyanobacteria bear at least a neutral amino acid transport system, and some strains also bear transport systems specific for basic or acidic amino acids. Two genes, natA and natB, encoding elements (conserved component, NatA, and periplasmic binding protein, NatB) of an ABC-type permease for neutral amino acids were identified by insertional mutagenesis of strain PCC 6803 open reading frames from the recently published genomic DNA sequence of this cyanobacterium. DNA sequences homologous to natA and natB from strain PCC 6803 were detected by hybridization in eight cyanobacterial strains tested. Mutants unable to transport neutral amino acids, including natA and natB insertional mutants, accumulated in the extracellular medium a set of amino acids that always included Ala, Val, Phe, Ile, and Leu. A general role for a cyanobacterial neutral amino acid permease in recapture of hydrophobic amino acids leaked from the cells is suggested.  相似文献   

16.
The filamentous cyanobacterium Anabaena sp. strain PCC 7120 produces terminally differentiated heterocysts in response to a lack of combined nitrogen. Heterocysts are found approximately every 10th cell along the filament and are morphologically and biochemically specialized for nitrogen fixation. At least two DNA rearrangements occur during heterocyst differentiation in Anabaena sp. strain PCC 7120, both the result of developmentally regulated site-specific recombination. The first is an 11-kilobase-pair (kb) deletion from within the 3' end of the nifD gene. The second rearrangement occurs near the nifS gene but has not been completely characterized. The DNA sequences found at the recombination sites for each of the two rearrangements show no similarity to each other. To determine the topology of the rearrangement near the nifS gene, cosmid libraries of vegetative-cell genomic DNA were constructed and used to clone the region of the chromosome involved in the rearrangement. Cosmid clones which spanned the DNA separating the two recombination sites that define the ends of the element were obtained. The restriction map of this region of the chromosome showed that the rearrangement was the deletion of a 55-kb DNA element from the heterocyst chromosome. The excised DNA was neither degraded nor amplified, and its function, if any, is unknown. The 55-kb element was not detectably transcribed in either vegetative cells or heterocysts. The deletion resulted in placement of the rbcLS operon about 10 kb from the nifS gene on the chromosome. Although the nifD 11-kb and nifS 55-kb rearrangements both occurred under normal aerobic heterocyst-inducing conditions, only the 55-kb excision occurred in argon-bubbled cultures, indicating that the two DNA rearrangements can be regulated differently.  相似文献   

17.
18.
To elucidate the biosynthetic pathways of carotenoids, especially myxol 2'-glycosides, in cyanobacteria, Anabaena sp. strain PCC 7120 (also known as Nostoc sp. strain PCC 7120) and Synechocystis sp. strain PCC 6803 deletion mutants lacking selected proposed carotenoid biosynthesis enzymes and GDP-fucose synthase (WcaG), which is required for myxol 2'-fucoside production, were analyzed. The carotenoids in these mutants were identified using high-performance liquid chromatography, field desorption mass spectrometry, and (1)H nuclear magnetic resonance. The wcaG (all4826) deletion mutant of Anabaena sp. strain PCC 7120 produced myxol 2'-rhamnoside and 4-ketomyxol 2'-rhamnoside as polar carotenoids instead of the myxol 2'-fucoside and 4-ketomyxol 2'-fucoside produced by the wild type. Deletion of the corresponding gene in Synechocystis sp. strain PCC 6803 (sll1213; 79% amino acid sequence identity with the Anabaena sp. strain PCC 7120 gene product) produced free myxol instead of the myxol 2'-dimethyl-fucoside produced by the wild type. Free myxol might correspond to the unknown component observed previously in the same mutant (H. E. Mohamed, A. M. L. van de Meene, R. W. Roberson, and W. F. J. Vermaas, J. Bacteriol. 187:6883-6892, 2005). These results indicate that in Anabaena sp. strain PCC 7120, but not in Synechocystis sp. strain PCC 6803, rhamnose can be substituted for fucose in myxol glycoside. The beta-carotene hydroxylase orthologue (CrtR, Alr4009) of Anabaena sp. strain PCC 7120 catalyzed the transformation of deoxymyxol and deoxymyxol 2'-fucoside to myxol and myxol 2'-fucoside, respectively, but not the beta-carotene-to-zeaxanthin reaction, whereas CrtR from Synechocystis sp. strain PCC 6803 catalyzed both reactions. Thus, the substrate specificities or substrate availabilities of both fucosyltransferase and CrtR were different in these species. The biosynthetic pathways of carotenoids in Anabaena sp. strain PCC 7120 are discussed.  相似文献   

19.
刘志伟  张晨  郭勇 《生物技术》2004,14(2):11-13
为了实现转基因鱼腥藻培养生产TMF的目的,讲究了转基因鱼腥藻的稳定性。影印法证实转TNF-α。基因鱼腥藻7120能保持质粒分配稳定性。比较无选择压力下连续传代的转丛因鱼醒藻7120在不同培养基中的生长和外源基因表达,证实没有发生质粒部分缺失,但转基因鱼腥藻在无选择压力下会降低重组质粒拷贝数。在培养过程中,种子培养越含有的新霉素可以保持生产过程质粒稳定,这可以大火减少新霉素用量。  相似文献   

20.
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium commonly used as a model organism for studying cyanobacterial cell differentiation and nitrogen fixation. For many decades, this cyanobacterium was considered an obligate photo-lithoautotroph. We now discovered that this strain is also capable of mixotrophic, photo-organoheterotrophic, and chemo-organoheterotrophic growth if high concentrations of fructose (at least 50 mM and up to 200 mM) are supplied. Glucose, a substrate used by some facultatively organoheterotrophic cyanobacteria, is not effective in Anabaena sp. PCC 7120. The gtr gene from Synechocystis sp. PCC 6803 encoding a glucose carrier was introduced into Anabaena sp. PCC 7120. Surprisingly, the new strain containing the gtr gene did not grow on glucose but was very sensitive to glucose, with a 5 mM concentration being lethal, whereas the wild-type strain tolerated 200 mM glucose. The Anabaena sp. PCC 7120 strain containing gtr can grow mixotrophically and photo-organoheterotrophically, but not chemo-organoheterotrophically with fructose. Anabaena sp. PCC 7120 contains five respiratory chains ending in five different respiratory terminal oxidases. One of these enzymes is a mitochondrial-type cytochrome c oxidase. As in almost all cyanobacteria, this enzyme is encoded by three adjacent genes called coxBAC1. When this locus was disrupted, the cells lost the capability for chemo-organoheterotrophic growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号