首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollinators mediate the evolution of secondary floral traits through both natural and sexual selection. Gender-biased nectar, for example, could be maintained by one or both, depending on the interactions between plants and pollinators. Here, I investigate pollinator responses to gender-biased nectar using the dichogamous herb Chrysothemis friedrichsthaliana (Gesneriaceae) which produces more nectar during the male floral phase. Previous research showed that the hummingbird pollinator Phaethornis striigularis visited male-phase flowers more often than female-phase flowers, and multiple visits benefited male more than female fecundity. If sexual selection maintains male-biased rewards, hummingbirds should prefer more-rewarding flowers independent of floral gender. If, however, differential rewards are partially maintained through natural selection, hummingbirds should respond to asymmetry with visits that reduce geitonogamy, i.e. selfing and pollen discounting. In plants with male biases, these visit types include single-flower visits and movements from low to high rewards. To test these predictions, I manipulated nectar asymmetry between pairs of real or artificial flowers on plants and recorded foraging behaviour. I also assessed maternal costs of selfing using hand pollinations. For plants with real flowers, hummingbirds preferred more-rewarding flowers and male-phase morphology, the latter possibly owing to previous experience. At artificial arrays, hummingbirds responded to extreme reward asymmetry with increased single-flower visits; however, they moved from high to low rewards more often than low to high. Finally, selfed flowers did not produce inferior seeds. In summary, sexual selection, more so than geitonogamy avoidance, maintains nectar biases in C. friedrichsthaliana, in one of the clearest examples of sexual selection in plants, to date.  相似文献   

2.

Background and Aims

Pollinator-mediated selection and evolution of floral traits have long fascinated evolutionary ecologists. No other plant family shows as wide a range of pollinator-linked floral forms as Orchidaceae. In spite of the large size of this model family and a long history of orchid pollination biology, the identity and specificity of most orchid pollinators remains inadequately studied, especially in the tropics where the family has undergone extensive diversification. Angraecum (Vandeae, Epidendroideae), a large genus of tropical Old World orchids renowned for their floral morphology specialized for hawkmoth pollination, has been a model system since the time of Darwin.

Methods

The pollination biology of A. cadetii, an endemic species of the islands of Mauritius and Reunion (Mascarene Islands, Indian Ocean) displaying atypical flowers for the genus (white and medium-size, but short-spurred) was investigated. Natural pollinators were observed by means of hard-disk camcorders. Pollinator-linked floral traits, namely spur length, nectar volume and concentration and scent production were also investigated. Pollinator efficiency (pollen removal and deposition) and reproductive success (fruit set) were quantified in natural field conditions weekly during the 2003, 2004 and 2005 flowering seasons (January to March).

Key Results

Angraecum cadetii is self-compatible but requires a pollinator to achieve fruit set. Only one pollinator species was observed, an undescribed species of raspy cricket (Gryllacrididae, Orthoptera). These crickets, which are nocturnal foragers, reached flowers by climbing up leaves of the orchid or jumping across from neighbouring plants and probed the most ‘fresh-looking’ flowers on each plant. Visits to flowers were relatively long (if compared with the behaviour of birds or hawkmoths), averaging 16·5 s with a maximum of 41·0 s. At the study site of La Plaine des Palmistes (Pandanus forest), 46·5 % of flowers had pollen removed and 27·5 % had pollinia deposited on stigmas. The proportion of flowers that set fruit ranged from 11·9 % to 43·4 %, depending of the sites sampled across the island.

Conclusions

Although orthopterans are well known for herbivory, this represents the first clearly supported case of orthopteran-mediated pollination in flowering plants.  相似文献   

3.

Background and Aims

‘Human-red’ flowers are traditionally considered to be rather unpopular with bees, yet some allogamous species in the section Oncocyclus (genus Iris, Iridaceae) have evolved specialized interactions with their pollinators, a narrow taxonomic range of male solitary bees. The dark-red, tubular flowers of these irises are nectarless but provide protective shelters (i.e. a non-nutritive form of reward) primarily to male solitary bees (Apidae, Eucerini) that pollinate the flowers while looking for a shelter. An earlier study on orchids suggested that species pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of different n-alkenes (unsaturated cuticular hydrocarbons). Whether or not this also applies to the Oncocyclus irises and whether pollinators are attracted by specific colours or scents of these flowers is unknown.

Methods

Using Iris atropurpurea, recording of pollinator preferences for shelters with different spatial parameters was combined with analyses of floral colours (by spectrophotometry) and scents (by gas chromatography–mass spectrometry) to test the hypotheses that (a) pollinators significantly prefer floral tunnels facing the rising sun (floral heat-reward hypothesis), and that (b) flowers pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of unsaturated cuticular hydrocarbons (n-alkenes) in their floral scent (preadaptation to sexual-deception hypothesis).

Key Results

Male bees do not significantly prefer shelters facing the rising sun or with the presence of high absolute/relative amounts and numbers of n-alkenes in the floral scent.

Conclusions

The results suggest that the flowers of I. atropurpurea probably evolved by pollinator-mediated selection acting primarily on floral colours to mimic large achromatic (‘bee-black’) protective shelters used preferentially by male solitary bees, and that pollinator visits are presumably not the result of an odour-based sexual stimulation or motivated by an increased morning floral heat reward in tunnels facing the rising sun.  相似文献   

4.

Background and Aims

It has traditionally been considered that the flowers of Scrophularia are mainly pollinated by wasps. We studied the pollination system of four species which stand out for their large and showy flowers: S. sambucifolia and S. grandiflora (endemics of the western Mediterranean region), S. trifoliata (an endemic of the Tyrrhenian islands) and S. calliantha (an endemic of the Canary Islands). Our principal aim was to test whether these species were pollinated by birds or showed a mixed pollination system between insects and birds.

Methods

Censuses and captures of insects and birds were performed to obtain pollen load transported and deposited on the stigmas. Also, a qualitative and quantitative analysis of the flowers and inflorescences was carried out.

Key Results

Flowers were visited by Hymenoptera and by passerine birds. The Canarian species was the most visited by birds, especially by Phylloscopus canariensis, and its flowers were also accessed by juveniles of the lizard Gallotia stehlini. The most important birds in the other three species were Sylvia melanocephala and S. atricapilla. The most important insect-functional groups in the mixed pollination system were: honey-bees and wasps in S. sambucifolia; bumble-bees and wasps in S. grandiflora; wasps in S. trifoliata; and a small bee in S. calliantha.

Conclusions

The species studied show a mixed pollination system between insects and passerine birds. In S. calliantha there is, in addition, a third agent (juveniles of Gallotia stehlini). The participation of birds in this mixed pollination system presents varying degrees of importance because, while in S. calliantha they are the main pollinators, in the other species they interact to complement the insects which are the main pollinators. A review of different florae showed that the large showy floral morphotypes of Scrophularia are concentrated in the western and central Mediterranean region, Macaronesia and USA (New Mexico).  相似文献   

5.

Background and Aims

Ericales are a major group of extant asterid angiosperms that are well represented in the Late Cretaceous fossil record, mainly by flowers, fruits and seeds. Exceptionally well preserved fossil flowers, here described as Glandulocalyx upatoiensis gen. & sp. nov., from the Santonian of Georgia, USA, yield new detailed evidence of floral structure in one of these early members of Ericales and provide a secure basis for comparison with extant taxa.

Methods

The floral structure of several fossil specimens was studied by scanning electron microscopy (SEM), light microscopy of microtome thin sections and synchrotron-radiation X-ray tomographic microscopy (SRXTM). For direct comparisons with flowers of extant Ericales, selected floral features of Actinidiaceae and Clethraceae were studied with SEM.

Key Results

Flowers of G. upatoiensis have five sepals with quincuncial aestivation, five free petals with quincuncial aestivation, 20–28 stamens arranged in a single series, extrorse anther orientation in the bud, ventral anther attachment and a tricarpellate, syncarpous ovary with three free styles and numerous small ovules on axile, protruding-diffuse and pendant placentae. The calyx is characterized by a conspicuous indumentum of large, densely arranged, multicellular and possibly glandular trichomes.

Conclusions

Comparison with extant taxa provides clear evidence for a relationship with core Ericales comprised of the extant families Actinidiaceae, Roridulaceae, Sarraceniaceae, Clethraceae, Cyrillaceae and Ericaceae. Within this group, the most marked similarities are with extant Actinidiaceae and, to a lesser degree, with Clethraceae. More detailed analyses of the relationships of Glandulocalyx and other Ericales from the Late Cretaceous will require an improved understanding of the morphological features that diagnose particular extant groups defined on the basis of molecular data.  相似文献   

6.
John T. Huber 《ZooKeys》2013,(345):47-72
The monotypic genus Mymarilla Westwood is known only from St. Helena, a remote island in the South Atlantic Ocean. The peculiar species M. wollastoni Westwood (Mymaridae) is redescribed and illustrated from non-type material. Mymarilla is compared with Cremnomymar Ogloblinspp. from the Juan Fernández Islands in the South Pacific Ocean. Stephanodes Enock is shown to be the most likely sister genus to Mymarilla. Nesopolynema Ogloblin, syn. n., Oncomymar Ogloblin, syn. n., Scolopsopteron Ogloblin, syn. n., are placed in synonymy under Cremnomymar and their species transferred as Cremnomymar caudatum (Ogloblin 1952), comb. n., C. dipteron (Ogloblin 1957), comb. n., and C. kuscheli (Ogloblin 1952), comb. n. Wing shape and wing reductions in Mymaridae are discussed in relation to biogeography, particularly with respect island faunas and to four genera, Cremnomymar, Mymarilla, Parapolynema Fidalgo, and Richteria Girault, some or all of whose species have more or less convex fore wings.  相似文献   

7.
Zoophilous flowers often transmit olfactory signals to attract pollinators. In plants with unisexual flowers, such signals are usually similar between the sexes because attraction of the same animal to both male and female flowers is essential for conspecific pollen transfer. Here, we present a remarkable example of sexual dimorphism in floral signal observed in reproductively highly specialized clades of the tribe Phyllantheae (Phyllanthaceae). These plants are pollinated by species-specific, seed-parasitic Epicephala moths (Gracillariidae) that actively collect pollen from male flowers and pollinate the female flowers in which they oviposit; by doing so, they ensure seeds for their offspring. We found that Epicephala-pollinated Phyllanthaceae plants consistently exhibit major qualitative differences in scent between male and female flowers, often involving compounds derived from different biosynthetic pathways. In a choice test, mated female Epicephala moths preferred the scent of male flowers over that of female flowers, suggesting that male floral scent elicits pollen-collecting behaviour. Epicephala pollination evolved multiple times in Phyllantheae, at least thrice accompanied by transition from sexual monomorphism to dimorphism in floral scent. This is the first example in which sexually dimorphic floral scent has evolved to signal an alternative reward provided by each sex, provoking the pollinator''s legitimate altruistic behaviour.  相似文献   

8.
Hu B  Wang S  Zhang J  Li H 《ZooKeys》2011,(83):43-56
A NEW SPECIES AND NEW RECORD OF GRACILLARIID MOTHS FROM CHINA ARE REPORTED: Conopomorpha flueggella Li, sp. n. and Epicephala relictella Kuznetzov, 1979. Specimens were collected on flowers or leaves of Flueggea suffruticosa (Pall.) Baill. (Euphorbiaceae) at night, and reared from fruits in captivity. Larvae of both species feed on the seeds of Flueggea suffruticosa, but they can be differentiated externally by the position of the red pattern on the thorax and abdomen. Morphology of the eggs, larvae, pupae and the life history of the two species are described and compared. Images of the life history and figures of the genital structures are provided.  相似文献   

9.
Study of the syntype of Larinioides subinermis, a species known from Ethiopia only, revealed that it actually belongs to Singafrotypa Benoit, 1962. We redescribe Singafrotypa subinermis (Caporiacco, 1940), comb. n., and provide a key to females of four species belonging to Singafrotypa. A distribution map for all species is provided.  相似文献   

10.
In the Central European apoid and masarid fauna, 13 bee species belonging to seven different taxonomic groups and one honey wasp species were found to be equipped with a specialized pollen-collecting apparatus on the face which is used to harvest pollen from nototribic flowers, viz. representatives of the Lamiaceae and the Scrophulariaceae. Pollen from these two plant families plays an important part in the larval nourishment of these hymenopteran species. The pollen-collecting apparatus consists of a peculiar facial pilosity composed of transformed hairs which are thickened at their base and either knobbed apically (Celonites abbreviatus) or extended into a thin tail which is either straight and bent at right angles ( Rophites spp., Anthophora borealis, A. furcata ) or wavy ( Anthidium spp., Anthocopa andrenoides, Osmia aurulenta, O. caerulescens ). Nototribic flowers are worked by pollen-collecting females by rubbing the facial area covered with the transformed hairs over the anthers (Celonites, Anthidium, Anthocopa, Osmia) , by buzzing the pollen amongst the transformed hairs (Anthophora Jurcata) or by a combination of rubbing movements and buzzing (Rophites) . Bee species lacking special morphological devices were observed to perform specialized behaviours when collecting pollen at nototribic flowers. Nototribic flowers, therefore, appear to be difficult to exploit for pollen. The raised position of the anthers in nototribic flowers as a possible means to reduce excessive pollen losses caused by pollen-collecting hymenopterans is discussed.  相似文献   

11.
Background Various groups of flowering plants reveal profound (‘saltational’) changes of their bauplans (architectural rules) as compared with related taxa. These plants are known as morphological misfits that appear as rather large morphological deviations from the norm. Some of them emerged as morphological key innovations (perhaps ‘hopeful monsters’) that gave rise to new evolutionary lines of organisms, based on (major) genetic changes.Scope This pictorial report places emphasis on released bauplans as typical for bladderworts (Utricularia, approx. 230 secies, Lentibulariaceae) and river-weeds (Podostemaceae, three subfamilies, approx. 54 genera, approx. 310 species). Bladderworts (Utricularia) are carnivorous, possessing sucking traps. They live as submerged aquatics (except for their flowers), as humid terrestrials or as epiphytes. Most Podostemaceae are restricted to rocks in tropical river-rapids and waterfalls. They survive as submerged haptophytes in these extreme habitats during the rainy season, emerging with their flowers afterwards. The recent scientific progress in developmental biology and evolutionary history of both Lentibulariaceae and Podostemaceae is summarized.Conclusions Lentibulariaceae and Podostemaceae follow structural rules that are different from but related to those of more typical flowering plants. The roots, stems and leaves – as still distinguishable in related flowering plants – are blurred (‘fuzzy’). However, both families have stable floral bauplans. The developmental switches to unusual vegetative morphologies facilitated rather than prevented the evolution of species diversity in both families. The lack of one-to-one correspondence between structural categories and gene expression may have arisen from the re-use of existing genetic resources in novel contexts. Understanding what developmental patterns are followed in Lentibulariaceae and Podostemaceae is a necessary prerequisite to discover the genetic alterations that led to the evolution of these atypical plants. Future molecular genetic work on morphological misfits such as bladderworts and river-weeds will provide insight into developmental and evolutionary aspects of more typical vascular plants.  相似文献   

12.

Background and Aims

Within Chenopodioideae, Atripliceae have been distinguished by two bracteoles enveloping the female flowers/fruits, whereas in other tribes flowers are described as ebracteolate with persistent perianth. Molecular phylogenetic hypotheses suggest ‘bracteoles’ to be homoplastic. The origin of the bracteoles was explained by successive inflorescence reductions. Flower reduction was used to explain sex determination. Therefore, floral ontogeny was studied to evaluate the nature of the bracteoles and sex determination in Atripliceae.

Methods

Inflorescences of species of Atriplex, Chenopodium, Dysphania and Spinacia oleracea were investigated using light microscopy and scanning electron microscopy.

Key Results

The main axis of the inflorescence is indeterminate with elementary dichasia as lateral units. Flowers develop centripetally, with first the formation of a perianth primordium either from a ring primordium or from five individual tepal primordia fusing post-genitally. Subsequently, five stamen primordia originate, followed by the formation of an annular ovary primordium surrounding a central single ovule. Flowers are either initially hermaphroditic remaining bisexual and/or becoming functionally unisexual at later stages, or initially unisexual. In the studied species of Atriplex, female flowers are strictly female, except in A. hortensis. In Spinacia, female and male flowers are unisexual at all developmental stages. Female flowers of Atriplex and Spinacia are protected by two accrescent fused tepal lobes, whereas the other perianth members are absent.

Conclusions

In Atriplex and Spinacia modified structures around female flowers are not bracteoles, but two opposite accrescent tepal lobes, parts of a perianth persistent on the fruit. Flowers can achieve sexuality through many different combinations; they are initially hermaphroditic, subsequently developing into bisexual or functionally unisexual flowers, with the exception of Spinacia and strictly female flowers in Atriplex, which are unisexual from the earliest developmental stages. There may be a relationship between the formation of an annular perianth primordium and flexibility in floral sex determination.  相似文献   

13.

Background and Aims

Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined.

Methods

Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles.

Key Results

Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps.

Conclusions

Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers.  相似文献   

14.
A new genus of cynipid oak gallwasp, Zapatella Pujade-Villar & Melika, gen. n. (Hymenoptera: Cynipidae: Cynipini), with two new species, Zapatella grahami Pujade-Villar & Melika, sp. n. and Zapatella nievesaldreyi Melika & Pujade-Villar, sp. n., is described from the Neotropics. Zapatella grahami,known only from the sexual generation,induces galls in acorns of Quercus costaricensis and is currently known only from Costa Rica. Zapatella nievesaldreyi, known only from the asexual generation, induces inconspicuous galls in twigs of Quercus humboldtii, and is known only from Colombia. Diagnostic characters for both new species are given in detail. Five Nearctic species are transferred from Callirhytis to Zapatella: Zapatella cryptica (Weld), comb. n., Zapatella herberti (Weld), comb. n., Zapatella oblata (Weld), comb. n., Zapatella quercusmedullae (Ashmead), comb. n.,Zapatella quercusphellos (Osten Sacken), comb. n. (= Zapatella quercussimilis (Bassett), syn. n.). A key based on adults for the species belonging to Zapatella is also given. Generic limits and morphological characteristics of Zapatella and closely related genera are discussed.  相似文献   

15.
16.
The paper is devoted to a taxonomic revision of the genus Sensillonychiurus Pomorski & Sveenkova, 2006. Five new species of this genus, i.e. Sensillonychiurus mirussp. n., Sensillonychiurus taimyrensissp. n., Sensillonychiurus vegaesp. n., Sensillonychiurus vitimicussp. n., and Sensillonychiurus amuricussp. n., as well as three new species of the related genus Allonychiurus Yoshii, 1995, i.e. Allonychiurus subvolinensissp. n., Allonychiurus elikoniussp. n., and Allonychiurus unisetosussp. n. are being described from various regions of Eurasia. The diagnoses of both genera are amended to include described species. Two genera, Tantulonychiurus Pomorski, 1996 and Thibaudichiurus Weiner, 1996, are treated as junior synonyms of the genus Allonychiurus. Agraphorura eisi (Rusek, 1976) is transferred to Sensillonychiurus; Tantulonychiurus volinensis (Szeptycki, 1964) and Tantulonychiurus asiaticus Babenko, 2007 to Allonychiurus. A review of morphological peculiarities of Sensillonychiurus is performed, comparisons with the other genera of Thalassaphorurini given, and a key to the known species provided.  相似文献   

17.
In southwestern USA, the jimsonweed Datura wrightii and the nocturnal moth Manduca sexta form a pollinator–plant and herbivore–plant association. Because the floral scent is probably important in mediating this interaction, we investigated the floral volatiles that might attract M. sexta for feeding and oviposition. We found that flower volatiles increase oviposition and include small amounts of both enantiomers of linalool, a common component of the scent of hawkmoth-pollinated flowers. Because (+)-linalool is processed in a female-specific glomerulus in the primary olfactory centre of M. sexta, we hypothesized that the enantiomers of linalool differentially modulate feeding and oviposition. Using a synthetic mixture that mimics the D. wrightii floral scent, we found that the presence of linalool was not necessary to evoke feeding and that mixtures containing (+)- and/or (−)-linalool were equally effective in mediating this behaviour. By contrast, females oviposited more on plants emitting (+)-linalool (alone or in mixtures) over control plants, while plants emitting (−)-linalool (alone or in mixtures) were less preferred than control plants. Together with our previous investigations, these results show that linalool has differential effects in feeding and oviposition through two neural pathways: one that is sexually isomorphic and non-enantioselective, and another that is female-specific and enantioselective.  相似文献   

18.
19.
Stephanidae Leach, 1815 (Hymenoptera: Stephanoidea) from China are revised. Five genera are reported from China: Foenatopus Smith, 1861; Megischus Brullé, 1846; Parastephanellus Enderlein, 1906; Schlettererius Ashmead, 1900; and Stephanus Jurine (in Panzer), 1801, and the genera are keyed. All the Chinese species are described and illustrated and new synonyms are established. Keys to species of the five genera occurring in China and adjacent regions are provided.SIX SPECIES ARE NEW TO SCIENCE: Foenatopus brevimaculatussp. n., Foenatopus maculiferussp. n., Foenatopus yangisp. n., Parastephanellus angulatussp. n., Parastephanellus brevicoxalissp. n. and Parastephanellus zhejiangensissp. n. One species, Parastephanellus matsumotoi van Achterberg, 2006, is newly recorded from China.The following 9 new synonyms are proposed: Foenatopus aratifrons Enderlein, 1913 and Foenatopus yunnanensis Chao, 1964, new synonymys for Foenatopus annulitarsus Enderlein, 1913; Foenatopus cerviculatus (Chao, 1964) and Foenatopus chaoi Belokobylskij, 1995 for Foenatopus chinensis (Elliott, 1919); Foenatopus formosanus Enderlein, 1913 for Foenatopus cinctus (Matsumura, 1912); Foenatopus simillimus (Elliott, 1920) and Foenatopus trilineatus (Elliott, 1920) for Foenatopus flavidentatus (Enderlein, 1913); Foenatopus trilobatus (Elliott, 1920) for Foenatopus ruficollis (Enderlein, 1913); Parastephanellus austrochinensis Belokobylskij, 1995 for Parastephanellus brevistigma Enderlein, 1913. A lectotype is designated for Diastephanus trilineatus Elliott, 1920.  相似文献   

20.
The Australian Thrasorinae are revised and Mikeius is transferred to Mikeiinae Paretas-Martínez & Pujade-Villar, subfam. n., and Mikeius clavatus Pujade-Villar & Restrepo-Ortiz, sp. n., is described. Two new genera of Thrasorinae are erected: Cicatrix Paretas-Martínez, gen. n., including Cicatrix pilosiscutum(Girault), comb. n. from Amblynotus, Cicatrix schauffi (Buffington), comb. n. from Mikeius, and Cicatrix neumannoides Paretas-Martínez & Restrepo-Ortiz, sp. n.; and Palmiriella Pujade-Villar & Paretas-Martínez, gen. n., including Palmiriella neumanni (Buffington), comb. n. from Mikeius, Thrasorus rieki Paretas-Martínez & Pujade-Villar, sp. n., is also described. A phylogenetic analysis of 176 morphological and biological characters, including all these new taxa and all genera previously included in Thrasorinae, was conducted. All subfamilies were recovered as monophyletic, with the following relationships: Parnipinae (Euceroptrinae (Mikeiinae (Plectocynipinae (Thrasorinae)))). A worldwide key to the subfamilies of Figitidae is provided that includes the new subfamily, as well as a key to genera Thrasorinae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号