首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The retromer complex localizes to endosomal membranes and is involved in protein trafficking. In mammals, it is composed of a dimer of sorting nexins and of the core retromer consisting of vacuolar protein sorting (VPS)26, VPS29, and VPS35. Although homologs of these proteins have been identified in plants, how the plant retromer functions remains elusive. To better understand the role of VPS components in the assembly and function of the core retromer, we characterize here Arabidopsis vps26-null mutants. We show that impaired VPS26 function has a dramatic effect on VPS35 levels and causes severe phenotypic defects similar to those observed in vps29-null mutants. This implies that functions of plant VPS26, VPS29, and VPS35 are tightly linked. Then, by combining live-cell imaging with immunochemical and genetic approaches, we report that VPS35 alone is able to bind to endosomal membranes and plays an essential role in VPS26 and VPS29 membrane recruitment. We also show that the Arabidopsis Rab7 homolog RABG3f participates in the recruitment of the core retromer to the endosomal membrane by interacting with VPS35. Altogether our data provide original information on the molecular interactions that mediate assembly of the core retromer in plants.  相似文献   

2.
Two Arabidopsis thaliana genes have been shown to function in vacuolar sorting of seed storage proteins: a vacuolar sorting receptor, VSR1/ATELP1, and a retromer component, MAIGO1 (MAG1)/VPS29. Here, we show an efficient and simple method for isolating vacuolar sorting mutants of Arabidopsis. The method was based on two findings in this study. First, VSR1 functioned as a sorting receptor for beta-conglycinin by recognizing the vacuolar targeting signal. Second, when green fluorescent protein (GFP) fusion with the signal (GFP-CT24) was expressed in vsr1, mag1/vps29, and wild-type seeds, both vsr1and mag1/vps29 gave strongly fluorescent seeds but the wild type did not, suggesting that a defect in vacuolar sorting provided fluorescent seeds by the secretion of GFP-CT24 out of the cells. We mutagenized transformant seeds expressing GFP-CT24. From approximately 3,000,000 lines of M2 seeds, we obtained >100 fluorescent seeds and designated them green fluorescent seed (gfs) mutants. We report 10 gfs mutants, all of which caused missorting of storage proteins. We mapped gfs1 to VSR1, gfs2 to KAM2/GRV2, gfs10 to the At4g35870 gene encoding a novel membrane protein, and the others to different loci. This method should provide valuable insights into the complex molecular mechanisms underlying vacuolar sorting of storage proteins.  相似文献   

3.
Receptors for acid hydrolases destined for the lytic compartment in yeast and mammalian cells are retrieved from intermediate, endosomal organelles with the help of a pentameric protein complex called the retromer. We cloned the Arabidopsis thaliana homologs of the three yeast proteins (Vps35, Vps29, and Vps26) constituting the larger subunit of retromer and prepared antisera against them. With these antibodies, we demonstrated the presence of a retromer-like protein complex in salt extracts prepared from Arabidopsis microsomes. This complex is associated with membranes that coequilibrate with prevacuolar compartment markers and with high-density sedimenting membranes. Immunogold negative staining identified these membranes as 90-nm-diameter coated microvesicles. Confocal laser scanning immunofluorescence studies performed on tobacco (Nicotiana tabacum) BY-2 cells revealed high degrees of colabeling between all three retromer antisera and the prevacuolar compartment (PVC) markers PEP12 and vacuolar sorting receptor VSR(At-1). The presence of plant retromer at the surface of multivesicular bodies was also demonstrated by immunogold labeling of sections obtained from high-pressure frozen/freeze-substituted specimens. Treatment of BY-2 cells with wortmannin led to swelling of the PVC and a separation of the VPS35 and VSR signals. Preliminary data suggesting that retromer interacts with the cytosolic domain of a VSR were obtained by immunoprecipitation experiments performed on detergent-solubilized microsomes with Vps35 antibodies.  相似文献   

4.
Receptor-mediated sorting processes in the secretory pathway of eukaryotic cells rely on mechanisms to recycle the receptors after completion of transport. Based on this principle, plant vacuolar sorting receptors (VSRs) are thought to recycle after dissociating of receptor–ligand complexes in a pre-vacuolar compartment. This recycling is mediated by retromer, a cytosolic coat complex that comprises sorting nexins and a large heterotrimeric subunit. To analyse retromer-mediated VSR recycling, we have used a combination of immunoelectron and fluorescence microscopy to localize the retromer components sorting nexin 1 (SNX1) and sorting nexin 2a (SNX2a) and the vacuolar sorting protein VPS29p. All retromer components localize to the trans -Golgi network (TGN), which is considered to represent the early endosome of plants. In addition, we show that inhibition of retromer function in vivo by expression of SNX1 or SNX2a mutants as well as transient RNAi knockdown of all sorting nexins led to accumulation of the VSR BP80 at the TGN. Quantitative protein transport studies and live-cell imaging using fluorescent vacuolar cargo molecules revealed that arrival of these VSR ligands at the vacuole is not affected under these conditions. Based on these findings, we propose that the TGN is the location of retromer-mediated recycling of VSRs, and that transport towards the lytic vacuole downstream of the TGN is receptor-independent and occurs via maturation, similar to transition of the early endosome into the late endosome in mammalian cells.  相似文献   

5.
The large retromer complex participates in diverse endosomal trafficking pathways and is essential for plant developmental programs, including cell polarity, programmed cell death and shoot gravitropism in Arabidopsis. Here we demonstrate that an evolutionarily conserved VPS26 protein (VPS26C; At1G48550) functions in a complex with VPS35A and VPS29 necessary for root hair growth in Arabidopsis. Bimolecular fluorescence complementation showed that VPS26C forms a complex with VPS35A in the presence of VPS29, and this is supported by genetic studies showing that vps29 and vps35a mutants exhibit altered root hair growth. Genetic analysis also demonstrated an interaction between a VPS26C trafficking pathway and one involving the SNARE VTI13. Phylogenetic analysis indicates that VPS26C, with the notable exception of grasses, has been maintained in the genomes of most major plant clades since its evolution at the base of eukaryotes. To test the model that VPS26C orthologs in animal and plant species share a conserved function, we generated transgenic lines expressing GFP fused with the VPS26C human ortholog (HsDSCR3) in a vps26c background. These studies illustrate that GFP‐HsDSCR3 is able to complement the vps26c root hair phenotype in Arabidopsis, indicating a deep conservation of cellular function for this large retromer subunit across plant and animal kingdoms.  相似文献   

6.
Mutations in the S. cerevisiae VPS29 and VPS30 genes lead to a selective protein sorting defect in which the vacuolar protein carboxypeptidase Y (CPY) is missorted and secreted from the cell, while other soluble vacuolar hydrolases like proteinase A (PrA) are delivered to the vacuole. This phenotype is similar to that seen in cells with mutations in the previously characterized VPS10 and VPS35 genes. Vps10p is a late Golgi transmembrane protein that acts as the sorting receptor for soluble vacuolar hydrolases like CPY and PrA, while Vps35p is a peripheral membrane protein which cofractionates with membranes enriched in Vps10p. The sequences of the VPS29, VPS30, and VPS35 genes do not yet give any clues to the functions of their products. Each is predicted to encode a hydrophilic protein with homologues in the human and C. elegans genomes. Interestingly, mutations in the VPS29, VPS30, or VPS35 genes change the subcellular distribution of the Vps10 protein, resulting in a shift of Vps10p from the Golgi to the vacuolar membrane. The route that Vps10p takes to reach the vacuole in a vps35 mutant does not depend upon Sec1p mediated arrival at the plasma membrane but does require the activity of the pre-vacuolar endosomal t-SNARE, Pep12p. A temperature conditional allele of the VPS35 gene was generated and has been found to cause missorting/secretion of CPY and also Vps10p to mislocalize to a vacuolar membrane fraction at the nonpermissive temperature. Vps35p continues to cofractionate with Vps10p in vps29 mutants, suggesting that Vps10p and Vps35p may directly interact. Together, the data indicate that the VPS29, VPS30, and VPS35 gene products are required for the normal recycling of Vps10p from the prevacuolar endosome back to the Golgi where it can initiate additional rounds of vacuolar hydrolase sorting.  相似文献   

7.
8.
Myrosin cells, which accumulate myrosinase to produce toxic compounds when they are ruptured by herbivores, form specifically along leaf veins in Arabidopsis thaliana. However, the mechanism underlying this pattern formation is unknown. Here, we show that myrosin cell development requires the endocytosis-mediated polar localization of the auxin-efflux carrier PIN1 in leaf primordia. Defects in the endocytic/vacuolar SNAREs (syp22 and syp22 vti11) enhanced myrosin cell development. The syp22 phenotype was rescued by expressing SYP22 under the control of the PIN1 promoter. Additionally, myrosin cell development was enhanced either by lacking the activator of endocytic/vacuolar RAB5 GTPase (VPS9A) or by PIN1 promoter-driven expression of a dominant-negative form of RAB5 GTPase (ARA7). By contrast, myrosin cell development was not affected by deficiencies of vacuolar trafficking factors, including the vacuolar sorting receptor VSR1 and the retromer components VPS29 and VPS35, suggesting that endocytic pathway rather than vacuolar trafficking pathway is important for myrosin cell development. The phosphomimic PIN1 variant (PIN1-Asp), which is unable to be polarized, caused myrosin cells to form not only along leaf vein but also in the intervein leaf area. We propose that Brassicales plants might arrange myrosin cells near vascular cells in order to protect the flux of nutrients and water via polar PIN1 localization.  相似文献   

9.
The retromer complex is a conserved cytoplasmic coat complex that mediates the endosome-to-Golgi retrieval of vacuole/lysosome hydrolase receptors in yeast and mammals. The recognition of cargo proteins by the retromer is performed by the Vps35p/VPS35 (where Vps is vacuolar protein sorting) component, which together with Vps26p/VPS26 and Vps29p/VPS29, forms the cargo-selective subcomplex. In this report, we have identified a highly-conserved region of Vps35p/VPS35 that is essential for the interaction with Vps26p/VPS26 and for assembly of the retromer complex. Mutation of residues within the conserved region results in Vps35p/VPS35 mutants, which cannot bind to Vps26p/VPS26 and are not efficiently targeted to the endosomal membrane. These data implicate Vps26p/VPS26 in regulating Vps35p/VPS35 membrane association and therefore suggest a role for Vps26p/VPS26 in cargo recognition.  相似文献   

10.
Over 60 genes have been identified that affect protein sorting to the lysosome-like vacuole in Saccharomyces cerevisiae. Cells with mutations in these vacuolar protein sorting (vps) genes fall into seven general classes based upon their vacuolar morphology. Class A mutants have a morphologically wild type vacuole, while Class B mutants have a fragmented vacuole. There is no discernable vacuolar structure in Class C mutants. Class D mutants have a slightly enlarged vacuole, but Class E mutants have a normal looking vacuole with an enlarged prevacuolar compartment (PVC), which is analogous to the mammalian late endosome. Class F mutants have a wild type appearing vacuole as well as fragmented vacuolar structures. vps mutants have also been found with a tubulo-vesicular vacuole structure. vps mutant morphology is pertinent, as mutants of the same class may work together and/or have a block in the same general step in the vacuolar protein sorting pathway. We probed PVC morphology and location microscopically in live cells of several null vps mutants using a GFP fusion protein of Nhx1p, an Na(+)/H(+) exchanger normally localized to the PVC. We show that cell strains deleted for VPS proteins that have been previously shown to work together, regardless of VPS Class, have the same PVC morphology. Cell strains lacking VPS genes that have not been implicated in the same pathway show different PVC morphologies, even if the mutant strains are in the same VPS Class. These new studies indicate that PVC morphology is another tier of classification that may more accurately identify proteins that function together in vacuolar protein sorting than the original vps mutation classes.  相似文献   

11.
The retromer is an endosome-localized complex involved in protein trafficking. To better understand its function and regulation in plants, we recently investigated how Arabidopsis retromer subunits assemble and are targeted to endosomal membranes and highlighted original features compared with mammals. We characterized Arabidopsis vps26 null mutant and showed that it displays severe developmental defaults similar to those observed in vps29 mutant. Here, we go further by describing new phenotypic defects associated with loss of VPS26 function, such as inhibition of lateral root initiation. Recently, we showed that VPS35 subunit plays a crucial role in the recruitment of the plant retromer to endosomes, probably through an interaction with the Rab7 homolog RABG3f. In this work, we now show that contrary to mammals, Arabidopsis Rab5 homologs do not seem to be necessary for the recruitment of the core retromer to endosomal membranes, which highlights a new specificity of the plant retromer.  相似文献   

12.
Sorting nexins (SNXs) are conserved eukaryotic proteins that associate with three types of vacuolar protein sorting (VPS) proteins to form the retromer complex. How SNXs act in this complex and whether they might work independently of the retromer remains elusive. Here, we show by genetic and cell imaging approaches that the Arabidopsis thaliana SNX1 protein recruits SNX2 at the endosomal membrane, a process required for SNX1-SNX2 dimer activity. We report that, in contrast with the mammalian retromer, SNXs are dispensable for membrane binding and function of the retromer complex. We also show that VPS retromer components can work with or independently of SNXs in the trafficking of seed storage proteins, which reveals distinct functions for subcomplexes of the plant retromer. Finally, we provide compelling evidence that the combined loss of function of SNXs and VPS29 leads to embryo or seedling lethality, underlining the essential role of these proteins in development.  相似文献   

13.
To investigate the role of the prevacuolar secretion pathway in the trafficking of vacuolar proteins in Candida albicans, the C. albicans homolog of the Saccharomyces cerevisiae vacuolar protein sorting gene VPS4 was cloned and analyzed. Candida albicans VPS4 encodes a deduced AAA-type ATPase that is 75.6% similar to S. cerevisiae Vps4p, and plasmids bearing C. albicans VPS4 complemented the abnormal vacuolar morphology and carboxypeptidase missorting in S. cerevisiae vps4 null mutants. Candida albicans vps4Delta null mutants displayed a characteristic class E vacuolar morphology and multilamellar structures consistent with an aberrant prevacuolar compartment. The C. albicans vps4Delta mutant degraded more extracellular bovine serum albumin than did wild-type strains, which implied that this mutant secreted more extracellular protease activity. These phenotypes were complemented when a wild-type copy of VPS4 was reintroduced into its proper locus. Using a series of protease inhibitors, the origin of this extracellular protease activity was identified as a serine protease, and genetic analyses using a C. albicans vps4Deltaprc1Delta mutant identified this missorted vacuolar protease as carboxypeptidase Y. Unexpectedly, C. albicans Sap2p was not detected in culture supernatants of the vps4Delta mutants. These results indicate that C. albicans VPS4 is required for vacuolar biogenesis and proper sorting of vacuolar proteins.  相似文献   

14.
The identification of genetic causes for Mendelian disorders has been based on the collection of multi-incident families, linkage analysis, and sequencing of genes in candidate intervals. This study describes the application of next-generation sequencing technologies to a Swiss kindred presenting with autosomal-dominant, late-onset Parkinson disease (PD). The family has tremor-predominant dopa-responsive parkinsonism with a mean onset of 50.6 ± 7.3 years. Exome analysis suggests that an aspartic-acid-to-asparagine mutation within vacuolar protein sorting 35 (VPS35 c.1858G>A; p.Asp620Asn) is the genetic determinant of disease. VPS35 is a central component of the retromer cargo-recognition complex, is critical for endosome-trans-golgi trafficking and membrane-protein recycling, and is evolutionarily highly conserved. VPS35 c.1858G>A was found in all affected members of the Swiss kindred and in three more families and one patient with sporadic PD, but it was not observed in 3,309 controls. Further sequencing of familial affected probands revealed only one other missense variant, VPS35 c.946C>T; (p.Pro316Ser), in a pedigree with one unaffected and two affected carriers, and thus the pathogenicity of this mutation remains uncertain. Retromer-mediated sorting and transport is best characterized for acid hydrolase receptors. However, the complex has many types of cargo and is involved in a diverse array of biologic pathways from developmental Wnt signaling to lysosome biogenesis. Our study implicates disruption of VPS35 and retromer-mediated trans-membrane protein sorting, rescue, and recycling in the neurodegenerative process leading to PD.  相似文献   

15.
vps35 mutants of Saccharomyces cerevisiae exhibit severe defects in the localization of carboxypeptidase Y, a soluble vacuolar hydrolase. We have cloned the wild-type VPS35 gene by complementation of the vacuolar protein sorting defect exhibited by the vps35-17 mutant. Sequence analysis revealed an open reading frame predicted to encode a protein of 937 amino acids that lacks any obvious hydrophobic domains. Subcellular fractionation studies indicated that 80% of Vps35p peripherally associates with a membranous particulate cell fraction. The association of Vps35p with this fraction appears to be saturable; when overproduced, the vast majority of Vps35p remains in a soluble fraction. Disruption of the VPS35 gene demonstrated that it is not essential for yeast cell growth. However, the null allele of VPS35 results in a differential defect in the sorting of vacuolar carboxypeptidase Y (CPY), proteinase A (PrA), proteinase B (PrB), and alkaline phosphatase (ALP). proCPY was quantitatively missorted and secreted by delta vps35 cells, whereas almost all of proPrA, proPrB, and proALP were retained within the cell and converted to their mature forms, indicating delivery to the vacuole. Based on these observations, we propose that alternative pathways exist for the sorting and/or delivery of proteins to the vacuole.  相似文献   

16.
VARP (VPS9‐ankyrin‐repeat protein, also known as ANKRD27) was originally identified as an N‐terminal VPS9 (vacuolar protein sorting 9)‐domain‐containing protein that possesses guanine nucleotide exchange factor (GEF) activity toward small GTPase Rab21 and contains two ankyrin repeat (ANKR) domains in its central region. A number of VARP‐interacting molecules have been identified during the past five years, and considerable attention is now being directed to the multiple roles of VARP in endosomal trafficking. More specifically, VARP is now known to interact with three different types of key membrane trafficking regulators, i.e. small GTPase Rabs (Rab32, Rab38 and Rab40C), the retromer complex (a sorting nexin dimer, VPS26, VPS29 and VPS35) and R‐SNARE VAMP7. By binding to several of these molecules, VARP regulates endosomal trafficking, which underlies a variety of cellular events, including melanogenic enzyme trafficking to melanosomes, dendrite outgrowth of melanocytes, neurite outgrowth and retromer‐mediated endosome‐to‐plasma membrane sorting of transmembrane proteins.   相似文献   

17.
In the yeast Saccharomyces cerevisiae, mutations in vacuolar protein sorting (VPS) genes result in secretion of proteins normally localized to the vacuole. Characterization of the VPS pathway has provided considerable insight into mechanisms of protein sorting and vesicle-mediated intracellular transport. We have cloned VPS9 by complementation of the vacuolar protein sorting defect of vps9 cells, characterized its gene product, and investigated its role in vacuolar protein sorting. Cells with a vps9 disruption exhibit severe vacuolar protein sorting defects and a temperature-sensitive growth defect at 38 degrees C. Electron microscopic examination of delta vps9 cells revealed the appearance of novel reticular membrane structures as well as an accumulation of 40- to 50-nm-diameter vesicles, suggesting that Vps9p may be required for the consumption of transport vesicles containing vacuolar protein precursors. A temperature-conditional allele of vps9 was constructed and used to investigate the function of Vps9p. Immediately upon shifting of temperature-conditional vps9 cells to the nonpermissive temperature, newly synthesized carboxypeptidase Y was secreted, indicating that Vps9p function is directly required in the VPS pathway. Antibodies raised against Vps9p immunoprecipitate a rare 52-kDa protein that fractionates with cytosolic proteins following cell lysis and centrifugation. Analysis of the VPS9 DNA sequence predicts that Vps9p is related to human proteins that bind Ras and negatively regulate Ras-mediated signaling. We term the related regions of Vps9p and these Ras-binding proteins a GTPase binding homology domain and suggest that it defines a family of proteins that bind monomeric GTPases. Vps9p may bind and serve as an effector of a rab GTPase, like Vps2lp, required for vacuolar protein sorting.  相似文献   

18.
vps3 mutants of the yeast Saccharomyces cerevisiae are impaired in the sorting of newly synthesized soluble vacuolar proteins and in the acidification of the vacuole (Rothman, J. H., and T. H. Stevens. Cell. 47:1041-1051; Rothman, J. H., C. T. Yamashiro, C. K. Raymond, P. M. Kane, and T. H. Stevens. 1989. J. Cell Biol. 109:93-100). The VPS3 gene, which was cloned using a novel selection procedure, encodes a low abundance, hydrophilic protein of 117 kD that most likely resides in the cytoplasm. Yeast strains bearing a deletion of the VPS3 gene (vps3-delta 1) are viable, yet their growth rate is significantly reduced relative to wild-type cells. Temperature shift experiments with strains carrying a temperature conditional vps3 allele demonstrate that cells rapidly lose the capacity to sort the vacuolar protein carboxypeptidase Y upon loss of VPS3 function. Vacuolar morphology was examined in wild-type and vps3-delta 1 yeast strains by fluorescence microscopy. The vacuoles in wild-type yeast cells are morphologically complex, and they appear to be actively partitioned between mother cells and buds during an early phase of bud growth. Vacuolar morphology in vps3-delta 1 mutants is significantly altered from the wild-type pattern, and the vacuolar segregation process seen in wild-type strains is defective in these mutants. With the exception of a vacuolar acidification defect, the phenotypes of vps3-delta 1 strains are significantly different from those of mutants lacking the vacuolar proton-translocating ATPase. These data demonstrate that the acidification defect in vps3-delta 1 cells is not the primary cause of the pleiotropic defects in vacuolar function observed in these mutants.  相似文献   

19.
Saccharomyces cerevisiae strains carrying vps18 mutations are defective in the sorting and transport of vacuolar enzymes. The precursor forms of these proteins are missorted and secreted from the mutant cells. Most vps18 mutants are temperature sensitive for growth and are defective in vacuole biogenesis; no structure resembling a normal vacuole is seen. A plasmid complementing the temperature-sensitive growth defect of strains carrying the vps18-4 allele was isolated from a centromere-based yeast genomic library. Integrative mapping experiments indicated that the 26-kb insert in this plasmid was derived from the VPS18 locus. A 4-kb minimal complementing fragment contains a single long open reading frame predicted to encode a 918-amino-acid hydrophilic protein. Comparison of the VPS18 sequence with the PEP3 sequence reported in the accompanying paper (R. A. Preston, H. F. Manolson, K. Becherer, E. Weidenhammer, D. Kirkpatrick, R. Wright, and E. W. Jones, Mol. Cell. Biol. 11:5801-5812, 1991) shows that the two genes are identical. Disruption of the VPS18/PEP3 gene (vps18 delta 1::TRP1) is not lethal but results in the same vacuolar protein sorting and growth defects exhibited by the original temperature-sensitive vps18 alleles. In addition, vps18 delta 1::TRP1 MAT alpha strains exhibit a defect in the Kex2p-dependent processing of the secreted pheromone alpha-factor. This finding suggests that vps18 mutations alter the function of a late Golgi compartment which contains Kex2p and in which vacuolar proteins are thought to be sorted from proteins destined for the cell surface. The Vps18p sequence contains a cysteine-rich, zinc finger-like motif at the COOH terminus. A mutant in which the first cysteine of this motif was changed to serine results in a temperature-conditional carboxypeptidase Y sorting defect shortly after a shift to nonpermissive conditions. We identified a similar cysteine-rich motif near the COOH terminus of another Vps protein, the Vps11/Pep5/End1 protein. Preston et al. (Mol. Cell. Biol. 11:5801-5812, 1991) present evidence that the Vps18/Pep3 protein colocalizes with the Vps11/Pep5 protein to the cytosolic face of the vacuolar membrane. Together with the similar phenotypes exhibited by both vps11 and vps18 mutants, this finding suggests that they may function at a common step during vacuolar protein sorting and that the integrity of their zinc finger motifs may be required for this function.  相似文献   

20.
Parkinson''s disease primarily results from progressive degeneration of dopaminergic neurons in the substantia nigra. Both neuronal toxicants and genetic factors are suggested to be involved in the disease pathogenesis. The mitochondrial toxicant 1-methyl-4-phenylpyridinium (MPP+) shows a highly selective toxicity to dopaminergic neurons. Recent studies indicate that mutation in the vacuolar protein sorting 35 (vps35) gene segregates with Parkinson''s disease in some families, but how mutation in the vps35 gene causes dopaminergic cell death is not known. Here, we report that enhanced VPS35 expression protected dopaminergic cells against MPP+ toxicity and that this neuroprotection was compromised by pathogenic mutation in the gene. A loss of neuroprotective functions contributes to the pathogenesis of VPS35 mutation in Parkinson''s disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号